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Short Biography: From a Conversation with
John Perdew

John Perdew was born August 30, 1943, in the Appalachian
mountain region of western Maryland. He grew up in the
small city of Cumberland, where his parents, Paul Perdew
and Elma Carr Perdew, were both teachers. At Allegany High
School, good mathematics courses convinced him that some
things could be proved. A National Merit Scholarship brought
him to Gettysburg College in Pennsylvania, where Professor
Richard Mara’s elegant introductory lectures left no doubt
in John’s mind that mathematical clarity and physical in-
tuition could come together in one science: physics.

John was a graduate student of physics at Cornell 1965-
1971, a turbulent time for many and a time of challenge for
himsfirst to get through the graduate courses and then to
find (over a period of several frustrating years) a successful
approach to his dissertation problem. There his thesis advisor
John Wilkins and his teachers Neil Ashcroft and David
Mermin got him started on solid state theory. After the com-
pletion of his dissertation, he got his first taste of theoretical
chemistry when Wilkins asked him to try to explain the
cooperativity effect in the oxygenation of hemoglobin. But
his freshman chemistry course had not prepared him to deal
with such a large and complicated system.

At that time, electronic structure calculations for solids,
when they were done at all, were still typically based on
the Hartree approximation. Some physicists and chemists

were exploring the local density or Slater XR approxima-
tions, but that information did not trickle down to John.
The density functional theory of Kohn and Sham 1965
was first presented to him when he was a postdoc with
Sy Vosko at Toronto 1971-1974. A second postdoc
fellowship with David Langreth at Rutgers 1974-1977
convinced him that this theory was a sound foundation
on which to build both improved approximations and
successful applications.

The late 1970s were a hard time to find a job in physics.
In his later postdoc years, John sent out hundreds of
applications per year, usually without getting an interview.
He even applied for an experimental faculty position at
Tulane University in New Orleans and was hired there in
1977 (since experimentalists were too expensive!). John has
spent more than 30 happy years there, exploring the exact
density functional theory and constructing/testing its needed
approximations, never tiring of this deep and practically
important subject, enjoying the good company of more
faculty colleagues, postdocs, and students than can be named
here.

John’s first collaboration with Mel Levy of Tulane
Chemistry was “In Defense of the Hohenberg-Kohn Theorem
and Density Functional Theory”, Int. J. Quantum Chem.
1982, 21, 511. This article was officially labeled a “polemic”
in an editorial in the same issue. Kieron Burke, now at UC
Irvine, Chemistry, joined his group as a postdoc in 1993.
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My research collaboration with John commenced in
August of 2002 after a Sandia Workshop in Albuquerque
on density functionals. At the time, it was increasingly clear
that local hybrids (or hyper-GGAs in John’s “Jacob’s
Ladder” hierarchy of functionals) were the way forward. In
Fall 2005, with Hurricane Katrina seriously devastating New
Orleans, John spent a forced sabbatical in my group at Rice
University in Houston. He endured the near miss of another
big category 4 storm (Rita) that same Fall. Twenty-two
papers and several functionals later, our joint scientific
adventure still continues.

Gus Scuseria
Rice UniVersity

Early Days at Tulane.

It gives me pleasure to recall the early days at Tulane,
where I often interacted and collaborated with John.

I arrived at Tulane a year before John began his faculty
appointment. Prophetically for DFT, Walter Kohn visited and
reviewed the Physics Department during that year, thus
anticipating (or perhaps causing) John’s appearance. I first
met John in 1977 at his job interview lecture, which took
place in the planetarium, an appropriate venue in which to
discuss the universal functional.

I came to Tulane with the intent of concentrating on DFT.
Wonderful for me was the coincidence that John was hired.
The odds were close to zero in those days that two people,
in two relatively small departments, would work on the
fundamentals of DFT and would happen to have offices about
50 feet apart on the same floor.

The semiofficial Quantum Theory Group was formed in
1977, composed of faculty members from physics, chemistry,
and mathematics. For years we regularly held spirited
informal seminars on our research. Members of the group
attended John’s lively and lucid DFT course during his first
or second year at Tulane.

Driven by our addiction to the subject and also somewhat,
perhaps, by the fact that we were junior faculty members, at
odd times we were the only people working on the fifth floor
of Stern Hall. Indeed, I remember this to be quite clearly
the case 30 years ago, between the Fall and Spring semesters
of the 1978-1979 academic year, when I walked a few steps
to John’s office to show him some observations that
eventually resulted in my first real DFT publication at Tulane.
He was always there to share the excitement and make
insightful suggestions. He was also very generous with his
ideas.

Several years after the famous Perdew-Zunger self-
interaction correction paper [Phys. ReV. B 1981, 23, 5048],
John excitedly came to me and said that he arrived at
something very promising, a real-space cutoff of the gradient
expansion for the exchange hole [Phys. ReV. Lett. 1985, 55,
1665]. He said the numbers looked really good. I quote:
“They have to be, given the quality of the theory.” The work
corrected the divergence problem of the second-order gradi-
ent expansion approximation (GEA). A correlation energy
paper followed closely [Phys. ReV. B 1986, 33, 8822]. These
two papers marked John’s entrance into research on the

GGA, a term that I believe he coined. We now know the
delightful consequences of all this.

John and I have, of course, published a number of articles
together. After our collaboration on the “polemical” Int. J.
Quantum Chem. paper, our next joint venture was the PPLB
article containing surprising results concerning fractional
particle number and derivative discontinuities of the energy
[Phys. ReV. Lett. 1982, 49, 1691]. My family spent part of
the summer of 1982 in Newton, MA. It was then that drafts
of the manuscript were transported between Tulane, Newton,
and Chapel Hill, where Bob Parr was and still is located.
John suggested that we use Federal Express: “Let’s get it
out fast.”. This was my first exposure to FedEx, and as a
result I still feel excitement when I walk into one of their
offices. Anyway, our band gap paper followed soon after
[Phys. ReV. Lett. 1983, 51, 1884]. In the mid 1980s we
collaborated on our counterintuitive coordinate scaling results
and virial theorems in DFT [Phys. ReV. A 1985, 32, 2010].
It was, as usual, much fun.

In those early days, there was always a feeling of anti-
cipation that something wonderful was eventually going to
happen with DFT. There was this mysterious functional, and
all one had to do was crack its code.

Mel Levy

Duke UniVersity (Visiting Professor)
Tulane UniVersity (Professor Emeritus)

On the Border.

In September 1993, I arrived at Tulane as John’s new
postdoc. For condensed matter theory, times were even
rougher than in the early 1970s. I had already been a postdoc
for four years and looked headed for academia’s dustbin.
Although I had never worked in DFT, John took a big chance
on hiring me, giving me an opportunity for which I will
always be grateful.

John had one or two graduate students back then, but I
was his first postdoc for a long time. He was toiling away at
the (now standard) DFT-developer tasks: constructing new
functionals, finding new exact conditions, explaining failures,
publishing errata, etc. Because the group was small, he had
time to meet me every day, usually for lunch and coffee
afterward. Every day, I would ask really dumb questions,
often for the third or fourth time. Every day, he would explain
things to me, never running out of patience, and always
appearing to enjoy it. After about 3 months, I kind of got
my bearings, the questions improved, and the answers were
fascinating.

Up to about that time, DFT was an obscure subject studied
by a handful of devotees. Every year, there would be one
DFT session at the APS March meeting, which would be
standing room only. But that was because users were hoping
for a new functional and usually left empty-handed. The DFT
die-hards would go have supper together that night, often
fitting around a single table, and talk endlessly about all their
favorite DFT exotica. Funding was always scarce, and many
had paid their own way to the meeting.

John had recently created a generalized gradient ap-
proximation (GGA) called PW91, but it was largely being
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rejected by the unwashed masses of condensed matter
physics. This was because that community had become so
used to the local density approximation (LDA or S-VWN5)
that most of their codes were constructed to function only
at that level of accuracy. During the first APS meeting after
I began with John, I could not move from one room to
another without someone stopping me to explain why GGAs
do not work.1 Since my first project was to check and help
publish the PW91 derivation, this career move did not look
too promising.

Meanwhile, there was a revolution taking place in chem-
istry, because it had just been shown that GGAs and hybrids
were sufficiently accurate for many chemical purposes, and
suddenly real chemists (not just theoretical ones) were using
DFT. Barriers were coming down between the two disci-
plines, and John was getting invited to lots of chemistry
meetings. We were writing up more and more material.
Because there was so much stored in John’s brain and
published in obscure manuscripts without figures, whenever
we could simply figure out how to calculate something inside
the theory for a model system, we would see new things in
the figures we had made or find a new molecular context
for the work. I recall that after Matthias Ernzerhof joined
us, we submitted our first article to the Journal of Chemical
Physics, which naturally was roundly rejected by the referees.
(It was later accepted, once we had done a better job of
explaining what we were trying to do and had taken most
of the DFT out.)

As time went on, we wrote and published a lot. One of
the most pleasurable aspects was our joint love of the English
language, and our constant attempts to run jokes past the
editors. In particular, John always loved coming up with
catchy titles to the papers. One of our favorites, “GGAs: A
Glance under the Hood”, was rejected by an ACS publisher,
because chemists searching abstracts would assume we were
working on fume hoods. We also fought a losing battle
against acronyms (at least, those not beginning with a P).

Our most well-known work from that period was the
GGA called PBE. This was really the triumphant culmina-
tion of two decades of John’s work on GGAs but was
also catalyzed by several key events. One was the refusal
of Physical ReView B to publish the complete derivation
of PW91, on the basis that some of the material had
already appeared.2 Another was my observation that, when
parametrizing the results of the numerical construction of
the GGA exchange-correlation hole into the PW91 energy
density, John had accidentally (and ever so slightly)
screwed up an exact condition. That really stuck in his
craw. The last I will mention is that, in order to satisfy as
many constraints as possible, John had inserted some very
small terms that do not kick-in except at very small gra-
dients, ensuring restoration of the original gradient expan-
sion. This would sometimes lead to nasty wiggles in the
potential, unnecessarily raising lots of cut-offs in plane-
wave codes.

Thus, John was inspired to produce a final GGA that
would contain only those elements needed for calculations,
and that could be explained by relatively transparent
physical arguments. In fact, PBE is very similar to PW91,

but somehow it was the right functional at the right time
for condensed matter physics.3 Weitao Yang was the first
in a long line to revise PBE, so we enjoyed pointing out
his Procrustean dilemma. A quick second was the Danish
RPBE of Hammer and Norskov, who asked the important
question, PBE or not PBE. This was followed by so many
more that John himself finally got into the game with the
balefully named PBEsol.

At my last APS meeting as John’s postdoc, I had the
pleasure of watching Don Hamann2 explain to a huge
audience on a huge screen that PBE was giving the right
answer for the right reasons for a pressure-induced phase
transition in quartz, and I never had to defend PBE to
physicists again. Thus, given its motivations, PBE is really
just one more John Perdew erratum, correcting a few last
functional typos in PW91 and pulling one more fast one on
the editors of Physical ReView Letters.

In all, I spent 3 years at Tulane, and those were the
most research-productive years of my life. John and I
wrote over 30 papers in that time, with many great
collaborators. These years were also the most fun, because
John made them so, with his relaxed informal approach
to everything and his allowance for independence.4 Not
only did I learn all I needed about DFT to make a career
from it, I also learned vital skills for writing papers,
explaining ideas, and surviving in academia. These served
me well in finally getting a faculty position at a small
(but wonderful) chemistry department, something I never
managed to do in physics, and a step I have never re-
gretted.

A few years later, I was happy to return to Tulane for
a mini-meeting with John and Mel and Hardly Gross, just
2 weeks after Walter Kohn shared a Nobel Prize in
Chemistry.5 We were all very happy but had no idea just
how big, broad, and exciting the field would subsequently
become. Much of the physics underlying that award came
from the exceptionally deep and patient work of John, so
his work truly lies on the border between chemistry and
physics.

I am very happy to have helped contribute to both John’s
scientific enterprise as well as to this special celebratory issue.
We on the border salute you, John, and look forward to many
more functionals and fun article titles.

Kieron Burke

UniVersity of California, IrVine

References

(1) There are still a few die-hards in condensed matter that prefer
LDA, which gets the lattice constant of bulk silicon almost
exactly right. Even PBEsol did not beat that.

(2) Don Hamann is an extremely distinguished solid-state
theorist who spent much of his career at Bell Labs. He
mentioned that it took him 2 weeks of hard work in the
library at the Aspen Center for Physics to find and read all
the bits of the PW91 derivation, scattered as they were over
many papers and years. In summer 2001, he also pointed
out to us that PBE gets the ground-state energy of the
hydrogen atom right to about 4 digits and wondered if we
had done some surreptitious fitting. This was news to us
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and either just dumb luck or some fundamental consistency
in the universe.

(3) Of course all good chemists know that PBE is woefully
inadequate for many dissociation energies and that you really
need a hybrid, such as PBE0, a.k.a. PBE1PBE.

(4) Another bonus that came with being at Tulane was the chance
to interact and collaborate with Mel Levy who was in the
chemistry department. He famously wrote in his research
proposal when he applied for a faculty position there that he
would find the exact XC functional (which, in a sense, he did

with his constrained search approach). This was a brilliant
move, as he spent his entire career at Tulane working on that
original proposal, and he is still not finished!

(5) This was when Hardy Gross (a.k.a. E.K.U.) first asked me
about how to calculate conductances through single mol-
ecules, a project he and I have happily worked away at for
a decade now. Hmm, sounds quite like Mel’s original
proposal.

CT900098Q
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Abstract: Correlated ab initio wave function calculations using MP2/aug-cc-pVTZ model
chemistry have been performed for three test sets of gas phase saccharide conformations to
provide reference values for their relative energies. The test sets consist of 15 conformers of R-
and �-D-allopyranose, 15 of 3,6-anhydro-4-O-methyl-D-galactitol, and four of �-D-glucopyranose.
For each set, conformational energies varied by about 7 kcal/mol. Results obtained with the
Hartree-Fock method, with pure density functional approximations (DFAs) like LSDA, PBEsol,
PBE, and TPSS and with hybrid DFAs like B3PW91, B3LYP, PBEh, and M05-2X, were then
compared to the reference and local MP2 relative energies. Basis sets included 6-31G*,
6-31G**, 6-31+G*, 6-31+G**, 6-311+G**, 6-311++G**, cc-pVTZ(-f), cc-pVTZ, and aug-
cc-pVTZ(-f). The smallest basis set that gives good DFA relative energies is 6-31+G**, and
more converged results can be obtained with 6-311+G**. The optimized geometries obtained
from a smaller basis set, 6-31+G*, were useful for subsequent single point energy calculations
with larger basis sets. The best agreement with MP2 was shown by M05-2X, but only when
using a dense DFT grid. The popular B3LYP functional is not the best for saccharide
conformational studies. The B3PW91 functional gives systematically better results, but other
hybrid functionals like PBEh or TPSSh are even better. Overall, the nonempirical PBE GGA
and TPSS meta-GGA functionals also performed better than B3LYP.

1. Introduction

Nature combines sugars in an almost infinite array of
compounds that are each involved in very specific interac-
tions. These interactions do not depend on elemental
composition alone but on the shape or conformation of the
carbohydrate as well. A major difficulty in understanding
such interactions is that the conformational space of carbo-
hydrates is, at least potentially, very large. Even for

monosaccharides, variations in ring shape and exocyclic
group orientations can combine in many different ways.1

Combining monosaccharides into oligo- or polysaccharides
results in exponentially larger numbers of potential geom-
etries to consider. Thus, computational studies of the
conformational space of carbohydrates must be fast enough
to evaluate many different structures. At the same time,
reliable selection of the important conformers requires highly
accurate methods that have a firm theoretical foundation.

For the past 20 years, energies of carbohydrate conformers
have mostly been calculated with empirical force fields, but
there has been little agreement among the proponents of the
various molecular mechanics methods.2-4 In addition, most
empirical methods do not handle chemical reactivity, and
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‡ U.S. Department of Agriculture.
§ Universidad de Buenos Aires.

J. Chem. Theory Comput. 2009, 5, 679–692 679

10.1021/ct8004479 CCC: $40.75  2009 American Chemical Society
Published on Web 03/04/2009



subtle dependencies on variable electronic structure are
usually lost. Therefore, a number of workers have used
electronic structure theory despite its much slower (and far
more computationally expensive) arrival at an optimized
geometry and minimized energy.

Three major categories of methods are based on electronic
structure theory. The first category, semiempirical quantum
mechanics, is easily the fastest but should not be used for
work that demands accuracy. The MNDO, AM1, and PM3
semiempirical methods fail to provide accurate relative
energies for carbohydrates,5,6 despite attempts to improve
their performance.7 The second category, ab initio quantum
mechanics or wave function (WFN) methods, such as
Hartree-Fock (HF) theory, shows systematic errors caused
by the lack of Coulomb-type electron correlation. For typical
problems with carbohydrates, errors from the lack of
correlation are often canceled by basis set errors. For
example, split-valence 6-31G* and cc-pVDZ basis sets give
fairly good relative energies for carbohydrate conformers
with HF theory.8 However, those good results are based on
unreliable error compensation. Attempts to improve the
results by using the larger cc-pVTZ or cc-pVQZ basis sets,
under-stabilize the 1C4 �-D-glucose conformers resulting from
HF error.8,9 Post-HF or correlated methods like MP2, MP3,
MP4, and CCSD(T) with noniterative triples explicitly treat
Coulomb correlation. These methods might give reliable
equilibrium geometries and relative energies by MP2 com-
plete basis set (CBS) extrapolations using aug-cc-pVTZ, aug-
cc-pVQZ, or aug-cc-pV5Z basis sets (noted as MP2/
CBS[4,5]). It was found that relative energies of molecules
with localized bonds can be reasonably approximated (typical
accuracy is around 0.2 kcal/mol) by the MP2/aug-cc-pVTZ
model chemistry.10 Thus, the conventional canonical MP2
method can be suitable for calculating reference energies.
However, these calculations would be very expensive for
thorough surveys of the conformational space of monosac-
charides (cf., O(N5) scaling of computer time with the size
N). The pseudospectral local MP2 (LMP2) approximation11,12

is considerably faster than canonical MP2 and approaches
linear scaling for large systems but neglects dispersion-
relevant terms. In addition, a consistent domain selection is
critically important for different conformers. There is little
knowledge about the effect of this LMP2 approximation for
carbohydrates, and so we shall compare the MP2 and LMP2
results.

The thirdcategorycomprisesmethodsbasedonKohn-Sham
(KS) Density Functional Theory (DFT).13 These methods
treat electron correlation much more efficiently than post-
HF methods. The simplest approximation is the nonempirical
local spin density approximation (LSDA), the second level
is the generalized gradient approximation (GGA, e.g.,
PBE14), and the third level is the meta-GGA (e.g., TPSS15).
The hybrid functionals at the fourth level are fully nonlocal
and semiempirical. (Although called semiempirical, these
functionals are entirely different from the unreliable classical
semiempirical WFN methods such as MNDO, AM1 and
PM3.)

Because of its efficiency, DFT is widely used, having been
applied to many types of chemical problems, as well as to

condensed matter physics. The most popular GGA function-
als are PBE,14 BLYP,16,17 and PW91,18 and their hybrid
variants: PBEh,14,19,20 B3LYP,21 and B3PW91.18,22 The
functional used most often for studies of carbohydrate
conformations5,9,23-42 has been B3LYP. Its wide acceptance
is based, in part, on excellent calculated molecular geom-
etries, molecular atomization energies, and enthalpies of
formation of the molecules in the G2/97 test set.43 More
recent studies,44 however, showed that B3LYP fails seriously
for larger molecules of the G3/99 test set. The increase in
B3LYP error with molecular size is evident from comparison
of the errors for the series of n-alkanes: methane, ethane,
etc., up to octane.44 In Grimme’s work,45 B3LYP gave an
error only slightly smaller than HF theory (10.3 and 13.4
kcal/mol, respectively) for the difference in energy between
n-octane and its isomer, 2,2,3,3-tetramethylbutane. Depend-
ing on the test set, B3PW91 performs better than B3LYP or
vice versa.43,46,47 One important difference between the
B3LYP and B3PW91 functionals is that the former does not
respect the uniform electron gas limit while the latter does
(see discussion in the Methods section). It is suspected that
this error contributes to the deteriorating performance of
B3LYP for large molecules and metals,48 while other
functionals perform considerably better for larger molecules
or even for bulk solids.48 There is growing evidence that
B3LYP is not the best hybrid GGA method for conforma-
tional space studies of larger molecules.13,49-51

Some authors have reported that a large basis set
(6-311++G**) with diffuse functions also on the hydrogen
atoms is necessary for B3LYP relative energies of carbo-
hydrate conformers.25,26,30,31,33,36,38,40,42 This contradicts an
earlier paper of Csonka,9 who suggested that the 6-31+G*
basis set is sufficient for geometry calculations and 6-31+G**
or 6-311+G** suffice for relative energy calculations,
whereas the 6-311++G** basis set is unnecessarily large.

In this paper, the performance of hybrid and nonempirical
pure functionals (see section 2, Methods) is tested on a set
of 15 allopyranose conformers, on a set of 15 conformers
of the five-membered ring 3,6-anhydro-4-O-methyl-D-galac-
titol,52 a conformationally flexible system, and on a set of
four conformers of D-glucose8,9,23 using various basis sets40

(Figure 1). The MP2 method is used for reference because
it includes to some extent the long-range correlation effects
that are missing from the popular DFT functionals. Recent
work shows that medium range correlation53-55 can be
reproduced by nonempirical functionals like PBE and PBE-
sol.54 Our focus here is on the relative energies calculated
from the total energies. If those values are good, then reliable
enthalpy and free energy values can be calculated through
established methods.

2. Methods

We used the following methods for the present study:
canonical MP2, pseudospectral LMP2,11,12 HF, KS-DFT
approximations like hybrid HF/DFT: B3LYP, B3PW91,
PBEh, and M05-2X,56,57 and pure nonempirical DFT of
increasing complexity: LSDA, PBE, PBEsol, and TPSS. The
exchange-correlation (xc) energy Exc

hybridof recent hybrid
functionals like PBEh is defined as
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where a is a mixing factor of Ex
HF Hatree-Fock and Ex

DFA

density functional approximation (local functionals like GGA
or meta-GGA) exchange energies, and Ec

DFA is a density
functional approximation correlation energy. The value of a
cannot be fixed universally. Good thermochemistry can be
obtained15 by setting 0.1 < a < 0.25. To obtain good reaction
energy barriers, values of a > 0.5 are usually required (cf.,
M05-2X).56,57

The first successful and popular hybrid B3PW91 xc energy
was defined by Becke as

where Ex
LDA and ∆Ex

B are the LDA exchange energy and
Becke 88 exchange energy correction to the LDA, respec-
tively. Ec

LDA and ∆Ec
PW91 are the LDA correlation energy and

Perdew-Wang correlation energy correction to the LDA,
respectively. The a, b, and c constants were optimized for
good thermochemistry on the G2 test set (a ) 0.2, b ) 0.72,
c ) 0.81). It was noted that the b and c parameters may
cancel each other’s effect (e.g., the effect of increasing the
value of b can be compensated by the effect of decreasing c
and vice versa); thus different parameter sets can give
practically the same result.58

The popular hybrid B3LYP xc energy was defined
somewhat differently

where Ec
VWN3 and Ec

LYP are the Vosko-Wilk-Nussair pa-
rametrization59 to random phase approximation (thus not to
the exact LDA correlation) and the Lee-Yang-Parr cor-
relation energies, respectively. Becke’s values for a, b, and
c were used. Neither Ec

VWN3 nor Ec
LYP reproduce the known

exact correlation energy of the homogeneous electron gas.
It has been shown that the short-range correlations are

described well by the LYP functional, but important long-
range correlations are missing.60

The methods were combined with standard Gaussian basis
sets from 6-31G* up to 6-311++G** and some correlation
consistent basis sets: cc-pVTZ(-f) (without f functions on
heavy atoms and d functions on hydrogen atoms), cc-pVTZ,
and aug-cc-pVTZ.61 Because the diffuse functions on the
hydrogen atoms have negligible effect on the relative energies
(vide infra), we suggest eliminating these functions from the
aug-cc-pVTZ basis set. The resulting basis set is denoted as
a-cc-pVTZ.

The present calculations were carried out with Gaussian
03,62 Jaguar 6.0107, or 7.021363 on a 32-node Linux cluster,
or on a Windows-based computer. We observed numerical
instabilities for pseudospectral LMP2/cc-pVQZ calculations
and thus did not use this model chemistry. Note that the
domains generated by the procedure applied in the Jaguar
computer program are sensitive to the basis set and this might
lead to erratic basis set convergence, which we did experi-
ence in this work. A similar observation was made by
Kaminsky et al.10

When using the Jaguar implementation of M05-2X with
the standard DFT grid, we found that many conformer
minimizations had large numerical errors in the gradient
calculations. This would lead the minimizations out of the
proper minimum to a completely different geometry. Indica-
tors of this situation were a large number of optimization
steps and increasing energy. In most of these cases, the final
geometry was fairly different from the geometry obtained
with the higher density DFT grid. It was therefore essential
to use the dense DFT grid with M05-2X in Jaguar (the
computer time increased 54-75%). No similar problem was
observed for the B3LYP, B3PW91, or PBEh functionals. For
the B3LYP functional, the difference of the total energies
calculated with standard and dense numerical integration
grids is in the range of -0.07 and +0.04 kcal/mol for the
conformers studied in this paper. For relative energies (vide
infra), this translates to 0.02 kcal/mol mean absolute devia-
tion (MAD) in the range of -0.06 and +0.06 kcal/mol. This
is the inherent error of the numerical integration grid.

Figure 1. Schematic representations of the R,�-D-allopyranose and glucopyranose rings and the torsion angles in the
3,6-anhydro-4-O-methyl-D-galactitol. The ring carbon atoms are numbered according to the standard. For the O(5)-C(5)-C(6)-
O(6) torsion angle of pyranoses tg, gg, and gt denotes that O(6) is in the anti position to O(5) and the gauche position to
C(4), O(6) is in the gauche position to O(5) and to C(4), and O(6) is in the gauche position to O(5) and the anti position
to C(4), respectively.

Exc
hybrid ) aEx

HF + (1 - a)Ex
DFA + Ec

DFA (1)

Exc
B3PW91 ) aEx

HF + (1 - a)Ex
LDA +

b∆Ex
B + Ec

LDA + c∆Ec
PW91 (2)

Exc
B3LYP ) aEx

HF + (1 - a)Ex
LDA + b∆Ex

B +

(1 - c)Ec
VWN3 + cEc

LYP (3)
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The geometries were fully relaxed and optimized unless
single point calculations were mentioned. The puckering
parameters were obtained according to Cremer and Pople.64

The Boltzmann population of a particular conformer j within
the set of n conformers was calculated as (T ) 298 K)

where Pj is the ratio of the conformer j, Ej is the energy of
the conformer j, R is the gas constant, and T is the
temperature in K. Pj is expressed as % or ppm, by
multiplying by 100 or 106, respectively. The Pj ratios are
useful for characterizing the various conformer distributions
and show the practical implications for the predicted
equilibria that are caused by using the various model
chemistries (method and basis set).

We use the following definitions of the relative energies:

is the difference between the energy of the ith conformer,
confi and the energy of a reference conformer, confref using
the given model chemistry.

is the difference between the relative energies of the ith
conformer calculated with two different model chemistries.

is the relative (MP2) correlation energy difference of the ith
conformer. Note that EcorrMP2(confi) ) EMP2(confi) -
EHF(confi), and thus the relative (MP2) correlation energy
difference equals ∆EcorrMP2(confi, confref).

The model and reference conformer dependent mean
deviation (MD) is defined as

and the model and reference conformer dependent mean
absolute deviation (MAD) is defined as

Note that within a given test set of conformers the MD
and MAD between the two compared models (model A and
model B) depend on the choice of the reference conformers.
If we compare several tested model chemistries to the MP2
reference using eqs 6 and 9, the evaluation of the perfor-
mance of the tested models might depend on the choice of
the reference conformer. One way to eliminate this problem

is to compare the range of ∆∆EmodelA-modelB(confi, confref)
values of eq 7. We note this as the range of the relative
difference, RRD ) max ∆∆E - min ∆∆E.

3. Results and Discussion

3.1. D-Allopyranose Conformers. Schnupf et al.40 re-
cently performed B3LYP/6-311++G** geometry optimiza-
tions on R- and �-D-allopyranose, with chair, boat, and skew
ring shapes, and various exocyclic group orientations. We
selected fifteen of their 102 structures for the current work,
including 13 4C1 conformers (8 R- and 5 �-anomers, with
gg, gt, and tg hydroxymethyl rotamers, see Figure 1), one
R- and one �- 1C4 conformer (the ALL15 test set; six of the
selected conformers are shown in Figure 2). The range of
the B3LYP/6-31+G** relative energies is 5.51 kcal/mol.
The Cartesian coordinates (Å), total energies (a.u.), and
∆Emodel(confi, 1) (kcal/mol) of the tested conformers are in
the Supporting Information. The first low-energy reference
conformer is the 4C1 R-D-allopyranose with torsion angles
O(5)-C(5)-C(6)-O(6) =180° and C(5)-C(6)-O(6)-H =
-60°, noted as tg and g-, respectively (see, conformer 1 in
Figure 2).

First we compare the MP2/cc-pVTZ(-f), MP2/a-cc-pVTZ-
(-f) and LMP2/cc-pVTZ(-f) relative energies from eq. 5 using
the optimized B3LYP/6-31+G* geometries (to exclude
geometry effects). The MP2 and LMP2 relative energy
differences calculated from eq 6 and the relative correlation
energy differences calculated from eq 7 show considerable
deviations with the same cc-pVTZ(-f) basis set

with R2 ) 0.989. This shows that the missing correlation
energy has a considerable influence on the relative energy
differences calculated using eq 6. Note that the LMP2
approximation also neglects part of the dispersion-relevant
double excitations and might show slower basis set conver-
gence10 than MP2. The intramolecular effect of this LMP2
approximation is not clear. Detailed analysis for the ALL15
test set shows that the LMP2 correlation energy is less
negative, thus part of the MP2 correlation energy (about 2.4%
or 32 kcal/mol) is lost. However, LMP2/cc-pVTZ(-f) and
MP2/a-cc-pVTZ(-f) relative energies show a good agreement
(RRD ) 0.48, and MAD )0.10 kcal/mol). We have also
performed MP2/cc-pVQZ(-g) calculations and CBS[3,4]
extrapolation for the first five conformers and obtained good
agreement with the MP2/a-cc-pVTZ(-f) results (RRD ) 0.2
kcal/mol). This shows that the use of the diffuse s, p, and d
functions is advantageous for MP2 relative energy calcula-
tions. At the MP2 level we found that the a-cc-pVTZ(-f) basis
set represents a good compromise between accuracy and
speed in agreement with Kaminsky et al.10 Table 1 shows
the good agreement between our reference MP2 and LMP2
results for � and 1C4 ratios.

Smaller groups of conformers can be found in the test set
for which the ∆∆EcorrLMP2(confi) and ∆∆EcorrMP2(confi) (eq
7) are within ( 0.2 kcal/mol (like conformers {1, 8, 15}
shown in Figure 3a or {2, 6, 13} or {5, 7, 9, 10, 12}). Within

Pj )
e-Ej/RT

∑
i)1

n

e-Ei/RT

(4)

∆Emodel(confi, confref) ) Emodel(confi) - Emodel(confref)
(5)

∆∆Emodel A-model B(confi, confref) ) ∆Emode1 A(confi, confref) -
∆Emode1 B(confi, confref) (6)

∆∆EcorrMP2(confi, confref) ) ∆EMP2(confi, confref) -
∆EHF(confi, confref) (7)

MDmodel A-model B(confref) )

1
n - 1 ∑

i)1

n

∆∆Emodel A-model B(confi, confref) (8)

MADmodel A-model B(confref) )

1
n - 1 ∑

i)1

n

|∆∆Emodel A-model B(confi,confref)| (9)

∆∆EcorrLMP2(confi, 1) ) 0.8∆∆EcorrMP2(confi, 1) -
0.21(kcal/mol) (10)
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these groups, the HF, MP2, and LMP2 relative energies (eq
5) agree with MAD < 0.2 and RRD < 0.35 kcal/mol. These
relative energies are almost converged because the HF
energies converge considerably faster to the basis set limit
than the MP2 energies and the correlation contributions to
the relative energies are negligible. Thus, within these groups
of conformers the HF method gives reliable relative energies
at a much lower cost than the very expensive MP2/CBS
extrapolations. These reliable relative energies are suitable
for testing density functional methods. Note that
∆∆EcorrMP2(confi, 1)s between R and � anomers are large
positive values, 2.9-3.9 kcal/mol (inclusion of the MP2
correlation energy destabilizes the � anomers), and these
relative energies are less converged with respect to the basis
set.

Figure 3b shows the performance of the hybrid functionals
and the effect of using B3PW91 (eq 2) instead of B3LYP
(eq 3).16-18 The conventional hybrid functionals show similar
agreement with the MP2 results (RRDB3LYP-MP2 ) 1.19,
RRDPBEh-MP2 ) 1.12 RRDB3PW91-MP2 ) 1.09 kcal/mol). The
M05-2X hybrid results agree best with the MP2 results

(RRDM05-2X-MP2 ) 0.90 kcal/mol). M05-2X has shown
considerably better performance than B3LYP for main-group
thermochemistry, kinetics, and noncovalent interactions.56,57

The M05-2X functional does model some of the medium
range correlation effect that is missing from the B3LYP
functional. This could be the origin of better agreement
between M05-2X and MP2 results.

Figure 3c shows quite good agreement between the
nonempirical PBE, TPSS and MP2 results. PBE and TPSS
functionals show the second and third best performances after
the M05-2X functional (RRDPBE-MP2 ) 0.97 and
RRDTPSS-MP2 ) 1.09 kcal/mol). As M05-2X, PBE and TPSS
functionals treat medium range correlation correctly,53 this
could be the origin of the good agreement with the MP2
results. LDA shows a large error compared to MP2, and this
error is the opposite of the HF error (cf., Figures 3a and c
and RRDLSDA-MP2 ) 3.39 kcal/mol).

Table 1 shows how HF results deteriorate (with serious
overestimation of the �-anomer and underestimation of the
1C4 conformer ratios) as the basis set quality increases to
near the basis set limit, in agreement with earlier observa-

Figure 2. Geometries of some of the selected R,�-D-allopyranose, 3,6-anhydro-4-O-methyl-D-galactitol, and �-D-glucopyranose
conformers of the ALL15, AnGol15 and Glc4 test sets are shown, respectively. R and � denote the anomeric configurations, 4C1

and 1C4 denote the ring shapes. r denotes the counterclockwise, c the clockwise, 0 the neutral OH directions. tg, gt, and gg
show the hydroxymethyl orientation (cf. Figure 1), and g-, g+ and t the O(6)H orientation.
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tions.9 The large basis set HF results give reliable relative
energies only within a few groups of conformers as discussed
earlier. Figure 3a shows the effect of the electron correlation
at the MP2 level (cf., MP2 and HF curves, RRDHF-MP2 )
3.42 kcal/mol).

The Boltzmann populations in Table 1 show that B3LYP
gives too large of a �-anomer ratio (cf., conformers 2, 3, 6,
11, and 13, in Figure 3) and too small of a 1C4 conformer
ratio. The 1C4 ratios obtained by PBE and TPSS are closer
to the MP2 results than any hybrid functional result (cf.,
Table 1). Note that B3LYP/6-31+G* results deviate
considerably from the results obtained with the larger basis
sets, as 6-31+G* basis set is poor for relative energy
calculations. However, the single-point calculations that use
this geometry and a better basis set (e.g., 6-31+G** or
larger) give sufficiently converged relative energies (see
discussion below).

Next we focus on determining the optimal basis set, that
is, one that gives converged results for density functionals.
Schnupf et al.40 claimed that the minimal and optimal basis
set for B3LYP conformational energy studies of the allopy-
ranose conformations is 6-311++G**, contradicting the
recommendations of one of the present authors (GIC).9

However, Schnupf et al. did not present results for the
recommended 6-31+G** and 6-311+G** basis sets. The
relative energy differences (eq 6) in Figure 4 show that
the B3LYP/6-311+G** relative energies are indistinguish-
able from the B3LYP/6-311++G** relative energies at the
scale of the figure. Thus, eliminating the diffuse functions
on the H-atoms (using + instead of ++) has a negligible

effect on relative energies,9 although there is a very slight
influence on the total energies (not shown). (Diffuse functions
are important for H-atoms if they have negative partial
charges.) The model dependent MAD (cf., eq 7, where model
B is B3LYP/6-311++G** and model A is B3LYP/
6-311+G**) is equal to 0.03 kcal/mol (comparable to the
0.02 kcal/mol grid error discussed in the Methods section).
Even the B3LYP/6-31+G** results show quite small
deviations from the more expensive B3LYP/6-311++G**
results (MAD ) 0.15 kcal/mol). Removing the p polarization
functions from the H-atoms (cf. 6-31+G* basis set, results
in Figure 3a), more than doubles the MAD (0.32 kcal/mol).
Consequently, the 6-31+G* basis set should not be used
for relative energy calculations, in agreement with previous
suggestions.9,40 Table 1 also shows that simplifying the basis
set systematically decreases the proportion of �-anomers.

Finally, we consider whether single point calculations
based on geometries determined with smaller basis sets can
be used safely. Table 1 and Figure 4 show that the most
expensive, fully optimized B3LYP/6-311++G** results
and single point B3LYP/6-31+G**//B3LYP/6-31+G* or
B3LYP/6-311+G**//B3LYP/6-31+G* results are very
similar (MAD )0.15 and 0.02 kcal/mol, cf. eq 7). Calcula-
tions carried out with B3PW91 yield a similar conclusion
(Table 1, Figure 4b). Thus, the basis set dependence of
B3LYP and B3PW91 geometries is small, and these small
geometry changes do not influence the relative energies for
the allose test set. For geometry optimization, the 6-31+G*
basis set is sufficient. The basis set and geometry errors are
considerably smaller than the error of the B3LYP functional.
For allose, these model chemistries require about 50% and
20% less computer time, respectively, compared to full
geometry optimization with the 6-311++G** basis set.
Note that a large number of diffuse functions makes the
convergence of the SCF and the geometry optimization
cycles more difficult, so using more diffuse functions than
necessary can lead to convergence problems or no conver-
gence at all in some cases.

In summary, for the ALL15 test set the nonempirical GGA
and meta-GGA and empirical M05-2X functionals show
good agreement with the reference MP2/a-cc-pVTZ(-f)
results. The order of the methods against this reference is
the following: LMP2 . M05-2X > PBE > TPSS > B3PW91
> PBEh > B3LYP .LSDA = HF (basis set limit).

3.2. 3,6-Anhydro-4-O-methyl-D-galactitol Conformers. Na-
varro and Stortz recently studied52 the conformational space
of 3,6-anhydro-4-O-methyl-D-galactitol (AnGol) by molecu-
lar mechanics and quantum mechanical methods (B3LYP
and MP2). AnGol has a flexible five-membered ring and six
exocyclic torsion angles (cf., Figures 1 and 2), all of them
with a large influence on the energy. The two main stable
conformations of the five-membered ring were identified as
North (N), around E4, 5E, and E6 (Cremer-Pople puckering
parameter φ ≈ 250-320°), and South (S), around 6T5 (φ ≈
120°). Fifteen conformers derived from the four most stable
conformations in each of the ring regions and of its main
side chain were used.52 The conformers 1-15 were desig-
nated as S1-, S2-, S4-, S3-, N1-, N2-, S1+, S2+,
N3-, N1+, S4+, S3+, N3+, N2+, and N4+, respectively,

Table 1. Boltzmann Populations Calculated (at 25 °C) for
the ALL15 Test Set, for �-Anomers (of 4C1 Conformers),
and of Total 1C4 Conformers, Calculated by Different
Methodsa

method
�-anomers

(%)

1C4

(ppm)

reference method: MP2/a-cc-pVTZ(-f)b 23.0 280
LMP2/cc-pVTZ(-f)b 27.6 339
MP2/cc-pVTZ(-f)b 11.1 254
B3LYP/6-311++G** 40.4 88
B3LYP/6-311+G** 40.5 86
B3LYP/6-311+G**//B3LYP/6-31+G** 41.1 83
B3LYP/6-311+G**b 41.2 82
B3LYP/6-31+G** 39.4 95
B3LYP/6-31+G**b 39.3 94
B3LYP/6-31+G* 30.7 101
B3PW91/6-311+G** 29.2 96
B3PW91/6-311+G**//B3PW91/6-31+G* 28.1 93
B3PW91/6-31+G** 28.7 99
B3PW91/6-31+G**//B3PW91/6-31+G* 26.7 104
B3PW91/6-31+G* 19.8 110
PBEh/6-311+G** 27.1 92
M05-2X/6-311+G** 18.6 92
M05-2X/6-311+G**//M05-2X/6-31+G** 18.7 92
M05-2X/6-311+G**//M05-2X/6-31+G* 18.8 90
M05-2X/6-31+G** 18.0 135
M05-2X/6-31+G**//M05-2X/6-31+G* 18.2 134
M05-2X/6-31+G* 11.6 132
LSDA/6-311+G** 1.0 31
PBE/6-311+G** 12.1 138
TPSS/6-311+G** 7.9 141
HF/6-31G* 68.5 41
HF/cc-pVTZ(-f)//B3LYP/6-31+G* 92.1 19

a The best agreements with the MP2 reference are shown in
bold. b Geometry optimized at the B3LYP/6-31+G* level.
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in ref 52 and constitute the current AnGol15 test set
(conformers 1, 5, 7, and 10 are shown in Figure 2). The
range of the B3LYP/6-31+G** relative energies is 6.18
kcal/mol.52 The MP2/6-311+G**//B3LYP/6-31+G** re-
sults for the 15 conformers in Figure 5a and Table 2 were
obtained from the previous study.52

The conformational space of the 3,6-anhydro-4-O-methyl-
D-galactitol is quite different from the conformational space
of the D-allopyranose (cf., Figure 1). It is an interesting
question whether the observations on model chemistries for
allose are valid for this more flexible compound.

Earlier studies for compounds like 2-hydroxytetrahydro-
pyran and 2-methoxytetrahydropyran showed62 that MP2/

6-311++G** overestimates the absolute values of relative
energies compared to MP2/CBS extrapolation results.65 It
was also shown that CCSD(T) contributions are quite small
(0.02-0.1 kcal/mol), so MP2/CBS results are quite well
converged for correlation energy differences. Gould et al.
found a considerable difference between the relative energies
of the MP2 and LMP2 methods, and proposed the latter
method for benchmark calculations for di- and trisaccharides
because of the smaller basis set error.66

Our results in Table 2 show that the single point LMP2/
aug-cc-pVTZ and cc-pVTZ(-f) results agree very well
(MAD ) 0.18 kcal/mol) for the proportion of N (0.07-0.09%)
and ω3 ) g+ (0.22%) conformers. The LMP2/aug-cc-pVTZ

Figure 3. Relative energies of the ALL15 conformers (with respect to conformer 1), ∆Emodel(confi,1) (see, eq. 5) optimized by
various model chemistries as shown in the legends. The single point MP2, LMP2, and HF energies were calculated with B3LYP/
6-31+G* geometry.
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relative energies are somewhat different (MAD ) 0.30 kcal/
mol) and give lower ratios for the minor conformers. The
MP2/6-311+G** and MP2/a-cc-pVTZ(-f) results agree
quite well (MAD ) 0.15, RRD ) 0.75 kcal/mol). This is
considerably better agreement than the agreement between
MP2/cc-pVTZ(-f) and MP2/a-cc-pVTZ(-f) results (MAD )
0.52, RRD ) 0.99 kcal/mol). This shows the importance of
the inclusion of the diffuse functions into the basis set for
MP2 calculations. The agreement between LMP2 and MP2
results is considerably worse for the AnGol15 test set than
for the ALL15 test set (cf., Figure 5a). The differences
between the LMP2 and MP2 limits can be attributed to the
intramolecular effect of the missing dispersion-relevant
double excitations from the LMP2 approximation. The CBS
extrapolation is beyond the scope of the current study as it
requires very expensive calculations with quadruple-� basis

sets. We can select again smaller groups of conformers for
which the ∆∆EcorrMP2(confi) (eq 7) are within ( 0.2 kcal/
mol (like conformers {1, 2}, {3, 4}, {5,6,11,12,15}, {7,8},
and {9,10}). Within these groups the HF, MP2 and LMP2
relative energies agree with MAD < 0.2 kcal/mol. The effect
of the electron correlation is shown in Figure 5a (cf., HF
and MP2 curves). It is larger for the Angol15 test set than
for the ALL15 test set (RRD ) 4.83 and MAD ) 3.18 kcal/
mol).

Figure 5b shows the very good agreement between M05-
2X and MP2/a-cc-pVTZ(-f) results (MD ) 0.2 and MAD )
0.3 kcal/mol), while other functionals show considerably
poorer performance. The M05-2X functional shows particu-
larly good performance for the smaller group of conformers
where the relative energies are known with higher precision
(MAD < 0.1 and RRD < 0.1-0.4 kcal/mol). Similar

Figure 4. Differences in relative energies for the ALL15 allose conformers (with respect to conformer 1), ∆∆EmodelA-modelB(confi,
1) of eq 7. Model A is shown in the legends and (a) model B ) B3LYP/6-311++G**, (b) model B )B3PW91/6-311+G**, and
(c) model B ) M05-2X/6-311+G**.
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agreement between MP2 and M05-2X results was observed
earlier.55 The MP2 and B3LYP results are similar for
Southern conformers (1-4, 7, 8 11, 12), but the B3LYP
functional underestimates the relative energies for Northern
conformers (5, 6, 9, 10, and 13-15). The B3PW91 functional
shows considerably better performance than B3LYP (cf.
MAD ) 0.42 and 0.68 kcal/mol, respectively). The PBE and
TPSS (not shown) functionals show an opposite error, that
is, they give correct Northern conformer relative energies
(eq 5), but systematically overestimate the relative energies
for Southern conformers.

The LSDA method shows very serious underestimation
of the ratio of N and ω3 ) g+ conformers (cf., Table 2).
The HF/6-31G* model chemistry performs relatively well,
as usual, but increasing the basis set quality to the basis set
limit leads to serious errors and gives erroneously high
populations of the minor conformers (cf., Table 2 and Figure
4b). Similar to the ALL15 test set, the HF and the LSDA
functional yields the opposite error. The results in Table 2
show that the relative energies and geometries calculated by
M05-2X are even less basis set dependent (0.11 kcal/mol <
MAD) than those of B3LYP or B3PW91 (MAD < 0.16 kcal/
mol), when comparing 6-311+G** or 6-31+G** calcula-
tions. All calculations using the 6-31+G* basis set give
poor relative energies (cf. MAD ) 0.54-0.62 kcal/mol).

Next, we investigate the consistency of the optimized
geometries. We noted for the ALL15 and AnGol15 test sets
that B3CF/6-311+G**//B3CF/6-31+G* (CF ) LYP or
PW91) relative energies approximate very well the relative
energies of the B3CF/6-311++G** fully optimized struc-
tures. The results in Table 3 show that the geometries given
by the B3LYP method with the 6-31+G*, 6-31+G**, and
6-311++G** basis sets agree very well. The small differ-
ences in Table 3 do not result in substantial changes in the
relative energies (note that around the geometry minimum
the energy surface is flat as the gradients are zero).
Consequently, the 6-31+G* geometry can be used for single
point energy calculations, and this gives a considerable
efficiency compared to the geometry optimization with the
6-311++G** basis set suggested by many papers (ap-
proximately one-third of the computational time is needed).
Table 3 also shows that the B3LYP optimized geometries
are quite similar to those of B3PW91 (slightly different
exocyclic torsions, and somewhat larger puckering), while
those obtained by LSDA are very different. Minimization
with the HF/6-31G* model chemistry leads to very similar
geometries to those obtained by B3LYP calculations (cf.
Table 3): puckering is almost identical, and small differences
in the exocyclic angles can be observed. The M05-2X
geometries are different from the B3LYP and HF/6-31G*

Figure 5. Relative energies of the AnGol15 conformers (with respect to conformer 1), ∆Emodel(confi,1) (cf., eq 5) optimized by
various model chemistries as shown in the legends. The single point MP2, LMP2, and HF energies were calculated with B3LYP/
6-31+G* geometry.
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geometries (cf. the difference in the puckering parameters
in Table 3). Thus, the differences between the M05-2X and
the B3LYP geometries can be attributed to the medium range
correlation effects being better described by the M05-2X
functional.

The relative time scale for single point calculations LSDA/
6-311+G**, B3LYP/6-311+G**, LMP2/cc-pVTZ(-f),
LMP2/cc-pVTZ, and LMP2/aug-cc-pVTZ is 1, 1.6, 4.2, 10,
and 50, respectively. Note that the time requirement of pure
GGA functionals like PBE is similar to that of the LSDA.

In summary, for the AnGol15 test the M05-2X functional
shows a good agreement with the reference MP2/a-cc-
pVTZ(-f) results. The order of the functionals, LMP2 and
HF is the following: M05-2X > LMP2 > TPSS = PBE >
B3PW91 > B3LYP . HF (basis set limit) > LSDA.

3.3. �-D-Glucopyranose Conformers. The GLC4 test set
is composed of two low-energy 4C1 conformers (1 and 2)
and two 1C4 conformers (3 and 4) of �-D-glucopyranose.
These four conformers were used for testing KS-DFT
functionals before9,23 and a composite energy is available8

for the relative energies of these structures (cf., Table 4).
This composite energy is based on the MP2/cc-pVTZ//MP2/
cc-pVDZ model chemistry, with basis set correction at the
HF level up to cc-pVQZ and correlation correction using
MP2 and CCSD/6-31G*. Such estimations of the basis set
limit and the correlation contribution are possibly unreliable,
and the composite energies might be imprecise for conform-
ers 3 and 4. Note that for conformers 3 and 4 the relative

energies obtained with the MP2/cc-pVTZ//MP2/cc-pVDZ
model chemistry are far from the composite energies;8,23 thus
the basis set and correlation corrections are large, 2.3 and
3.3 kcal/mol, respectively.

In the present work, we use the MP2/a-cc-pVTZ(-f)//
B3LYP/6-31+G* model chemistry as a new alternative
reference (cf., Table 4). These, and the LMP2/cc-pVTZ-
(-f)//B3LYP/6-31+G* results agree within 0.5 kcal/mol. We
have also performed an MP2/CBS[3,4] estimation for the
relative energies67 using separate HF extrapolation and MP2
correlation contribution extrapolations of the cc-pVTZ and
cc-pVQZ relative energies.68 These results agree again within
0.5 kcal/mol error with the MP2/a-cc-pVTZ(-f) results.
However, as Table 1 shows, the previous composite calcula-
tion8 gave poor relative energy for conformer 4 (∼1.5 kcal/
mol error). More precise determination of the relative energy
of conformer 4 of the GLC4 set requires a considerably larger
computational effort, one that is beyond the scope of the
current paper.

The current results in Table 4 show the good performance
of the PBE, TPSSh, PBEh, and B3PW91 functionals (MAD
) 0.12, 0.28, 0.32, 0.41 kcal/mol, respectively). In addition,
the single point calculations deliver quite good results
showing that even the geometries obtained with the smallest
basis set applied in this paper (6-31G*) are useful. The
B3LYP functional again performs slightly worse, MAD )
0.69 kcal/mol) than the B3PW91, PBEh or M05-2X func-
tionals (MAD ) 0.64 kcal/mol, because of overestimation
of the stability of the conformers 3 and 4, see Table 4). The
HF/cc-pVDZ model chemistry performs reasonably well but
the HF/cc-pVTZ//HF/cc-pVDZ model chemistry performs
poorly (with serious underestimation of the hydrogen bond
(H-bond strength), cf. results for the ALL15 and AnGol15
test sets). The PBEsol/6-311+G** model chemistry, using
the new pure GGA functional, performs similar to TPSS,
and M05-2X, with MAD ) 0.65 kcal/mol despite the fact
that PBEsol was successfully applied to isomerization
problems.55 The smaller enhancement factor for the large
reduced gradient gives too strong H-bonds (like the LSDA).
A change to the large gradient behavior of the exchange
functional leads to improved results for saccharides as our
preliminary results show. The details will be published
elsewhere.

Notice the poor performance of the MP2/cc-pVTZ//MP2/
cc-pVDZ, MP2/cc-pVDZ, MP2/6-31-G*, and CCSD/
6-31G*//MP2/6-31G* model chemistries (MAD )1.12,
3.88, and 2.61 kcal/mol, respectively) used for the composite
energies. The relative energies calculated by the DFT/
6-31G* model chemistry are also very poor (MD <-5 kcal/
mol; MAD > 5 kcal/mol), and show serious overestimation
of intramolecular H-bond strength because of the basis set
error. The minimal basis set required for reasonable energy
is 6-31+G**. The 6-311+G** basis set gives converged
results as observed for the previous test sets.

These results show that the GLC4 test set is particularly
sensitive to the correct description of the intramolecular
H-bond. So this leads to a somewhat different conclusion
than the results from the larger ALL15 and AnGol15 test
sets. These results shows clearly that the good HF/DZ results

Table 2. Boltzmann Populations Calculated (at 25 °C) for
the AnGol15 Test Set, for the Northern (N) Conformers,
and of Conformers Carrying the Larger Side Chain Torsion,
ω3 (Defined by Atoms H3-C3-C2-C1) with a g+ Value
Calculated by Different Methodsa

Method
N conformers

(%)
ω3 ) g +

(ppm)

reference method: MP2/a-cc-pVTZ(-f)b 0.090 2200
LMP2/cc-pVTZ(-f)c 0.071 2208
LMP2/cc-pVTZc 0.092 2196
LMP2/aug-cc-pVTZc 0.078 2200
MP2/6-311+G**b 0.027 1135
MP2/cc-pVTZ(-f)b 0.017 388
B3LYP/6-311++G** 0.197 992
B3LYP/6-311+G**//B3LYP/6-31+G* 0.199 824
B3LYP/6-31+G** 0.143 721
B3LYP/6-31+G* 0.073 265
B3PW91/6-311+G**//B3PW91/6-31+G** 0.103 444
B3PW91/6-31+G** 0.076 325
M05-2X/6-311+G** 0.025 983
M05-2X/6-311+G**//M05-2X/6-31+G** 0.025 958
M05-2X/6-311+G**//M05-2X/6-31+G* 0.025 958
M05-2X/6-31+G** 0.023 752
M05-2X/6-31+G**//M05-2X/6-31+G* 0.021 805
M05-2X/6-31+G* 0.010 233
LSDA/6-311+G**//LSDA/6-31+G** 0.000 0
LSDA/6-31+G** 0.000 0
PBE/6-311+G**b 0.034 166
TPSS/6-311+G**b 0.031 132
HF/6-31G* 0.432 3818
HF/aug-cc-pVTZc 7.275 96256
HF/cc-pVTZc 3.962 48594
HF/cc-pVTZ(-f)c 4.486 46311
HF/6-311+G**b 3.965 49896

a The best agreements with the MP2 reference are shown in
bold. b Geometry optimized at the B3LYP/6-31+G** level.
c Geometry optimized at the B3LYP/6-311+G** level.
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are coming from basis set error, and basis set limit HF results
are very poor due to serious underestimation of the intramo-
lecular H-bond. Small basis sets overestimate the intramo-
lecular H-bond strength. The success of the nonempirical
PBE functional shows that it is particularly good for
intramolecular H-bonds. Adding some exact exchange (PBEh)
weakens the H-bond, and reducing the exchange-correlation
gradient enhancement factor (PBEsol), strengthens the H-
bond. The TPSS meta-GGA functional that was derived to
mimic the large gradient behavior of PBE GGA also shows
good performance, but for this special test set it is not as
good as PBE.

In summary, for the GLC4 test the PBE functional shows
a good agreement with the reference MP2/a-cc-pVTZ(-f)
results. The order of the functionals, LMP2 and HF is the

following: PBE > LMP2 > TPSSh = PBEh > B3PW91 >
B3LYP = TPSS = PBEsol = M05-2X . HF (basis set
limit).

4. Conclusions

The aim of this paper is to establish a protocol that can be
used successfully and efficiently for modeling carbohydrates.
In this paper, we have tested various DFT model chemistries
on three sets of carbohydrate conformations. The ALL15 test
set contains 13 4C1 structures (8 R- and 5 �-anomers, with
gg, gt, and tg hydroxymethyl rotamers), and two 1C4

conformers of R- and �-D-allopyranose. The AnGol15 test
set included 15 conformers of 3,6-anhydro-4-O-methyl-D-
galactitol, whereas the GLC4 contains two low energy 4C1

Table 3. Average of the Absolute Values of Geometric Deviations (Six exo-Cyclic Torsions and Puckering parameters Q
and φ) between Optimized Geometries (1 and 2) Obtained by Different Methods and Basis Sets for the 15 Selected
3,6-Anhydro-4-O-methylgalactose Conformers (AnGol15 Test Set)

optimized geometry 1 optimized geometry 2 exocyclic torsions (deg) Q (Å) φ (deg)

B3LYP/6-31+G** B3LYP/6-311++G** 0.4 0.002 0.7
B3LYP/6-31+G* B3LYP/6-311++G** 0.5 0.002 0.7
B3LYP/6-31+G* B3LYP/6-31+G** 0.3 0.001 0.5
B3PW91/6-31+G** B3LYP/6-311++G** 0.8 0.007 1.6
LSDA/6-31+G** B3LYP/6-311++G** 5.0 0.026 5.4
M05-2X/6-311+G** B3LYP/6-311++G** 1.3 0.024 5.4
M05-2X/6-31+G** B3LYP/6-311++G** 1.3 0.025 5.8
M05-2X/6-31+G** M05-2X/6-311+G** 0.6 0.002 1.2
M05-2X/6-31+G* M05-2X/6-31+G** 0.3 0.001 0.6
HF/6-31G* B3LYP/6-311++G** 2.0 0.002 0.9
HF/6-31G* M05-2X/6-311+G** 2.7 0.022 9.7

Table 4. Relative Energies of Conformers 2, 3, and 4 of the GLC4 Test Set with Respect to Conformer 1 (Eq 5) and
Boltzmann Populations Calculated (at 25 °C) for the 1C4 Conformers, Calculated by Different Methodsa

method ref 2 3 4 % 1C4

MP2/a-cc-pVTZ(-f)//B3LYP/6-31+G* this work 0.38 5.76 5.10 0.0158
MP2/CBS[3,4]//B3LYP/6-31+G* 67 6.25 5.43
LMP2/cc-pVTZ(-f)//B3LYP/6-31+G* this work 0.29 5.92 5.63 0.0074
composite 8 0.27 6.41 6.99 0.0017
MP2/cc-pVTZ//MP2/cc-pVDZ 8 0.07 4.13 3.65 0.1607
MP2/6-31G* 8 -0.45 0.66 -0.60 31.4
CCSD/6-31G*//MP2/6-31G* 8 -0.34 2.07 1.68 3.1
HF/6-31G* 8 -0.15 6.73 6.76 0.0010
HF/cc-pVDZ 8 -0.09 6.23 6.34 0.0023
HF/cc-pVTZ// B3LYP/6-31+G* this work 0.49 11.11 10.96 0.0000
HF/cc-pVQZ// B3LYP/6-31+G* this work 0.66 12.15 11.95 0.0000
HF/CBS[3,4]//B3LYP/6-31+G* 67 0.70 12.43 12.22 0.0000
B3LYP/6-31+G* 9 -0.12 6.92 4.93 0.0113
B3LYP/6-31+G** this work 0.06 7.22 5.40 0.0060
B3LYP/6-31+G**//B3LYP/6-31+G* this work 0.07 7.27 5.41 0.0059
B3LYP/6-311+G** this work 0.16 7.24 5.59 0.0048
B3LYP/6-311+G**//B3LYP/6-31+G* this work 0.16 7.36 5.64 0.0044
B3PW91/6-31+G** this work 0.09 6.63 5.02 0.0120
B3PW91/6-311+G** this work 0.19 6.67 5.22 0.0093
PBEh/6-31+G** this work -0.02 5.98 4.48 0.0271
PBEh/6-311+G** this work 0.09 6.14 4.80 0.0178
TPSSh/6-311+G**//TPSSh/6-31G* this work 0.18 5.24 5.23 0.0166
M05-2X/6-31+G** this work 0.03 4.69 4.37 0.0508
M05-2X/6-311+G** this work 0.10 4.64 4.58 0.0449
PBE/6-311+G**//PBE/6-31G* this work 0.16 5.78 4.98 0.0158
PBEsol/6-31+G** this work 0.03 5.46 3.39 0.1708
PBEsol/6-311+G** this work 0.13 5.54 3.62 0.1274
TPSS/6-311+G**//TPSS/6-31G* this work 0.18 4.74 4.36 0.0558
PBE/6-31G* this work -0.73 -1.05 -4.83 99.9
TPSS/6-31G* this work -0.60 -1.23 -4.18 99.7
TPSSh/6-31G* this work -0.59 -0.29 -2.64 96.0

a All energies are indicated in kcal/mol. The best agreements with the MP2 reference are shown in bold.
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chair and two higher energy 1C4 chair forms of �-D-
glucopyranose. These test sets sample the lowest 6-7 kcal/
mol energy range of conformation space. We have tested
nonempirical functionals such as local spin density ap-
proximation (LSDA), generalized gradient approximation
GGA (e.g., PBE, PBEsol), and meta-GGA (e.g., TPSS). We
have also tested semiempirical hybrid functionals like PBEh,
B3LYP, B3PW91, and a many fit-parameter empirical hybrid
functional, M05-2X. Empirical functionals often perform
very well on the test set used for fitting, and even outside
the fitting set. However, the fitting set for M05-2X contains
many small molecules, and there is no guarantee of good
results on larger sugar molecules. We have chosen the MP2/
a-cc-pVTZ(-f) model chemistry as reference and checked that
by several MP2/CBS[3,4] calculations. The following con-
clusions can be drawn from our results:

1. The LMP2/cc-pVTZ(-f) and LMP2/aug-cc-pVTZ model
chemistries give similar relative energies for the
conformers in our test sets and those relative energies
are in a reasonable (0.3 kcal/mol) agreement with MP2/
a-cc-pVTZ(-f) and several MP2/CBS[3,4] results. The
composite energies suggested earlier for the GLC4 test
set show large 1.5 kcal/mol error compared to our new
reference.

2. For B3CF (where CF ) LYP or PW91) type hybrid
functionals, the diffuse functions on hydrogen atoms

are not needed, but diffuse functions on heavy atoms
and polarization functions on all atoms are essential
for good relative energies. For geometry optimization,
the 6-31+G* basis set is sufficient; thus, the B3CF/
6-311+G**//B3CF/6-31+G* model chemistry gives
converged relative energies with a mean absolute
deviation of about 0.3 kcal/mol compared to MP2
reference results.

3. The B3CF/6-31+G**//B3CF/6-31+G* model chem-
istry gives relative energies with an error that is about
half of the error of the functional. The quickest model
chemistrythatdeliversusefulresultsisB3CF/6-31+G**//
B3CF/6-31G*.

4. Calculations with B3PW91 or PBEh give results similar
to those with B3LYP, although �-anomers appear to
be less stabilized.

5. For the ALL15 test set, the nonempirical GGA and
meta-GGA and empirical M05-2X functionals show
good agreement with the reference MP2 results. The
order of the quality of the functionals, LMP2 and HF
methods is the following: LMP2 . M05-2X > PBE >
TPSS > B3PW91 > PBEh > B3LYP .LSDA = HF
(basis set limit).

6. For the AnGol15 test set, M05-2X functionals shows
a good agreement with the reference MP2 results. The
order of the quality of the functionals, LMP2, and HF

Figure 6. Differences in relative energies for the AnGol15 conformers (with respect to conformer 1), ∆∆EmodelA-modelB(confi, 1)
of eq 7 optimized by various model chemistries. Model A is shown in the legends and (a) model B ) B3LYP/6-311++G** and
(b) model B ) M05-2X/6-311+G**.
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methods is the following: M05-2X > LMP2 > TPSS
= PBE > B3PW91 > B3LYP . HF (basis set limit) >
LSDA.

7. For the GLC4 test the order of the quality of the
functionals, LMP2 and HF methods is the following:
PBE > LMP2 > TPSSh = PBEh > B3PW91 > B3LYP
= TPSS = PBEsol = M05-2X . HF (basis set limit).

8. Calculations with HF give reasonable results with
double-� basis sets (6-31G* and cc-pVDZ), but the
HF limit (aug-cc-pVTZ) relative energies are clearly
wrong, leading to serious underestimation of the
stabilities of the �-anomers, 1C4 chair conformations,
and intramolecular H-bond strength. This result is in
agreement with earlier observations.

9. Calculations with the M05-2X hybrid meta-GGA
require a dense DFT grid for reliable results. The M05-
2X results are better for the ALL15 and AnGol15 test
sets than the results obtained by popular DFT func-
tionals (B3LYP, B3PW91, or PBEh). For the GLC4
test set the PBE functional gives better results. Our
preliminary results show that the M06-2X functional
performs similarly to M05-2X for sugars, and it also
requires a dense numerical integration grid for reliable
results.

10. The GLC4 test set is particularly suitable for testing
DFT methods because the relative energies are very
sensitive to the correct description of the intramo-
lecular H-bonds. Interestingly, non empirical func-
tionals (particularly PBE) perform better on this test
set than the empirical hybrid ones. The H-bond
overestimation is decreasing in the following order:
TPSS = PBEsol = M05-2X > TPSSh > PBE where
PBE is just right. The underestimation is increasing
in the following order: PBEh < B3PW91 < B3LYP
, HF (basis set limit). The results on this test set
also show that small 6-31G* basis set overestimates
intramolecular H-bonds with any method.

11. The popular B3LYP functional is not the best for
saccharide conformational studies. The B3PW91
functional gives systematically better results, but all
other hybrid functionals are even better. The M05-
2X functional gives the best results.

12. We suggest to use M05-2X/6-311+G**//M05-2X/
6-31+G* model chemistry for carbohydrate confor-
mational space studies except for energy differences
between 1C4 and 4C1 conformers where PBE/
6-31+G** model chemistry performs better.

13. The nonempirical PBE GGA and TPSS meta-GGA
functionals show a better overall performance than
B3LYP.

Because the LMP2/cc-pVTZ and MP2/a-cc-pVTZ(-f)
results do not always give consensus relative energies for
the conformational space of the monosaccharides studied
here, higher level calculations are needed for benchmarking
DFT for the conformational space of carbohydrates. These
infinite basis set extrapolation calculations are in progress.
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Chem. 1997, 18, 1534–1545.

(59) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58,
1200–1211.

(60) Tao, J.; Gori-Giorgi, P.; Perdew, J. P.; McWeeny, R. Phys.
ReV. A 2001, 63, 325131–325135.

(61) For standard basis sets see http://www.emsl.pnl.gov/forms/
basisform.html (accessed Aug 19, 2008).

(62) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strat-
mann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;
Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople,
J. A.; Gaussian 03, revision C.02, Gaussian, Inc., Wallingford
CT, 2004.

(63) Jaguar 6.0, release 107; Schrodinger, LLC: Portland, OR,
2005.

(64) Cremer, D.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 1354–
1358.

(65) Weldon, A. J.; Vickrey, T. L.; Tschumper, G. S. J. Phys.
Chem. A 2005, 109, 11073–11079.

(66) Gould, I. R.; Bettley, H. A-A.; Bryce, R. A. J. Comput. Chem.
2007, 28, 1965–1973.

(67) Grimme, S.; Csonka, G. I. For CBS[3,4] extrapolation of HF
relative energies, we used the HF/cc-pVnZ// B3LYP/6-
31+G* ∆E values from Table 4, where n ) T,Q. For MP2
correlation correction we used-6.81 and-6.45 kcal/mol for
conformer 3, and-7.08 and-6.79 kcal/mol for conformer 4.
Then we used ∆E[∞] ≈ ∆E[Q] + cext(∆E[Q]-∆E[T]), where
for HF cext ) 0.27; for MP2 cext ) 0.730 ) 1/((4/3)3-1).

(68) Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J. Chem. Phys.
1997, 106, 9639–9646.

CT8004479

692 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Csonka et al.



Dependence of Response Functions and Orbital
Functionals on Occupation Numbers

S. Kurth,*,† C. R. Proetto,‡ and K. Capelle§

Institut für Theoretische Physik, Freie UniVersität Berlin, Arnimallee 14,
D-14195 Berlin, Germany

Received November 27, 2008

Abstract: Explicitly orbital-dependent approximations to the exchange-correlation energy
functional of density functional theory typically not only depend on the single-particle Kohn-Sham
orbitals but also on their occupation numbers in the ground-state Slater determinant. The
variational calculation of the corresponding exchange-correlation potentials with the optimized
effective potential (OEP) method therefore also requires a variation of the occupation numbers
with respect to a variation in the effective single-particle potential, which is usually not taken
into account. Here it is shown under which circumstances this procedure is justified.

1. Introduction

The central quantity of density functional theory,1,2 the
exchange-correlation energy Exc, is a unique (though un-
known) functional of the electron density. Popular ap-
proximations such as the local density approximation (LDA)
and generalized gradient approximations (GGA’s) express
Exc as an explicit functional of the density.

Recently, another class of approximations has attracted
increasing interest: implicit density functionals, expressing
Exc as explicit functionals of the Kohn-Sham single particle
orbitals and energies and therefore only as implicit func-
tionals of the density.3,4 Members of this class of functionals
are the exact exchange functional (EXX), the popular hybrid
functionals which mix generalized gradient approximation
(GGA) exchange with a fraction of exact exchange,5-8 the
Perdew-Zunger self-interaction correction,9 and meta-GGA
functionals10-12 which include the orbital kinetic energy
density as a key ingredient.

At zero temperature, the orbital functionals mentioned
above depend on the occupied orbitals only. Other function-
als, such as the second-order correlation energy of Görling-
Levy perturbation theory,13 in addition depend explicitly on
the unoccupied orbitals and the orbital energies. Moreover,
all these orbital functionals are not only explicit functionals
of the orbitals but also explicit functionals of the occupation
numbers which, in turn, depend on the single-particle orbital
energies. This additional energy dependence is ignored in
common implementations of orbital- or energy-dependent
functionals.

In order to calculate the single-particle Kohn-Sham
potential corresponding to a given orbital functional, the so-
called optimized effective potential (OEP) method is used.3,4,14

The OEP method is a variational method which aims to find
that local potential whose orbitals minimize the given total
energy expression. In principle, when performing the varia-
tion of the local potential, one not only should vary the
orbitals but also the orbital energies and occupation numbers.
Typically, however, the variation with respect to the oc-
cupation numbers is not explicitly performed. In this work,
we will investigate when and why this is justified.

2. Density Response Function

In this section, we analyze the problem of the eigenvalue
dependence of the occupation numbers in the density and
the noninteracting static linear density response function for
various situations. We consider the case of zero temperature
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and distinguish between variations at fixed and variable
particle number, i.e., for the canonical and grand-canonical
ensemble.

2.1. Fixed Particle Number. The density of N noninter-
acting electrons (at zero temperature) moving in some
electrostatic potential Vs(r) is given by

n(r))∑
i

occ

|�i(r)|2 (1)

where the single-particle orbitals are solutions of the
Schrödinger equation

(- ∇ 2

2
+Vs(r))�i(r)) εi�i(r) (2)

and the sum in eq 1 runs over the N occupied orbitals of the
N-electron Slater determinant. For the ground-state density,
one can rewrite eq 1 as

n(r))∑
i

θ(εF - εi)|�i(r)|2 ) ∑
i

fi|�i(r)|2 (3)

where the sum now runs over all orbitals. εF is the Fermi
energy, θ(x) is the Heavyside step function, and fi ) θ(εF -
εi) is the occupation number of orbital �i(r). It is evident
from eq 3 that the density not only depends on the (occupied)
orbitals �i(r) but also on the orbital energies εi, since the
very specification of which orbitals are occupied and which
unoccupied depends on their energies.

Through eq 2, both of these quantities are functionals of
the potential Vs(r), i.e., �i(r) ) �i[Vs](r), εi ) εi[Vs]. The
static density response function, which is the functional
derivative of n with respect to Vs, is therefore given as

�̃(r, r′)) δn(r)
δVs(r′) )∑

i

δfi

δVs(r′)|�i(r)|2 + �(r, r′) (4)

with

�(r, r′))∑
i

fi(δ�i(r)

δVs(r′)�i
*(r)+ c.c.)

)∑
i,k

i*k

fi(�k
*(r)�k(r′)�i(r)�i

*(r′)
εi - εk

+ c.c.) (5)

The last step follows from first order perturbation theory,
which can be used to obtain

δ�i(r)

δVs(r′) )∑
k

k*i

�k(r)�k
*(r′)�i(r′)

εi - εk
(6)

For simplicity, we have assumed a nondegenerate single-
particle spectrum.

Usually, �(r, r′) of eq 5 is taken as the static density
response function instead of �̃. Both expressions differ by
the first term on the right-hand side of eq 4, becoming
identical only if this term vanishes. In order to see when
and how this happens we consider two cases.

Case 1 comprises systems for which the single-particle
spectrum has a finite gap between the highest occupied orbital
(eigenvalue εN) and the lowest unoccupied orbital (eigenvalue
εN+1). Then, the Fermi energy εF lies strictly between these

two orbital energies, εN < εF < εN+1. Within the single-
particle gap, the position of εF is arbitrary (at zero tempera-
ture). The important point now is that upon (infinitesimal)
variation of the potential Vs, εF remains fixed and does not
need to be varied. The reason is that the variation δεN of εN

due to the variation of Vs is infinitesimal as well and εF can
be chosen such that εF > εN + δεN, thus leaving the particle
number unchanged. Then the functional derivative of the
occupation number with respect to Vs becomes

δfi

δVs(r)
)

∂θ(εF - εi)

∂εi

δεi

δVs(r)
)-δ(εF - εi)|�i(r)|2 (7)

where δ(x) is the Dirac delta function, and we used the
relation

δεi

δVs(r)
) |�i(r)|2 (8)

which can be obtained from first-order perturbation theory.
In the present case, the Fermi energy (which is in the single-
particle gap) is not equal to any of the single-particle
energies, the delta function in eq 7 vanishes, and �̃(r, r′) of
eq 4 coincides with the usual form of the static density
response function of eq 5.

Case 2 is the case of a vanishing single-particle gap, i.e.,
the case of an open-shell or metallic system. For notational
simplicity, in the following discussion, we still work with
the assumption of a nondegenerate single-particle spectrum.
Of course, particularly for open-shell systems, this assump-
tion is inappropriate. The more general case including
degenerate single-particle orbitals is discussed in the Ap-
pendix.

The crucial difference to case 1 is that an infinitesimal
variation of the potential Vs now not only leads to a variation
δεi of the single-particle energies but also to a variation δεF

of the Fermi energy. This latter variation has to be taken
into account in order for the particle number to be conserved
(i.e., the infinitesimal variation δN of the particle number
upon variation of the potential strictly has to vanish, δN )
0). Then, the functional derivative of the occupation number
with respect to the potential consists of two terms and reads

δfi

δVs(r)
)

∂θ(εF - εi)

∂εF

δεF

δVs(r)
+

∂θ(εF - εi)

∂εi

δεi

δVs(r)

) δ(εF - εi)(|�F(r)|2 - |�i(r)|2)
(9)

where �F is the highest occupied orbital with orbital energy
equal to the Fermi energy. Due to the delta function, the
right-hand side (rhs) of eq 9 vanishes and again �̃(r, r′) of
eq 4 coincides with the static density response function �(r,
r′) of the form given in eq 5.

From eq 4, the linear change in the density due to the
perturbation δVs(r) is δn(r) ) ∫d3r′ �̃(r, r′)δVs(r′). One can
then check explicitly that the result �̃(r, r′) ) �(r, r′) obtained
here is fully consistent with a fixed number of particles:

δN ) ∫ d3r δn(r) ) ∫ d3r′ δVs(r′)∫ d3r �̃(r, r′)

) ∫ d3r′ δVs(r′)∫ d3r �(r, r′)) 0

(10)
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where the last equality follows from the orthonormality of
the single-particle orbitals.

We note that the problem we are discussing here involves
the response function (δn[Vs])/(δVs) itself and is thus
conceptually distinct from the question of invertibility of this
response function, which appears when the single-particle
potentials are not uniquely determined by the densities.15

2.2. Grand Canonical Ensemble. The analysis is slightly
altered if the system of noninteracting electrons is connected
to a particle bath, i.e., for the grand canonical ensemble
characterized by a chemical potential µ. The density (at zero
temperature) is then given by

n(r))∑
i

θ(µ- εi)|�i(r)|2 )∑
i

fi|�i(r)|2 (11)

where the occupation number now is given by fi ) θ(µ -
εi) and the sum again runs over all single-particle orbitals.
When varying the occupation numbers with respect to
variations of the potential, the chemical potential remains
constant, independent of the single-particle spectrum having
a finite or vanishing gap at µ. The variation of fi then is
obtained similarly to case 1 of the previous subsection as

δfi

δVs(r)
)

∂θ(µ- εi)

∂εi

δεi

δVs(r)
)-δ(µ- εi)|�i(r)|2 (12)

This term does not vanish if the chemical potential is aligned
with one of the single-particle energies, and the static density
response function for the grand-canonical ensemble reads

�̃(r, r′)) �(r, r′)-∑
i

δ(µ- εi)|�i(r)|2|�i(r′)|2 (13)

It is worth noting that now, due to the second term on the
rhs of eq 13, δN (eq 10) is different from zero which is of
course consistent with the fact that here we are dealing with
an open system.

3. Implications for the Optimized Effective
Potential

The central idea of density functional theory is to write the
ground-state energy Etot of N interacting electrons moving
in an external potential V0(r) as a functional of the ground-
state density. This energy functional may then be split into
various pieces as

Etot ) Ts[n]+∫ d3r V0(r)n(r)+U[n]+Exc[n] (14)

where Ts[n] is the kinetic energy functional of noninteracting
electrons,

U[n]) 1
2∫ d3r ∫ d3r′ n(r)n(r′)

|r- r′| (15)

is the classical electrostatic energy, and Exc is the exchange-
correlation energy functional which incorporates all com-
plicated many-body effects and in practice has to be
approximated. Minimization of eq 14 with respect to the
density leads to an effective single-particle equation of the
form of eq 2 where the effective potential is

Vs(r))V0(r)+∫ d3r′ n(r′)
|r- r′| +Vxc(r) (16)

with the exchange-correlation potential

Vxc(r))
δExc

δn(r)
(17)

While the most popular approximations to the exchange-
correlation energy Exc are explicit functionals of the density,
there has been increasing interest in another class of
approximations which are are only implicit functionals of
the density. These functionals instead depend explicitly on
the Kohn-Sham single-particle orbitals as well as on the
Kohn-Sham orbital energies. One example for such a
functional is the exact exchange energy given as

Ex
EXX )-1

4∫ d3r ∫ d3r′ |γ(r, r′)|2

|r- r′| (18)

where

γ(r, r′))∑
i

fi�i(r)�i
*(r′) (19)

is the single-particle density matrix. As one can see, Ex
EXX

depends on the single-particle energies through the occupa-
tion numbers fi. Other functionals such as, e.g., the correlation
energy functional of second-order Görling-Levy perturba-
tion theory,13 depend on the orbital energies also in other
ways (see below).

In order to distinguish a genuine dependence on orbital
energies from a dependence on occupation numbers, we write
for a general exchange-correlation energy functional Exc )
Exc[{�i}, {εi}, {fi}]. The exchange-correlation potential of
such a functional can be computed by using the chain rule
of functional differentiation as

Vxc(r))
δExc

δn(r)
)∫ d3r′

δExc

δVs(r′)
δVs(r′)
δn(r)

(20)

Acting with the density response operator (eq 4) on both
sides of this equation, one arrives at

∫ d3r′ Vxc(r′)�̃(r′, r))
δExc

δVs(r)

)∑
i
∫ d3r′ (( δExc

δ�i(r′)|{εk},{fk}

δ�i(r′)
δVs(r)

+ c.c.) +

∂Exc

∂εi
|
{�k},{fk}

δεi

δVs(r)
+

∂Exc

∂fi
|
{�k},{εk}

δfi

δVs(r)) (21)

In the last step, we have used the chain rule once again and
we also emphasize in the notation that when varying with
respect to one set of variables (orbitals, orbital energies, or
occupation numbers) the other variables remain fixed.

Equation 21 is the OEP integral equation in its general
form. For a given approximate Exc, this equation defines the
corresponding Vxc(r) and has to be solved in a self-consistent
way together with the Kohn-Sham equations (eq 2). It
differs in three ways from the form most commonly found
in the literature (see, e.g., refs 3 and 4 and references therein).
One, the explicit energy dependence is handled in a similar
way as is the orbital dependence, via the chain rule. The
other two arise from the implicit energy dependence of the
occupation numbers and are our main concern here. Similar
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to the discussion in the previous section, we will again
distinguish between the two cases of fixed particle number
and systems in contact with a particle bath and discuss the
role of these extra terms in both cases.

3.1. Fixed Particle Number. As we have seen in section
2, for the case of fixed particle number at zero temperature,
the functional derivative δfi/δVs(r) vanishes both for systems
with a finite and vanishing HOMO-LUMO gap. This has
two consequences for eq 21: first, we can replace the
response function �̃ by the function � of eq 5, and second,
the last term on the rhs of eq 21 drops out. Therefore, the
OEP equation reads

∫ d3r′ Vxc(r′)�(r′, r)

)∑
i [∫ d3r′( δExc

δ�i(r′)|{εk},{fk}

δ�i(r′)
δVs(r)

+ c.c.)+
∂Exc

∂εi
|
{�k},{fk}

δεi

δVs(r)] (22)

This equation shows that despite the dependence of Exc on
the occupation numbers (which, in turn, depend on the orbital
energies), the variation with respect to these occupation
numbers may be omitted for the calculation of the OEP
integral equation for the exchange-correlation potential. This
is, of course, what has been done in the vast majority of
cases discussed in the literature.

We note in passing that integrating eq 22 over all space
and using the orthornormality of the Kohn-Sham orbitals
one can deduce the sum rule16

∑
i

∂Exc

∂εi |{�k},{fk}
) 0 (23)

On quite general grounds, one expects that for an isolated
system with a fixed number of particles, Vxc(r) is only defined
up to a constant. To check if eq 22 meets this condition, we
need an explicit expression for Exc. As a nontrivial example,
we use

Exc ≈ Ex
EXX +Ec

(2) (24)

where Ex
EXX is the exact exchange energy of eq 18 and Ec

(2)

is the second-order correlation energy of Görling-Levy
perturbation theory13,17,18 defined by

Ec
(2) )Ec,1 +Ec,2 (25)

where

Ec,1 )∑
i,j

fi(1- fj)

(εi - εj)
|〈i|Vx|j 〉 +∑

k

fk(ik | kj)|2 (26)

and

Ec,2 )
1
2 ∑

i,j,k,l

fifj(1- fk)(1- fl)

(εi + εj - εk - εl)
(ij | kl)[(kl | ij)- (kl | ji)]

(27)

In the equations above, we have used the notations

(ij | kl))∫ d3r ∫ d3r′
�i

*(r)�k(r)�j
*(r′)�l(r′)

|r- r′| (28)

and

〈i|Vx|j 〉 )∫ d3r �i
*(r)Vx(r)�j(r) (29)

Suppose now that we introduce a rigid shift Vs(r)f Vs(r) +
C in the effective single particle potential of eq 2. As a result,
if {�i}, {εi}, {fi} are a set of solutions for Vs(r), the solutions
for Vs(r) + C are {�i}, {εi + C}, {fi}. This holds provided
that eq 22 determines Vxc(r) only up to a constant. Inspection
of eq 18 confirms that this is the case: the left-hand side
(lhs) is invariant under a rigid shift of Vxc(r), and eqs 18 and
25 are invariant under the change {εi} f {εi + C}.

3.2. Grand Canonical Ensemble. The situation is dif-
ferent if the system is in contact with a particle bath. Since
in this case δfi/δVs(r) does not vanish one has to use the full
OEP eq 21. Here, the dependence of both the density and
the exchange-correlation energy on the occupation numbers
has to be taken into account explicitly when performing the
variations and the two extra terms resulting from this
variation cannot be neglected. Applications of this OEP
formalism for open systems have been reported for quasi-
two-dimensional electron gases (2DEG) in n-doped semi-
conductor quantum wells where the n-doped regions act as
particle reservoirs.19-21 A qualitative discussion of the
importance of the extra terms for the particular case of 2DEG
can be found in the discussion of eqs 6-8 of ref 21.

As another consequence of the extra terms, integration of
eq 21 over all space leads to the modified sum rule

-∑
i

δ(µ- εi)Vjxc,i

)∑
i

(∂Exc

∂εi
|
{�k},{fk}

-
∂Exc

∂fi
|
{�k},{εk}

δ(µ- εi)) (30)

where

Vjxc,i )∫ d3r Vxc(r)|�i(r)|2 (31)

We take the exact exchange functional (eq 18) as an example
for a functional which does not explicitly depend on the single-
particle energies. In this case, the first term on the rhs of eq
30 vanishes. If there exists a single-particle state whose
energy equals the chemical potential, εN ) µ, we then obtain

Vjx,N
EXX )

∂Ex
EXX

∂fN
(32)

This relation is the complete analogue for the grand canonical
ensemble of a well-known relation for fixed particle number
which reads22-24

Vjx,N
EXX ) ujx,N

EXX (33)

where

ujx,N
EXX ) 1

fN
∫ d3r �N(r)

δEx
EXX

δ�N(r)
(34)

For open 2DEG’s, this relation has been obtained previously
by studying the asymptotic behavior of the exact-exchange
potential.20

For the grand-canonical ensemble, Vxc(r) is fully deter-
mined by eq 21 since this equation is not invariant under a
rigid shift of the potential: the lhs is not invariant due to the
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extra term in �̃(r, r′) in eq 13. The rhs is not invariant because
Exc changes under the transformation {εi}f {εi + C}. This
is due to the fact that the chemical potential µ (which is
determined by the particle reservoirs) remains fixed in the
grand canonical ensemble and the above transformation leads
to a change in the set of occupation numbers and self-
consistent KS orbitals, {fi} and {�i}, respectively. This is
consistent with the result of Argaman and Makov25 who
showed that in a grand-canonical ensemble the single-particle
potentials are uniquely determined by the densities.

4. Conclusions

In this work, we have addressed the question why and when
one can ignore the explicit dependence on the orbital
occupation numbers (which in turn depend explicitly on the
orbital energies) when calculating both the static linear
density response function and the effective single-particle
potential corresponding to an orbital-dependent exchange-
correlation energy functional. We have shown that the
variation of the occupation numbers may safely be neglected
for systems with fixed particle number. For systems con-
nected to a particle bath, however, this variation leads to
nonvanishing contributions and needs to be taken into
account.
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Appendix: Degenerate Single-Particle
Spectrum

In general, the single-particle spectrum will have eigenvalues
which may be degenerate. In particular, in the case of open-
shell systems, the energy of the highest occupied orbital is
degenerate and the arguments of case 2 discussed in section
2.1 need to be modified.

As degeneracy is in almost all cases related to symmetry,
we will use the language of group theory. In particular, the
single-particle orbitals will be labeled by a complete set of
quantum numbers {n, l, m} where n is the principal quantum
number (which is not related to symmetry), l is a label
denoting the irreducible representation of the symmetry group
G of the single-particle potential Vs(r), and m labels a partner
within that representation. The single-particle equation now
reads

(- ∇ 2

2
+Vs(r))�nlm(r)) εnl�nlm(r) (35)

and it should be noted that the eigenvalue εnl is independent
of the partner label m. Furthermore, writing the energy
eigenvalue as a functional of the potential, εnl[Vs], one has
to keep in mind that this functional is only well defined for
potentials which are invariant under the transformations of

the symmetry group G because l refers to an irreducible
representation of that group. Therefore, we calculate the
variation of the orbital energies, δεnl ) εnl[Vs + δVs] - εnl[Vs]
resulting from a variation δVs(r) which preserves the sym-
metry of Vs(r). Replacing Vs f Vs + δVs, �nlm f �nlm +
δ�nlm, in eq 35, one finds that the first-order change in the
energy eigenvalue is given by

δεnl )∫ d3r |�nlm(r)|2δVs(r) (36)

Summing this equation over the partner label m one obtains

dnlδεnl )∫ d3r ∑
m

|�nlm(r)|2δVs(r) (37)

where dnl is the degeneracy of εnl. Now, we note that the
single-particle orbitals �nlm(r) may be written as

�nlm(r))Rnl(r)Xlm(r) (38)

where Rnl(r) is a totally symmetric function which is invariant
under all symmetry transformations T of the group G and
Xlm(r) is a function which transforms according to the
irreducible representation l of G, i.e.,

Xlm(R-1(T)r))∑
m′

Γ(l)(T)m′mXlm′(r) (39)

Here, R(T) is a 3 × 3 matrix describing the symmetry
operation T ∈ G in three-dimensional space and Γ(l)(T) is
the representation matrix of group element T in the irreduc-
ible representation l of G. Noting now that ∑m|Xlm(r)|2 is a
totally symmetric function, we find for the functional
derivative

δεnl

δVs(r)
) |R̃nl(r)|2 (40)

where we have defined

R̃nl(r)) 1

√dnl

Rnl(r)�∑
m

|Xlm(r)|2 (41)

which is again invariant under all symmetry transformations
of the group G.

Equation 40 will shortly be used to repeat the arguments
of section 2.1 for the degenerate, open-shell case. Before
we do so, we point out that the definition of the density of
eq 3 needs to be modified because not all orbitals with energy
εF are (fully) occupied. This can be achieved, e.g., by writing
the density as

n(r)) ∑
n,l,m

fnlm|�nlm(r)|2 (42)

and occupying all degenerate orbitals of the partially filled
subshell with the same fractional number of electrons, i.e.,
by defining the occupation number of the partially filled
subshell by fnlm ) fnl ) (nnl/dnl)θ(εF - εnl) where nnl is the
number of electrons in the open subshell. With this definition,
the static density response function reads

�̃(r, r′)) �(r, r′)+ ∑
n,l,m

δfnl

δVs(r)
|�nlm(r)|2 (43)

with
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�(r, r′)) ∑
n,l,m

n′,l′,m′
εnl*εn′l′

fnl(�n′l′m′
* (r)�n′l′m′(r′)�nlm(r)�nlm

* (r′)
εnl - εn′l′

+ c.c.)
(44)

and

δfnl

δVs(r)
)

nnl

dnl
δ(εF - εnl)(|R̃F(r)|2 - |R̃nl(r)|2)) 0 (45)

where the last equality follows because the total symmetric
part of degenerate orbitals is identical. Therefore, just as
in the nondegenerate case at fixed particle number, the
functional derivative with respect to the occupation num-
bers may be neglected both in the calculation of the den-
sity response function as well as in the derivation of the
OEP equation.
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Abstract: We demonstrate by specific examples that if a Kohn-Sham exchange-correlation
potential is given explicitly in terms of the electron density and its derivatives, then one can
easily reconstruct the parent density functional by evaluating analytically (or numerically with
one-dimensional quadratures) the van Leeuwen-Baerends line integral (Phys. Rev. A 1995,
51, 170-178) along a path of (coordinate)-scaled densities. The choice of a density scaling
path amounts to defining the gauge of the resultant exchange-correlation energy density. The
well-known Levy-Perdew virial relation for exchange potentials can be viewed as an analytical
line integral along the electron-number-conserving uniform density scaling path. Energies
obtained from model exchange-correlation potentials should be interpreted with caution because
the reconstructed density functional is unique (up to a gauge transformation) only if the model
Kohn-Sham potential is a functional derivative.

1. Introduction

The exchange-correlation (xc) potential of Kohn-Sham
density functional theory1-3 is formally defined as the
functional derivative of the exchange-correlation energy
functional Exc[F], that is

where F(r) is the electron density found from Kohn-Sham
orbitals as F(r) ) 2Σi

occ.|φi(r)|2. For simplicity, we will write
all equations here for spin-compensated closed-shell systems,
so that φi are the occupied Kohn-Sham orbitals of either
one spin. The notation Vxc([F]; r) emphasizes that Vxc is also
a functional of F at each r.

A functional Exc[F] that can be written in the form

where d3r ≡ dx dy dz, is said to be an explicit density
functional. The functional derivative of explicit functionals
can be found directly by using a standard formula of the
calculus of variations2,4 and cast in the form

in which ∂fxc/∂∇ F is a shorthand for a vector with three
components ∂fxc/∂FR′ , where FR′ ≡ ∂F/∂R and R ) x, y, z. A
functional of Kohn-Sham orbitals that cannot be reduced
to the form of eq 2 is said to be implicit or orbital-dependent.5

The functional derivative of an implicit functional can be
found indirectly as a solution of the optimized effective
potential equation.5-7 Thus, given a density functional Exc[F],
it is always possible to find the corresponding functional
derivative Vxc([F]; r).

An interesting and practically important question is
whether it is possible to invert functional differentiation, that
is, to reconstruct an exchange-correlation functional from a
given Kohn-Sham potential. Clearly, the solution to the
inverse problem is not unique because exchange-correlation
energy density fxc(r) of eq 2 is defined only up to an arbitrary
function that integrates to zero.8-13 Therefore, we will qualify
the question: Given a functional derivative Vxc([F]; r), is it
possible to reconstruct its parent functional up to a gauge
transformation of the energy density?

It is well-known that for exchange-only functionals, the
functional differentiation can be inverted by the Levy-Perdew
virial relation14,15* Corresponding author e-mail: vstarove@uwo.ca.

Vxc([F];r) )
δExc[F]

δF(r)
(1)

Exc[F] ) ∫ d3r fxc(r, F, ∇ F, ∇ 2F, ...) (2)

Vxc([F];r) )
∂fxc

∂F
- ∇ · ( ∂fxc

∂∇ F) + ∇ 2( ∂fxc

∂∇ 2F) - ... (3)
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Less known is the fact that it is also possible to recover the
entire exchange-correlation functional from the corresponding
Kohn-Sham potential by the line-integral method of van
Leeuwen and Baerends16-19

where Ft(r) is a continuously parametrized density such that
Exc[F0] ) 0 and F1(r) ) F(r). Unlike exchange-only func-
tionals, an exchange-correlation functional cannot be recon-
structed from Vxc([F]; r) at density F(r) alone: eq 5 requires
knowing the Kohn-Sham potential along a whole path of
densities. It is essential, however, that the mapping from Ft(r)
to Vxc([Ft]; r) does not have to be variational and that the
resulting value of Exc[F] is path-independent.

The purpose of this work is to draw attention to the fact
that if the exchange-correlation potential is given analytically
in terms of F(r), then the knowledge of the potential for all
intermediate densities Ft(r) is implicitly included. In such
cases, the line integration in eq 5 can be carried out
numerically or even analytically. We will demonstrate this
by evaluating line integrals for several explicit exchange and
correlation potentials along alternative density transformation
paths to recover the corresponding parent functionals, often
in unrecognizable disguise. We will also discuss what
happens when one attempts to reconstruct a density func-
tional from a potential Vxc([F]; r) that is not a functional
derivative.

2. Integration of Functional Derivatives

On the basis of eq 3, it is obvious that for any local exchange-
correlation potential (that is, a potential that depends only
on r and F but not on ∇ F or higher derivatives), the
exchange-correlation energy density of the parent functional
can be found simply as an indefinite integral (antiderivative)
of Vxc with respect to F. This implies that any local Vxc([F]; r)
is a functional derivative of some Exc[F]. For gradient-
dependent potentials, a more general method is required, such
as eq 5.

Let us derive the van Leeuwen-Baerends formula.
Consider an arbitrary exchange-correlation functional Exc[F].
Following van Leeuwen and Baerends,16 we introduce a
parametrized density Ft(r), where t is a parameter varying
in the range A e t e B. If Exc[Ft] is a continuous function of
t in this interval, then we can write

As shown in the Appendix, the derivative in eq 6 can be
rewritten as

where the integral is over the entire real-space domain of
the density Ft(r). The functional derivative appearing in eq

7 is the Kohn-Sham potential written in terms of the
parametrized density

Combining eqs 6-8 we obtain

which holds for an arbitrary path connecting FA and FB.16

Equation 9 is the most general form of the van Leeuwen-
Baerends line integral. In particular, if Ft(r) is parametrized
in the range 0 e t e 1 in such a way that Exc[F0] ) 0 and
F1(r) ) F(r), then eq 9 reduces to eq 5.

The standard interpretation16 of the van Leeuwen-Baerends
formula is that it provides an “energy expression” for
obtaining the value of Exc[FB] when the value of Exc[FA] is
known (for numerical examples, see refs 20-22). Here we
adopt a somewhat different view according to which eq 5 is
a solution to the inverse problem of functional differentiation.
To emphasize this, we will call an expression for Exc[F]
obtained by eq 5 a reconstruction of the density functional.
The fact that the integration path in eq 5 is arbitrary (except
for the end points) suggests that there are many equivalent
reconstructions from a given functional derivative.

3. Density Scaling Paths

In this work, we are concerned with reconstruction of density
functionals from exchange-correlation potentials that are
explicit functionals of the density. For such potentials, it is
convenient to take Ft(r) as a magnitude- or coordinate-scaled
density. This allows one to have Vxc([Ft]; r) in a closed form
at any point along the integration path. We will employ the
following three density scaling transformations:

(a) Linear scaling16,23-25

which we will call here the q-scaling. A line of q-scaled
densities from q ) 0 to q ) 1 will be referred to as a Q-path.

(b) Uniform number-conserving coordinate scaling studied
extensively by Levy26

or the λ-scaling. A line of λ-scaled densities from λ ) 0 to
λ ) 1 will be called a Λ-path.

(c) Thomas-Fermi-inspired scaling introduced by Perdew
and co-workers27

which we will call the �-scaling. A line of �-scaled densities
from � ) 0 to � ) 1 is termed a Z-path.

Among these paths, only the Λ-path conserves the electron
number. The number of electrons along the Q- and Z-paths
changes as qN and �N, respectively, where N is the electron
number at F1(r). Note that the condition Exc[F0] ) 0 is
trivially satisfied for the Q-path. For the Λ-path, Fλ(r)

Ex[F] ) -∫ d3rF(r)r · ∇ Vx([F];r) (4)

Exc[F] ) ∫0

1
dt∫ d3rVxc([Ft];r)

∂Ft(r)

∂t
(5)

Exc[FB] - Exc[FA] ) ∫A

B
dt

dExc[Ft]

dt
(6)

dExc[Ft]

dt
) ∫ d3r

δExc[Ft]

δFt(r)

∂Ft(r)

∂t
(7)

δExc[Ft]

δFt(r)
≡ Vxc([Ft];r) ) Vxc([F];r)|

F)Ft

(8)

Exc[FB] - Exc[FA] ) ∫A

B
dt∫ d3rVxc([Ft];r)

∂Ft(r)

∂t
(9)

Fq(r) ) qF(r) (10)

Fλ(r) ) λ3F(λr) (11)

F�(r) ) �2F(�1/3r) (12)
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becomes infinitely dilute (vanishes locally) as λf0, so that
limλf0Exc[Fλ] ) 0.17,26,28 For the Z-path, both F�(r) and
Exc[F�] vanish in the �f0 limit.

Partial derivatives of these scaled densities with respect
to their scaling parameters are readily obtained by applying
the chain rule of differentiation. For future reference, we
write out the results

If Vxc([Ft]; r) and ∂Ft(r)/∂t in eq 5 are piecewise-continuous
functions of r and t and if the real-space integral exists for
every t, as can be expected for physical exchange-correlation
potentials and reasonable scaling transformations of the
density, then by Fubini’s theorem29 the order of integration
over t and r in eq 5 can be interchanged. We will exploit
this property repeatedly in sections 4-6.

4. Levy-Perdew Virial Relation

The Levy-Perdew virial relation is a special case of the
generalized virial theorem derived by Ghosh and Parr15 based
on universal scaling properties of homogeneous density
functionals. Here we would like to emphasize an even deeper
generalization,16 according to which the Levy-Perdew
relation is a special case of the line integral (eq 5) taken
along the Λ-path. To see this, recall that the functional
derivative of any valid exchange functional is homogeneous
of degree one with respect to the uniform density scaling30,31

Using eqs 5, 14, and 16 we have

The parameter λ in the second integral can be eliminated by
the variable change λrfr′. The result is

where d3r′ ) d3(λr) ≡ d(λx)d(λy)d(λz). Switching back to r
and noting that the integral over λ is simply 1, we obtain

An additional integration by parts in the last equation gives
eq 4. The two forms of the Levy-Perdew reconstruction
given by eqs 4 and 19 differ only by a gauge transformation
of the energy density.

5. Examples

We will now illustrate how eq 5 can be used to reconstruct
exchange and correlation density functionals from the
corresponding functional derivatives. For verification pur-
poses, our examples deliberately employ potentials whose
parent functionals are known from the outset. Of course, in
real-life applications of the line integral method, parent
functionals would be normally unknown a priori.

5.1. Local Density Approximation for Exchange. Con-
sider the local density approximation (LDA) for exchange

where Cx ) (3/4)(3/π)1/3. The functional derivative of the
LDA functional is

Suppose we did not know what functional generated this
potential. Let us employ the line integral method to recon-
struct this “unknown” functional.

Under the q-scaling of the density, the LDA exchange
potential transforms as

Multiplying this potential by ∂Fq(r)/∂q ) F(r) and integrating
over q we obtain the Q-reconstruction

which, in view of eq 21, is identical with Ex
LDA[F].

Under the uniform density scaling, the LDA exchange
potential transforms as

Inserting the λ-scaled LDA potential into eq 5 (or directly
into eq 19) we obtain the Λ-reconstruction

which is just the Levy-Perdew relation. It is not obvious,
but can be proven by invoking the divergence theorem, that
the value of Ex, Λ

LDA[F] is equal to Ex, Q
LDA[F] for any F vanishing

at infinity. Numerical evaluation of the integrals of eqs 23
and 25 for test densities also confirms their equivalence.

The Q- and Λ-reconstructions of the LDA for exchange
are well-known results. In fact, eqs 23 and 25 are special
cases of the scaling identities for strictly local functionals
derived by Parr et al.32 using the density functional expansion
method.

Consider now the �-scaling of the LDA exchange potential

Substitution of the �-scaled LDA exchange potential into
the line integral formula yields

∂Fq(r)

∂q
) F(r) (13)

∂Fλ(r)

∂λ
) λ2[3F(λr) + (λr) · ∇ λrF(λr)] (14)

∂F�(r)

∂�
) �[2F(�1/3r) + �1/3r

3
· ∇ �1/3rF(�1/3r)] (15)

Vx([Fλ];r) ) λVx([F];λr) (16)

Ex[F] ) ∫0

1
dλ∫ d3rλVx([F];λr) ×

λ2[3F(λr) + (λr) · ∇ λrF(λr)]
(17)

Ex[F] ) ∫0

1
dλ∫ d3r′Vx([F];r′)[3F(r′) + r′ · ∇ r′F(r′)]

(18)

Ex[F] ) ∫ d3rVx([F];r)[3F(r) + r · ∇ F(r)] (19)

Ex
LDA[F] ) -Cx ∫ d3rF4/3(r) (20)

Vx
LDA([F];r) ) -4

3
CxF

1/3(r) (21)

Vx
LDA([Fq];r) ) q1/3Vx

LDA([F];r) (22)

Ex,Q
LDA[F] ) 3

4 ∫ d3rF(r)Vx
LDA([F];r) (23)

Vx
LDA([Fλ];r) ) λVx

LDA([F];λr) (24)

Ex,Λ
LDA[F] ) ∫ d3rVx

LDA([F];r)[3F(r)+r · ∇ F(r)] (25)

Vx
LDA([F�];r) ) �2/3Vx

LDA([F];�1/3r) (26)
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After the substitution �1/3rfr and integration over � we
obtain the Z-reconstruction of the LDA

This functional is actually a linear combination of the Q-
and Λ-reconstructions, namely, 4/5Ex,Q

LDA[F] + 1/5Ex,Λ
LDA[F], as

can be seen by combining eqs 23 and 25. Since each of the
Q- and Λ-reconstructions is numerically equivalent to
Ex

LDA[F], the value of Ex,Z
LDA[F] is also equal to Ex

LDA[F]. Thus,
eqs 23, 25, and 28 are different but equivalent representations
of the same functional.

5.2. Generalized Gradient Approximation for Exchange.
To illustrate how the line integral formalism works for
gradient-dependent Kohn-Sham potentials, we will recon-
struct the exchange functional of Gill33

where s is a dimensionless reduced gradient defined as

and � ) 21/6/137 is a constant. The functional derivative of
the Gill exchange can be written as

where the first term is given by eq 21 and

The last expression was obtained with the help of eq 3 and
by using the identity ∂s/∂∇ F ) F-8/3s-1∇ F.

Under the q-scaling, sq(r) ) q-1/3s(r), so the Gill potential
becomes

The line integral of this potential along the Q-path is

where we have utilized eq 23. The integral in eq 34 can be
simplified through integration by parts to give

Inserting this result into eq 34 we obtain the right-hand side
of eq 29. Thus, the line integral of the Gill exchange potential
along the Q-path recovers the energy density of the parent
functional in the original gauge.

Under the λ-scaling, the Gill exchange potential transforms
just like any other exchange potential

so the line integral along the Λ-path is simply the
Levy-Perdew reconstruction

Finally, under the �-scaling, s�(r) ) �-1/3s(�1/3r), so

The line integral along the Z-path is then

This functional is a linear combination of the Q- and
Λ-reconstructions Ex,Q

G96[F] and Ex,Λ
G96[F] with the weights 5/7

and 2/7, respectively. Therefore, Ex,Z
G96[F] is also numerically

equivalent to the original Ex
G96[F] up to a gauge transforma-

tion of the energy density.
It would be straightforward, although tedious, to carry out

similar reconstructions for gradient-dependent exchange
potentials derived from more complicated functionals such
as Becke’s 1988 exchange.34 However, when the parent
functional is known a priori in some gauge, such reconstruc-
tions are of interest only as ways of generating gauge-
transformed energy densities.

5.3. Local Density Approximation for Correlation.
Consider now the Wigner correlation functional35

where rs ) (3/4πF)1/3 and a ) 0.44 and b ) 7.8 are constants.
The functional derivative of Ec

W[F] is

where we have used the fact that drs/dF ) -rs/3F. Let us
reconstruct the Wigner correlation functional from Vc

W([F]; r)
by using eq 5 and integrating the potential along three distinct
density scaling paths.

The q-scaled Wigner correlation potential is

The Q-reconstruction is, therefore

which is precisely the original functional Ec
W[F].

Ex,Z
LDA[F] ) ∫0

1
d�∫ d3r �2/3Vx

LDA([F];�1/3r) ×

�[2F(�1/3r) + �1/3r
3

· ∇ �1/3rF(�1/3r)] (27)

Ex,Z
LDA[F] ) 3

5 ∫ d3r Vx
LDA([F];r)[2F(r) + r

3
· ∇ F(r)] (28)

Ex
G96[F] ) Ex

LDA[F] - ∫ d3r�F4/3(r)s3/2(r) (29)

s ) |∇ F|

F4/3
(30)

Vx
G96([F];r) ) Vx

LDA([F];r) + wx
G96([F];r) (31)

wx
G96([F];r) ) 2�

3
F1/3s3/2 + ∇ ·( 3�

2F4/3s1/2
∇ F) (32)

Vx
G96([Fq];r) ) q1/3Vx

LDA([F];r) + q-1/6wx
G96([F];r) (33)

Ex,Q
G96[F] ) Ex

LDA[F] + 6
5 ∫ d3rF(r)wx

G96([F];r) (34)

∫ d3rF(r)wx
G96([F];r) ) -5

6 ∫ d3r�F4/3s3/2 (35)

Vx
G96([Fλ];r) ) λVx

G96([F]; λr) (36)

Ex,Λ
G96[F] ) Ex

LDA[F] +

∫ d3rwx
G96([F];r)[3F(r) + r · ∇ F(r)] (37)

Vx
G96([F�];r) ) �2/3Vx

LDA([F];�1/3r) +
�1/6wx

G96([F];�1/3r)
(38)

Ex,Z
G96[F] ) Ex

LDA[F] +
6
7 ∫ d3rwx

G96([F];r)[2F(r) + r
3
· ∇ F(r)] (39)

Ec
W[F] ) -∫ d3r

aF
b + rs

(40)

Vc
W([F];r) ) -a

b + (4/3)rs(r)

[b + rs(r)]2
(41)

Vc
W([Fq];r) ) -a

b + (4/3)q-1/3rs(r)

[b + q-1/3rs(r)]2
(42)

Ec,Q
W [F] ) -a∫ d3r F(r)∫0

1
dq

b + (4/3)q-1/3rs

(b + q-1/3rs)
2

) -∫ d3r
aF(r)

b + rs(r)
(43)
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Under the uniform density scaling, the Wigner correlation
potential transforms as

The line integral along the Λ-path can be written as

Changing the real-space integration variable λrfr and
integrating over λ we obtain the Λ-reconstruction of the
Wigner functional

Similarly, we have derived the Z-reconstruction

which, unlike the exchange functionals above, does not
appear to be a linear combination of the Q- and Λ-recon-
structions.

We have implemented the functionals Ec,Λ
W [F] and Ec,Z

W [F]
in a development version of the Gaussian program36 and
evaluated them numerically for a number of atoms and
molecules using several Gaussian basis sets and large real-
space grids. Our calculations confirm that, within submicro-
hartree errors of the real-space integration, the correlation
energies obtained by eqs 46 and 47 are exactly the same as
those obtained by eq 40.

5.4. Generalized Gradient Approximation for Cor-
relation. Consider the gradient-dependent Wilson-Levy
correlation functional for spin-compensated systems37

where s is the dimensionless reduced density gradient given
by eq 30 and a0 ) -0.74860, a1 ) 0.06001, b0 ) 3.60073,
and b1 ) 24/3b1′ , where b1′ ) 0.90000 are constants. The
functional derivative of this approximation can be written
as

where

is the correlation energy density in the initial gauge and

Rewriting eq 49 in terms of Fq and substituting the result
into eq 5 we obtain for the Q-reconstruction

where Ṽc,Q
WL is the hypercorrelated 9 potential defined by

which can be evaluated analytically. Alternatively, one can
first simplify the Hessian-dependent term in eq 53 through
integration by parts and then integrate the result over q. In
the latter case, the Q-reconstructed energy density is identical
with the fc

WL of eq 50.
Before proceeding further, we point out that analytical

integration over the density scaling parameter can be too
complicated to be worth pursuing. In such cases, it is much
more efficient to evaluate the line integral numerically for
each real-space grid point r using a one-dimensional
Gauss-Legendre quadrature38 with a sufficient number of
nodes. After the numerical integration over the density
scaling parameter at each r is completed, the real-space
integration is performed as usual using standard three-
dimensional quadratures. The overhead cost associated with
the numerical integration over a density scaling parameter
is actually quite small. As a test, we have implemented a
64-point Gauss-Legendre quadrature over q in eq 53 (after
it was simplified by real-space integration by parts) and used
it for a number of atomic and molecular densities. The
agreement between the total correlation energies obtained
by analytical and numerical integration over q is excellent.

We have also implemented a Λ-path reconstruction of the
Wilson-Levy correlation functional using 16-, 32-, and 64-
node Gauss-Legendre quadratures for the integral over λ.
Provided that a large basis set is used (e.g., the universal
Gaussian basis set of ref 39), the agreement between the
Λ-reconstruction of the Wilson-Levy functional and its
conventional implementation can be made better than 1
microhartree.

We have not evaluated the line integral of the Wilson-Levy
correlation potential along the Z-path, but it would not be
difficult to do so using numerical quadratures.

5.5. Functionals Other Than Exchange-Correlation. So
far, we have dealt exclusively with exchange-correlation
functionals and potentials. However, the line integration
technique is very general in that it applies to functionals of
any other type. We shall illustrate this with examples
involving the Coulomb repulsion and the von Weizsäcker
kinetic energy functionals.

Vc
W([Fλ];r) ) -a

b + (4/3)λ-1rs(λr)

[b + λ-1rs(λr)]2
(44)

Ec,Λ
W [F] ) -a∫0

1
dλ∫ d3(λr)

λ
b + (4/3)λ-1rs(λr)

[b + λ-1rs(λr)]2
×

[3F(λr) + (λr) · ∇ λrF(λr)]
(45)

Ec,Λ
W [F] ) -a∫ d3r [3F(r) + r · ∇ F(r)] ×

[1
b

ln
b + rs

rs
+ 1

3(b + rs)] (46)

Ec,Z
W [F] ) -a∫ d3r [2F(r) + r

3
· ∇ F(r)] ×

[1 - rs/b - (3/2)(rs/b)2

b + rs
+

3rs
3/2tan-1 √b/rs

2b5/2 ] (47)

Ec
WL[F] ) ∫ d3r

(a0 + a1s)F
b0 + b1s + rs

(48)

Vc
WL([F];r) )

∂fc
WL

∂F
- ∇ · (∂fc

WL

∂∇ F ) (49)

fc
WL )

(a0 + a1s)F
b0 + b1s + rs

(50)

∂fc
WL

∂F
)

a0 - a1s/3

b0 + b1s + rs
- 1

3

(rs - 4b1s)(a0 + a1s)

(b0 + b1s + rs)
2

(51)

∂fc
WL

∂∇ F
) [ a1sF

-5/3

b0 + b1s + rs
-

(a0 + a1s)b1F
-8/3

(b0 + b1s + rs)
2 ]∇ F (52)

Ec,Q
WL[F] ) ∫ d3rF(r)Ṽc,Q

WL([F];r) (53)

Ṽc,Q
WL([F];r) ) ∫0

1
dqVc

WL([Fq];r) (54)
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The Coulomb repulsion functional is

J[F] ) 1
2 ∫ d3r∫ d3r′ F(r)F(r′)

|r - r′ | (55)

and has the following functional derivative

VJ([F];r) ) ∫ d3r′ F(r′)
|r - r′ | (56)

The q-scaled Coulomb potential is

VJ([Fq];r) ) qVJ([F];r) (57)

The line integral along the Q-path recovers the Coulomb
energy density in the original gauge

JQ[F] ) 1
2 ∫ d3rF(r)VJ([F];r) ) J[F] (58)

In contrast, line integrals of the Coulomb potential along
the Λ- and Z-paths result in gauge-transformed Coulomb
energy densities. Specifically, under the λ-scaling

VJ([Fλ];r) ) λVJ([F];λr) (59)

so the line integral is

JΛ[F] ) ∫ d3rVJ([F];r)[3F(r) + r · ∇ F(r)] (60)

This functional is numerically equivalent to J[F] because it
has the same value for an arbitrary density (which can be
verified numerically). Similarly, under the �-scaling

VJ([F�];r) ) �4/3VJ([F];�1/3r) (61)

so the Z-reconstruction of the Coulomb repulsion is

JZ[F] ) 3
7 ∫ d3r VJ([F];r)[2F(r) + r

3
·∇ F(r)] (62)

This functional is a linear combination of the functionals
JQ[F] and JΛ[F] with coefficients 6/7 and 1/7, respectively.
Therefore, JZ[F] ) J[F] for an arbitrary F.

Next consider the von Weizsäcker kinetic energy func-
tional which is defined by

TW[F] ) ∫ d3rtW(r) ) ∫ d3r
1
8

|∇ F(r)|2

F(r)
(63)

Using eq 3, we obtain the functional derivative

VW([F];r) )
tW

F
- 1

4
∇ 2F
F

(64)

Under the q-scaling

VW([Fq];r) )
tW(r)

F(r)
- 1

4
∇ 2F(r)
F(r)

) VW([F];r) (65)

so the Q-path reconstruction yields

TW
Q[F] ) ∫ d3rVW([F];r)F(r)

)∫ d3r [tW(r) - 1
4

∇ 2F(r)] (66)

which equals TW[F] because the Laplacian of F(r) integrates
to zero.

Under the uniform density scaling

so the line integral along the Λ-path is

Finally, under the �-scaling we have

and the line integral along the Z-path yields

This functional is the sum of 3/5TW
Q[F] and 2/5TW

Λ[F]. Hence,
TW

Z [F] ) TW[F].
An example of a reconstruction of the noninteracting

kinetic energy functional Ts[F] from the exact kinetic
potential via the generalized Ghosh-Parr virial relation15

has been given by King and Handy.40 We remark here that
their method is equivalent to performing a Λ-reconstruction
of the Ts[F] functional.

6. Potentials That Are Not Functional
Derivatives

Not every analytical expression constructed from F(r), ∇ F(r),
and ∇ 2F(r) is a functional derivative of some generalized
gradient approximation with respect to F(r). In order for a
model potential VM([F]; r) to be a functional derivative of
some density functional, it must satisfy the condition16,31

δVM([F];r)

δF(r′) )
δVM([F];r′)

δF(r)
(71)

A model potential VM([F]; r) that does not have a parent
density functional from which it can be derived by eq 1 will
be called here a stray potential. Existence of stray potentials
adds an interesting dimension to the density functional
reconstruction problem because the line integral evaluated
for a stray potential is path-dependent.16 This principle can
be used as a test for stray potentials.

Consider, for example, the following problem:41 Does
there exist a density functional for which the expression

is a functional derivative? We will show that the answer to
this question is negative.

Under the q-scaling, this “potential” is unchanged

Therefore, the line integral along the Q-path is

Under the uniform density scaling

VW([Fλ];r) ) λ2VW([F];λr) (67)

TW
Λ[F] ) 1

2 ∫ d3rVW([F];r)[3F(r) + r · ∇ F(r)] (68)

VW([F�];r) ) �2/3VW([F];�1/3r) (69)

TW
Z[F] ) 3

5 ∫ d3rVW([F];r)[2F(r) + r
3
·∇ F(r)] (70)

VM([F];r) ) |∇ F(r)|
F(r)

(72)

VM([Fq];r) )
|∇ Fq|

Fq
) VM([F];r) (73)

IQ ) ∫0

1
dq∫ d3rVM([Fq];r)

∂Fq(r)

∂q
) ∫ d3r |∇ F(r)|

(74)

VM([Fλ];r) )
|∇ Fλ|

Fλ
) λVM([F];λr) (75)
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so the line integral along the Λ-path is

Finally, under the �-scaling

and the line integral along the Z-path is

It is easy to see that the three reconstructions are related to
each other by the equation IZ ) 3/4IQ + 1/4IΛ.

We have evaluated numerically the three integrals given
by eqs 74, 76, and 78 for a number of atoms and molecules
and, for each system, obtained three different values. For
example, using the Hartree-Fock densities of the Ne atom
obtained in the universal Gaussian basis set of ref 39, we
found (in atomic units) IQ ) 62.227, IΛ ) 22.424, and IZ )
52.276. Therefore, the quantity defined by eq 72 is not a
functional derivative of any density functional with respect
to F(r).

Many of the model Kohn-Sham potentials for exact
exchange proposed in the literature42-51 are probably stray.
For example, Levy-Perdew virial energies obtained from
several such approximations deviate by up to a few hartrees
from the correct exact-exchange values.52

7. Discussion

The significance of the van Leeuwen-Baerends method for
computational density functional theory is not difficult to
appreciate. Since line integrals of analytical potentials can
be evaluated efficiently, one can turn the Kohn-Sham
scheme inside out and model the Kohn-Sham exchange-
correlation potential directly42-51 instead of approximating
the density functional. This is possible because only the
potential is required in principle to solve the Kohn-Sham
equations, while the energy is an add-on that can be evaluated
only when needed (e.g., to distinguish the true solution from
false minima).

Generally, when a model Kohn-Sham potential has a
simple behavior under some scaling transformation of the
density, it is possible to evaluate the line integral analytically
to obtain a closed-form expression that relates the unscaled
potential directly to the energy. The Levy-Perdew-
Ghosh-Parr virial relation can be viewed as a special case
of line integrals for potentials that are homogeneous under
uniform density scaling. Exchange, Coulomb repulsion, and
noninteracting kinetic energy functionals all fall into this
category. By contrast, the exact correlation potential and

realistic approximations to it are not homogeneous with
respect to any simple density scaling transformation.

It is pertinent to note that the exact and even some
approximate exchange-correlation potentials jump by a
constant when the electron number in a partially filled
electronic shell or subshell crosses an integer.53-55 Discon-
tinuous changes of Vxc([Ft]; r) along a number-nonconserving
integration path would certainly complicate the line integral
method.16,17 Fortunately, no discontinuities arise at any point
of the number-nonconserving Q- and Z-paths for the local
and semilocal approximations considered in this work, not
least because the q-scaling and �-scaling are very different
from the consecutive (Aufbau) filling of Kohn-Sham
orbitals.

We have seen that the line integral method generally
recovers the parent density functional Exc[F] from a functional
derivative Vxc([Ft]; r) only up to a gauge transformation of
the energy density. Drawing on the idea of Burke and
co-workers,8-11 we can define the hypercorrelated exchange-
correlation energy density

Then a choice of the density scaling path in eq 79 amounts
to defining a gauge transformation for the exchange-
correlation energy density. In particular, integration along
the Λ-path yields the virial energy density of refs 16 and
8-11

where we have made the substitution λrfr to avoid the
appearance of λ on the left-hand side. The line integral along
the Q-path formally defines the energy density

which, in contrast to the virial energy density of eq 80, does
not depend on the choice of origin and is constant within a
finite volume of a uniform electron gas. For purely local
approximations, where Vxc([F]; r) ) ∂fxc/∂F, one can show
that f̃xc

Q(r) ) fxc(r), which explains the coincidences noted
after eqs 23 and 43. Integration along the Z-path gives a
third energy density

where we have made the replacement �1/3rfr.
When Vxc([F]; r) is a functional derivative, the total

exchange-correlation energies obtained by integrating the
energy densities of eqs 80-82 may not coincide exactly in
finite basis sets, but these discrepancies disappear in the
complete basis set limit.

8. Conclusions

We have demonstrated that it is relatively easy to reconstruct
an exchange-correlation density functional from the cor-
responding functional derivative Vxc([F]; r) if the latter is

IΛ ) ∫0

1
dλ∫ d3rVM([Fλ];r)

∂Fλ(r)

∂λ

)∫ d3r
|∇ F(r)|
F(r)

[3F(r) + r · ∇ F(r)] (76)

VM([F�];r) )
|∇ F�(r)|

F�(r)
) �1/3VM([F];�1/3r) (77)

IZ ) ∫0

1
d�∫ d3rVM([F�];r)

∂F�(r)

∂�

) 3
4∫d3r

|∇ F(r)|
F(r) [2F(r) + r

3
·∇ F(r)] (78)

f̃xc(r) ) ∫0

1
dt Vxc([Ft];r)

∂Ft(r)

∂t
(79)

f̃xc
Λ(r) ) ∫0

1 dλ
λ
Vxc([Fλ];

r
λ)[3F(r) + r · ∇ F(r)] (80)

f̃xc
Q(r) ) F(r)∫0

1
dq Vxc([Fq];r) (81)

f̃xc
Z(r) ) ∫0

1
d� Vxc([F�];

r

�1/3)[2F(r) + r
3
·∇ F(r)] (82)
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known explicitly in terms of the density. This requires
evaluating the van Leeuwen-Baerends line integral along
some path of parametrized densities. The linear density
scaling path (Q-path) and the uniform density scaling path
(Λ-path) are two convenient choices. When Vxc([F]; r) is
homogeneous with respect to the chosen density scaling, the
line integration can be completed analytically to give a
closed-form expression similar to the generalized Ghosh-Parr
virial relation. The choice of the density transformation path
determines the gauge of the reconstructed exchange-correla-
tion energy density.

If the potential Vxc([F]; r) is stray, that is, not a functional
derivative of some density functional, then a) the line integral
is path-dependent and b) the Kohn-Sham equations do not
represent a solution to a variational energy minimization
problem. This implies that exchange-correlation energies
assigned to stray potentials are somewhat arbitrary and,
hence, should be interpreted with caution. Most semilocal
exchange-correlation potentials modeled from Kohn-Sham
orbitals are probably stray because an arbitrary combination
of F(r) and its derivatives is very unlikely to be a functional
derivative of some density functional.56 Nevertheless, a line
integral energy expression obtained for a stray potential may
still be used to define a new density functional approximation.

We conclude by reiterating Mel Levy’s yet unfulfilled
prediction19 that the line integral method will play an
increasingly prominent role in future developments of density
functional theory.

Acknowledgment. This work is dedicated to Professor
John P. Perdew on the occasion of his 65th birthday.
Financial support was provided by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through
the Discovery Grants Program.

Appendix: Differentiation of a Functional
with Respect to Parameter of the Function

The chain rule for differentiation of a functional of a
parametrized density with respect to the parameter (eq 7)
follows directly from eq A.33 of ref 2. Here we will give an
alternative derivation of this formula. As in ref 2, we will
consider the case of a one-dimensional density F(x) and a
functional that depends on x, F(x), and F′(x) ≡ dF/dx only.
Generalizations of the following proof to three dimensions
and higher derivatives are straightforward.

Consider a general density functional of the form

where Ft(x) is a parametrized density and Ft′ ≡ dFt(x)/dx. Let
us treat the scaling parameter t as an argument of F, that is,
Ft(x) ≡ F(x, t). Then Ft′ ) ∂F(x, t)/∂x. Differentiation of eq
83 with respect to t gives

Since ∂Ft′/∂t ) ∂2F(x, t)/∂x∂t, we can integrate the second term
in the parentheses by parts. Assuming that the product

(∂f/∂Ft′)∂F(x, t)/∂t vanishes as xf(∞ (as it should in any finite
system), we obtain

Substitution of this result into eq 84 yields

The expression in parentheses is the functional derivative
of E[Ft] with respect to Ft.

4 Thus, we can write

which completes the proof.
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Abstract: A new exchange and correlation functional, called ISIN here, of the fifth rung of Jacob’s
ladder is presented. It is based on the explicit approximation of Wλ, the integrand in the adiabatic
connection (AC) with λ representing the coupling constant. Besides utilizing the two leading
terms of each asymptotic expansion of Wλ at λ ) 0 and ∞, the ISIN extends the coupling constant
λ to negative values (i.e., to attractive electron-electron interactions). For the simple system of
two electrons on the surface of a sphere (2ESS), the correlation energies yielded by the ISIN
are in excellent agreement with the exact values. However, the ISIN seriously fails to approximate
Wλ when W0

′ , the slope at λ ) 0, goes to -∞, which leads to much more negative correlation
energies for real systems.

1. Introduction

In recent years, density-functional theory (DFT)1,2 has
become one of the most frequently applied methods in many-
body theory, largely due to the fact that the basic variable
in DFT is the simple, non-negative particle density n(r),
instead of the complicated (correlated) N-particle wave
function ψ. In principle, the exact ground-state energy of
the interacting N-electron system, including the correlation
energy missed in the Hartree-Fock (HF) theory, can be
obtained by solving the Kohn-Sham (KS) single-particle
equations of the auxiliary noninteracting system, given the
exact density functional Exc[n] for the exchange-correlation
energy. In practice, however, Exc[n] must be approximated,
and the accuracy of the approximation therefore determines
the success of KS DFT. Significant insight into this quantity
is obtained from the adiabatic connection (AC),3-10 which
smoothly connects the KS noninteracting system to the
interacting physical system.

With the aid of the adiabatic connection, Exc[n] is
represented by the coupling-constant integral3,4

Here, U[n] is the classical coulomb energy of a continuous
charge distribution with density n(r)

V̂ee ) ((e2)/2)∑i)1
N ∑j(i*j))1

N |r̂i - r̂j|-1 is the two-particle
Coulomb interaction operator for electrons. ψλ[n] is that wave
function which minimizes the expectation value 〈T̂ + λV̂ee〉
for a fictive electron system with the kinetic-energy operator
T̂ and the interaction λV̂ee, subject to the constraint that it
has the ground-state density n(r) of the real system with
interaction V̂ee(λ ) 1).

When λ ) 0, the wave function is the noninteracting
Kohn-Sham single determinant ψ0[n], so W0[n] )
〈ψ0[n]|V̂ee|ψ0[n]〉 - U[n] ) Ex[n], where Ex[n] is the exact
orbital exchange energy evaluated using Kohn-Sham orbit-
als. The exact slope of W ′λ at λ ) 0 is known exactly to be
twice the second-order correlation energy from Goerling-
Levy density functional perturbation theory (GL2),11,12 W ′0[n]
) 2Ec

GL2[n]. Therefore, in the weak interaction limit, we have

When λ ) 1, the wave function is the exact wave function
of the interacting physical system, ψ1[n], so* Corresponding author e-mail: jsun@tulane.edu.

Exc[n] ) ∫0

1
dλWλ[n] (1)

Wλ[n] ) 〈ψλ|V̂ee|ψ
λ〉 - U[n] (2)

U[n] ) 1
2 ∫ d3r∫ d3r′n(r)n(r′)

|r - r′ | (3)

Wλ ) W0 + W0
′λ λ f 0 (4)
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which is the difference between the total electron-electron
repulsion energy Vee of the interacting physical system and
the Coulomb energy.

There have been a number of attempts to construct
exchange-correlation functionals by explicitly approximating
Wλ. By linearly interpolating W0 and W1, where the latter is
approximated by the local spin-density approximation (LSDA),
Becke first introduced the so-called hybrid exchange-
correlation functional.13 With different assumptions for the
λ dependence in the range of [0, 1] and local or semilocal
exchange-correlation functionals to approximate W1, many
other constructions have been proposed, including nonem-
pirical PBE0,6 the [1/1]-Pade-based form of Ernzerhof,14 the
two-legged representation of Burke et al.,15 and the MCY
proposed by Mori-Sanchez, Cohen, and Yang.16 The MCY
also adds the information of W ′0, approximated by a modified
Tao-Perdew-Staroverov-Scuseria17 (TPSS) slope to avoid the
computational expense of W ′0. Instead of W1, Seidl et al.18,19

used information from the strong interaction limit λf∞,
where Wλ approaches asymptotically a finite value W∞

The so-called interaction strength interpolation (ISI) func-
tional interpolates the weak and strong interaction limits with
W∞ and W ′∞ approximated in the point-charge-plus-continuum
(PC) model. Due to their nonlinearity in terms of W0[n],
W ′0[n], W∞[n], and W ′∞[n], the [1/1]-Pade-based form of
Ernzerhof,14 the MCY,16 and the ISI18,19 are not size
consistent, which is an important property of the exact Exc[n]:
Exc[n1 + n2] ) Exc[n1] + Exc[n2] for two well separated
densities n1 and n2.

Despite these attempts, the exact dependence Wλ is known
only for the uniform electron gas (UEG) and for some
relatively simple systems.15,20,21 One of these systems is two
electrons on the surface of a sphere (2ESS), which recently
has been solved numerically for λ ∈ [-∞,∞] by Seidl.21 The
extension of λ to negative values for this simple system then
naturally brings up questions: does Wλ with negative λ exist
for every system? If so, what is the asymptotical form as
λf - ∞? Although the exchange-correlation energy is only
an integral over λ ∈ [0,1], the asymptotical form at limit
λf∞ still provides much information concerning Wλ, espe-
cially as a function of λ. On the contrary, at λ ) 1, there is
not an exact general form available for Wλ. Furthermore, with
such information built in, the ISI18,19 obtains accuracy
comparable to the [1/1]-Pade-based form of Ernzerhof14 and
the MCY,16 much better than the GL2 where only the weak
interaction (λf0) limit is used. Therefore, it is suspected
that the construction of an exchange-correlation functional
might benefit from the information at λ f -∞ too, to the
extent that this limit is known.

In this paper, it is assumed that for every system Wλ exists
for negative λ. An exchange-correlation functional triggered
almost by the solution of 2ESS is then proposed in section
2 by approximating Wλ with λ extending to negative values.
Results for 2ESS and some simple atoms are presented in

section 3, followed by conclusions and future work discussed
in section 4.

2. Interaction Strength Interpolation
Extended to Negative λ (ISIN)

In ref 21, Seidl introduced an extra term to the ISI to recover
the third leading term in the weak (λf0) and strong (λf∞)
interaction limit, respectively, which led to a new functional,
ISI3, and increased the accuracy of the correlation energy
for 2ESS. However, this improvement was bought at a high
price since the third leading term in the weak (λf0)
interaction limit, W ′′∞, is the third-order of the GL perturba-
tion expansion, although the third leading term in the strong
(λf∞) interaction limit, W ′′∞, is 0.18

By extending to negative λ and using two leading terms
in the weak (λf0) and strong (λf∞) interaction limit,
respectively, I propose

where a ) W0 - f(W0 - W∞), b ) (2)/(π)W ′0, c )
(2)/(π)(W ′0)/((W∞ - W0)(1 - f)), d ) f(W0 - W∞), and e )
((f(W0 - W∞))/(W ′∞))2.

With f chosen to be 0.5 without fitting to any data,
surprisingly, it gives remarkably good results for 2ESS as
shown in Figure 1 and Table 1. Actually, the value for f is
between 0.5 and 0.51 if we vary f to search for the most
nearly exact energy of 2ESS at R ) 1. And the variation of
the energy is negligible with f from 0.5 to 0.51. f ) 0.5 is
used in this article. It is not guaranteed that, for all cases,
Wλ

ISIN is a monotonically decreasing function over λ ∈ [-∞,∞],
as shown in eq 9 later. However, it is indeed so guaranteed for
λ g 0. As λ f -∞, Wλ

ISIN is linearly dependent on λ, which
matches the exact solution of 2ESS although the coefficients
at this limit are different.21 Note that the constraint of W ′′∞
being 0 is fulfilled automatically in ISIN.

The exchange-correlation energy of ISIN is obtained by
analytical integration, according to eq 1, of eq 7

where R ) arccos[(1 + e2)-1/4]. F(R,k) and E(R,k) are the
first- and second-kind incomplete elliptic integrals with the
modulus k )1/�2. An interesting point is that eq 8 gives
the exact value for the H atom, where W0 ) W∞ ) -0.3125
Ha and W ′0 ) W ′∞ ) 0. Even if we use the PC model value
of W∞

PC )-0.313 Ha and W ′∞PC ) 0.043 Ha for the H atom,
the correlation energy is still negligible, about 0.5 × 10- 10

Ha.

Because the inputs W0[n], W ′0[n], W∞[n], and W ′∞[n] are
size consistent, so is Wλ

ISIN[n] in the weak- and strong-
interaction limits. However, due to its nonlinearity, Ec

ISIN[n]
is not generally size consistent.

W1[n] ) 〈ψ1[n]|V̂ee|ψ
1[n]〉 - U[n] ) Vee - U[n] (5)

Wλ ) W∞ + W∞
′ λ-1/2 λ f ∞ (6)

Wλ
ISIN ) a + bλarcctg(cλ) + d

(1 + e2λ2)1/4
(7)

Exc
ISIN ) a + b

2c2
[(1 + c2)arcctg(c) + c - π/2] +

2d

(1 + e2)1/4
+

√2d
e [F(R,

1

√2) - 2E(R,
1

√2)] (8)
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3. Results and Discussions

In the 2ESS system, the electrons, distributing uniformly,
are confined to the 2D surface of a sphere with radius R,
variation of which can result in different density of the
charge. The limit of Rf∞ (Rf0) corresponds to the low
density (high density), i.e. the strong interaction (weak
interaction). With W0, W ′0, W∞, and W ′∞ given in eqs 38 and
39 in ref 21 for the singlet system of 2ESS, Figure 1(a) plots
Wλ vs λ with λ ∈ [-0.4,10] for R ) 1 Bohr. By recovering
the additional third leading term in the strong and weak
interaction limit, respectively, ISI3 shows significant im-
provement over ISI, while ISIN, by extending to negative λ

with correct linear dependence as λ f -∞ (although the
coefficient for this limit is not recovered) and recovering W ′∞
automatically, is slightly closer to the numerical solution.
This observation is corroborated by Table 1, the correlation
energies Ec[R] for different R, where the mean absolute error
drops from 0.007643 Ha of ISI largely to 0.002657 Ha of
ISI3, then slightly to 0.00206 Ha of ISIN. Figure 1(b) shows
that Wλ

ISIN deviates from the numerical solution very much
for λ < -0.5 due to the inconsistency of the coefficient at
λ f -∞, which is, however, still better than the other two,
namely ISI and ISI3, obviously.

Although ISIN works well in this simple 2ESS model, it
turns out that it is inferior to ISI when applied to the real
system, as shown in Table 2. The inferiority might be due
to the fact that, while ISI does not break down completely
for metals and systems with large static correlation, Wλ

ISIN

does when W ′0f -∞

As W ′0 f -∞, the second term in the right-hand side of
eq 7 becomes discontinuous at λ ) 0, jumping from 0 to
b/c, which then leads to lim λf0+ limW ′0f-∞ Wλ

ISIN ) (W0 +
W∞)/2, more negative to the supposed W0. This discontinuity
implies that Wλ

ISIN biases toward W∞ and thus results in more

Figure 1. The coupling constant integrand Wλ of different
approximations compared to the numerical solution for the
singlet system of 2ESS. (a) λ ∈ (-0.4,10); (b) λ ∈ (-0.8,10),
ISI3 is not shown in this figure since it has a singularity in
this range. Here 2ESS means two electrons on the surface
of a sphere of radius R ) 1 Bohr.

Table 1. Correlation Energies Ec[R] of the Singlet System
of 2ESSa

R ISIb ISI3b ISIN exactb

0.1 -0.2118 -0.2157 -0.2183 -0.2175
0.2 -0.1985 -0.2045 -0.2094 -0.2064
0.5 -0.1679 -0.176 -0.1844 -0.1796
1 -0.1349 -0.1426 -0.1511 -0.1473
2 -0.0984 -0.104 -0.1098 -0.1081
5 -0.0562 -0.0587 -0.0608 -0.0605
10 -0.0337 -0.0348 -0.0355 -0.0355
M.E 0.007643 0.002657 -0.00206
M.A.E 0.007643 0.002657 0.00206

a The unit is Hartree. Here 2ESS means two electrons on the
surface of a sphere of radius R )1 bohr. b Values are from ref 21.

Table 2. Correlation Energies Ec of Atomsa

system ISIb ISIN exactb

He -0.041 -0.044 -0.042
Exp. -0.034 -0.038 -0.037
Be -0.1 -0.112 -0.096
Ne -0.405 -0.439 -0.394

a Exp. is the two-electron system with exponential density n(r)
) 2exp(-2r)/π. W∞ and W ′∞, evaluated in the PC model, along
with W0 and W ′0, are given in Table 3 of ref 18. The unit is
Hartree. b Values are from ref 18.

Table 3. Atomization Energies of 18 Molecules (in Units of
1 kcal/mol), in Second-Order Goerling-Levy Perturbation
Theory (GL2),14 in ISI,18,19 in ISIN, and from Experiment
(as in ref 22)

mol. GL2c ISIc ISIN expt

H2 114 107.3 109.2 109.5
LiH 70 58.8 61.4 57.8
Li2 39 22.5 24.6 24.4
LiF 193 142.7 157.9 138.9
Be2 22 5.7 8.6 3
CH4 454 423.4 433.3 419.3
NH3 340 300.9 313.2 297.4
OH 128 108.6 114.5 106.4
H2O 274 235.7 248.4 232.2
HF 173 143.7 153.2 140.8
B2 190 68.1 88.4 71
CN 335 188.1 220.5 178.5
CO 355 265.9 292.1 259.3
N2 342 234.6 262 228.5
NO 265 157.9 184.2 152.9
O2 230 123.6 149.6 120.5
O3 407 136.8 187.1 148.2
F2 134 34 51.2 38.5
ME 74 1.7 18.5
MAE 74 4.3 18.5

c Values are from ref 19.

lim
w0′f-∞

Wλ
ISIN ) W∞ + d

(1 + e2λ2)1/4
(9)
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negative correlation energies, as shown in Tables 1 and 2.
This is also corroborated by the calculation of the atomization
energies of 18 small molecules, using the idea and data given
in refs 14, 18, and 19. In Table 3, ISIN overbinds these
molecules with the mean absolute error (MAE) of 18.5 kcal/
mol, compared to 4.3 kcal/mol of ISI, due to the fact that
the molecules have much larger W ′0 because of static
correlation, therefore, much more spurious negative correla-
tion energies, than their component atoms. However, ISIN
is still better than GL2, which gave a MAE of 74 kcal/mol.14

4. Conclusion and Future Work

With the coupling constant λ extending to negative values,
the ISIN explicitly approximates Wλ, covering the two
leading terms of the asymptotic expansion of Wλ at λ ) 0
and ∞, respectively. For the simple system of 2ESS, ISIN
works well, even better than ISI3. The mean absolute error
of the correlation energies Ec[R] for different R yielded by
the ISIN is 0.00206 Ha, slightly better than 0.002657 Ha by
ISI3 and much better than 0.007643 Ha by ISI. However,
due to the discontinuity of Wλ

ISIN at λ ) 0 as W ′λ f -∞,
Wλ

ISIN breaks down completely with Wλ
ISIN biasing toward

W∞, resulting in much more negative correlation energies
and overbinding of molecules for real systems.

Although the ISIN proposed in this article fails to give
accurate correlation energies for real systems, the future work
on this subject might be to find one which recovers the
behavior of ISI as W ′0 f -∞, meanwhile extending λ to
negative values.
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Physics Institute, UniVersity of Bayreuth, D-95445 Bayreuth, Germany

Received December 1, 2008

Abstract: Predicting the polarizabilities of extended conjugated molecules with semilocal
functionals has been a long-standing problem in density functional theory. These difficulties are
due to the absence of a term in the typical semilocal Kohn-Sham exchange potentials that has
been named “ultranonlocal”. Such a term should develop in extended systems when an external
electric field is applied, and it should counteract the field. We calculate the polarizabilities of
polyacetylene molecules using the recently developed extended Becke-Johnson functional.
Our results show that this functional predicts the polarizabilities with much better accuracy than
typical semilocal functionals. Thus, the field-counteracting term in this functional, which is
semilocal in the Kohn-Sham orbitals, can realistically describe real molecules. We discuss
approaches of constructing an energy functional that corresponds to this potential functional,
for example, via the Levy-Perdew virial relation.

1. Introduction: Step Structures in the
Kohn-Sham Potential
The enormous success of density functional theory (DFT)
in solid-state physics and molecular chemistry to a consider-
able extent has been due to the remarkable balance between
accuracy and computational cost which (semi)local func-
tionals like the local density approximation and generalized
gradient approximations provide. Yet, the developers of some
of the most reliable semilocal functionals themselves pointed
out1 a feature of the exact exchange-correlation potential of
Kohn-Sham density functional theory that none of the
standard semilocal functionals has: the exact potential is
discontinuous as a function of the particle number. This
“derivative discontinuity” feature of Kohn-Sham theory has
found considerable attention over the years, with refs 2–5
being just a few examples from a body of literature that is
far too vast to cite in completeness. The derivative discon-
tinuity of ground-state density functional theory in the solid-
state context is prominently related to the band gap question,
see, for example, refs 2 and 6–8. In molecular physics, it is
related to at least two frequently encountered problems.

As was already pointed out in ref 1, it is only due to the
derivative discontinuity that Kohn-Sham theory can lead

to neutral fragments when a molecule dissociates. The spatial
features which the exact Kohn-Sham exchange-correlation
potential develops in order to enforce this “principle of
integer preference”9 are schematically depicted in Figure 1.
When two different atoms, A and B, with A having a larger
electronegativity than B, are considered as being rigorously
disconnected, the highest occupied eigenvalue of A is more
negative than the one of B. When the same two atoms are
close to each other and form a diatomic molecule, the

* Corresponding author e-mail: Stephan.Kuemmel@
uni-bayreuth.de.

Figure 1. Schematic depiction of the exact νxc for a system
of two different atoms at a very large separation (arbitrary
units). The dashed-dotted lines indicate the energies of the
Kohn-Sham eigenvalues discussed in the main text. To the
left of A, the potential first tends to a positive constant C and
then steps down to fall off to 0 like 1/r.
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eigenvalues of the molecule in general will be different from
the eigenvalues of the separate atoms, reflecting the charge
redistribution that is associated with the electronic bond.
However, now consider the situation that the distance
between the two atoms forming the molecule is steadily
increased to large values, that is, one is looking at a stretched
diatomic molecule A-B. If the interatomic distance is
extremely large, for example, on the scale of meters, then
this “extremely stretched diatomic molecule” will show the
same physical properties as two separate neutral atoms.
Therefore, one may be tempted to think that the Kohn-Sham
eigenvalues one finds for the stretched diatomic molecule
are the same as the ones for the two isolated atoms. But this
is not the case for the ultimate, exact density functional:
When the two atoms, A and B, are considered as one very
extended system, a steplike structure develops in νxc, and
due to this step, the Kohn-Sham potential of the stretched
molecule is not simply the sum of the two Kohn-Sham
potentials of two isolated atoms. In the stretched molecule,
the step in νxc “lifts up” the potential well of A, nearly
aligning the eigenvalues which would be the highest occupied
eigenvalues of A and B if the atoms were rigorously isolated.
At any very large but finite separation, one eigenvalue in
the stretched diatomic will be infinitesimally higher in energy
than the other, and its corresponding orbital will be mostly
localized around atom B. When the interatomic distance tends
to infinity, the eigenvalues become degenerate.

The exact νxc of the very stretched diatomic molecule is
schematically depicted in Figure 1, with the dashed-dotted
lines indicating the energies of the just discussed two
eigenvalues. The eigenvalue difference becomes smaller as
the distance between A and B becomes larger. Also, with
increasing distance, the steps in νxc become sharper, and the
down-step of νxc to the left of A, which occurs in the region
of space where the density starts to be dominated by the
highest occupied orbital, moves farther to the left. Potentials
that are reconstructed from accurate densities show features
similar to the ones just described.10,11 But the νxc of a
standard semilocal density functional does not at all show
the step structure. Therefore, such functionals typically lead
to fractionally charged dissociation fragments.12

To date, step structures in the correlation potential are not
incorporated in any of the typical density functional ap-
proximations. Functionals showing them have been con-
structed13 but are involved to compute and typically rely on
reconstructions from ensemble densities.11,14 For exchange,
however, the situation is more transparent. Due to the fact
that the expression for the Kohn-Sham exchange functional
is known in terms of the Kohn-Sham orbitals, the step
structure in the Kohn-Sham exchange potential can be
understood analytically. It has been discussed in detail, for
example, by Krieger et al.,3,15 with the exchange potential
“step structure” being closely related to orbital overlap or
occupation of a new orbital upon the addition of an extra
electron.6,16,8 Several approximations showing such steps
have been developed.3,17–19,32

The step structure features of νxc are related to a second
nontrivial problem. Long-range charge transfer is not well
described by standard semilocal functionals.20 This issue

manifests very prominently in the well-known fact that the
static electric polarizabilities of extended molecular systems
are seriously overestimated by semilocal functionals.21 This
failure is due to the fact that the exact exchange potential of
an extended molecular system develops a term which
counteracts an externally applied electric field that polarizes
the system,22 but this term is missing in the semilocal
approximations.

The problem of correctly describing the electrical response
of conjugated polymers is of great practical interest because
of the widespread use that these materials find in optoelec-
tronic applications. So far, the only density functionals that
yield a proper field-counteracting term were exact-ex-
change,22–24 range-separated25,26 or other27 functionals using
exact exchange, or self-interaction corrected functionals.28–30

Compared to semilocal approaches, these functionals are
associated with a considerably increased computational
burden stemming from having to evaluate many Coulomb
integrals on the one hand and having to solve the optimized
effective potential (OEP) equation on the other. (The latter
statement applies to those approaches staying in the
Kohn-Sham realm). Therefore, a computationally cheaper
approach yielding a comparable accuracy is highly desirable.

Recently, Becke and Johnson31 showed that a simple
expression which is semilocal in the Kohn-Sham orbitals
quite accurately reproduces the “step-structure features” of
the exact exchange Kohn-Sham potential. Yet more re-
cently, the expression proposed by Becke and Johnson has
been extended to yield proper asymptotic behavior and
behave consistently for systems in an external electric field.32

The extended Becke-Johnson (BJ) expression for the
exchange potential of a system in an external electric field
Fz is

where we have dropped the spin index for ease of notation.
Here, νx

h(r) is interpreted as an effective potential due to the
exchange hole. Presently, the Slater potential is employed,
but other, simpler choices can be made without a significant
loss of accuray.31 The second term, νx

corr(r), is a correction
modeling the response part of the exact exchange potential.
The steplike structures in the extended BJ expression are
exclusively due to νx

corr(r). Explicitly, this term reads

(in Hartree atomic units), where τ ) (1/2)Σiocc
|∇ �i|2 is the

noninteracting kinetic energy density computed from the
occupied Kohn-Sham orbitals �i, n is the density, and εmax

denotes the highest-occupied Kohn-Sham eigenvalue.
It was shown32 that this potential shows a step structure

which, as discussed in the context of Figure 1, is closely
connected to the derivative discontinuity. It was also shown
that it yields polarizabilities of small hydrogen chains with
an accuracy comparable to that of exact exchange methods.
These results showed that constructing approximations for
νxc directly (instead of approximations for Exc) is an attractive
idea that may lead to an elegant and efficient solution of the

νx
eBJ(r) ) νx

h(r) + νx
corr(r) (1)

νx
corr(r) ) 1

π� 5
12(�2τ

n
- √-2εmax - Fz

√-2εmax
) (2)
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field-counteracting term problem. However, two important
questions regarding this approach have remained open so
far: First, how reliable are the conclusions that were drawn
from the hydrogen chain results; that is, does the approach
also work for real, existing conjugated molecules? In other
words, did the simplicity of the hydrogen chain model lead
to artificially good results? Second, can one construct an
energy corresponding to this potential functional, for ex-
ample, via the exchange virial relation?33 The latter question
is interesting also from the point of view of recent work
which shed additional light on the BJ approach by showing
that it is one of a whole class of potential approximations
and used the exchange virial relation to construct energy
expressions.34

We address both of these questions in the following. In
section 2, we report static electric dipole polarizabilities of
acetylene oligomers. Our results show that the extended BJ
expression yields polarizabilities that compare favorably with
previously calculated exact exchange values. They also show
that the extended BJ potential can lead to nonvanishing
asymptotic constants, a feature known from the exact
Kohn-Sham exchange potential. These findings solidify the
relevance of the extended BJ potential and the idea of
developing exchange-correlation potential functionals. In
section 3, we demonstrate the problems of defining an energy
corresponding to the model potential. We show that straight-
forwardly using the exchange virial relation is problematic,
and we give ideas of how this problem may be addressed in
future work.

2. Electric Response of Polyacetylene and
the Effect of Orbital Nodal Surfaces

Polyacetylene has been the paradigm conjugated polymer
of molecular electronics research efforts. As well, it has
become the paradigm system for the failure of semilocal
functionals to describe the electrical response of extended
conjugated molecules. Therefore, calculating the static
electric polarizabilities of polyacetylene units is an ideal test
for the practical usefulness of the extended BJ potential
functional. To the best of our knowledge, it is the first test
for real conjugated systems and therefore important. The only
previous test that we know of was for hydrogen chains.32

This previous test may thus not completely account for the
complexity of a real molecule’s electronic structure.

Our calculations are based on a fully numerical solution
of the Kohn-Sham equations on a real space grid.32,35 We
thus avoid possible problems due to basis set limitations in
the polarizability calculations. The polarizabilities are ob-
tained by a finite-field, finite-difference approach; that is,
we calculate the electrical dipole moment along the molecular
axis, µ, for several values of the applied electric field, F,
and obtain R ) dµ/dF from finite differences. A general and
more detailed description of this type of approach can be
found, for example, in ref 36. The molecular geometry that
we based our calculations on is the Hartree-Fock geometry
schematically depicted in Figure 2. Our aim here is to assess
the validity of a theoretical approach by comparison to
reference work. Therefore, we chose the geometry that was
used in earlier works.21,38–40

Table 1 compares the values for the longitudinal static
electric polarizability that are obtained in the local density
approximation37 (LDA), the extended Becke-Johnson (ext.
BJ) approach,32 unrestricted Hartree-Fock (HF),38 and
second-order Møller-Plesset perturbation theory (MP2).39

Typical values obtained with generalized gradient ap-
proximation functionals are similar to LDA and therefore
not given separately. Comparing the LDA polarizabilities
(first row of Table 1) to the HF and MP2 ones (bottom rows)
exemplifies the known serious overestimation of the response
of conjugated systems that is obtained with semilocal density
functionals.

So far, the standard interpretation of the BJ potential has
been that it is an approximation to the exact Kohn-Sham
exchange potential. In this spirit and in view of previous
results indicating that Kohn-Sham exact exchange and HF
exchange lead to very similar polarizabilities,24 a reasonable
comparison to make is the one between the extended BJ and
the HF results. Looking at C4H6 to C10H12 in rows two and
three of Table 1 gives a very positive impression in this
respect. The values from the extended BJ functional are
within roughly 5% of the HF values, slightly underestimating
the HF result for the smallest systems and slightly overes-
timating for the large ones. This is a substantial improvement
over the huge overestimation that one finds with LDA. For
the two largest molecules that we studied, C12H14 and C14H16,
the extended BJ potential still yields a substantial improve-
ment over LDA, but the difference with respect to the HF
results increases to 7% and 13%, respectively. Thus, the
extended BJ potential in this respect behaves similarly24 to
the Krieger-Li-Iafrate (KLI) approximation.3 In view of
the fact that the decisive ingredient in the BJ potential is a
semilocal quantity,31 this quality, although not perfect, is
without doubt an encouraging result.

A natural question is whether the reasonable polarizabili-
ties of polyacetylene that one finds in the extended BJ
approach can be traced back to a field-counteracting term
like in the case of hydrogen chains and exact-exchange
methods. In order to investigate this question, we have

Figure 2. Sketch of the geometry that the polyacetylene
calculations were based on. See main text for discussion.

Table 1. Longitudinal Static Electric Dipole Polarizabilities
(in a0

3) for Polyacetylene Units As Obtained from LDA, the
Extended Becke-Johnson Functional, Hartree-Fock,38

and Perturbation Theory (MP2) Calculations39

C4H6 C6H8 C8H10 C10H12 C12H14 C14H16

LDA 88 174 296 457 661 915
ext. BJ 70 134 224 338 480 649
HF 75 142 229 332 448 575
MP2 64 112 187 267 357 455
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followed the practice introduced in ref 22 and plotted the
difference between the νxc one finds along the molecular axis
with an external electric field applied and the νxc one finds
without external field. The left half of Figure 3 shows this
potential difference for the extended BJ approach, the right
half for LDA. For the extended BJ potential, we show two
plots. Each one is along a line running parallel to the
molecular axis, which in our case lies in the z direction,
compare Figure 2. The full curve shows the potential
difference one finds at a distance of 5 au above the molecular
plane. This curve looks reassuringly similar to what was
found for the hydrogen chains in ref 32 and to what one
may expect on the basis of earlier exact-exchange calcula-
tions: the exchange-correlation potential slopes against the
external electric field (straight dashed-dotted line).

However, looking at the plot in the immediate vicinity of
the molecular plane (dashed curve, x ) 0.2 au) reveals two
noticeable differences. First, the plot shows considerably
more structure in the region of space where the density is
appreciable. This is understandable, as one is looking at the
potential closer to the nuclear cores, and thus, greater
variations in the density and potential are plausible. However,
the second and striking discrepancy is that the potential
difference does not seem to level off outside the region of
space where the valence electron density is appreciable. On
first sight, this looks like a serious problem since the extended
BJ potential was derived by enforcing that νxc should fall
off to zero. This condition seems to be violated here. In the
following, we explain this observation, showing that it is a
natural consequence of a feature of the BJ construction
which, to the best of our knowledge, had not been revealed
so far.

First, consider a system without an external dipole field,
that is, F ) 0 in eq 2. In ref 32, it was argued that subtracting
the term �(-2εmax) ensures that νx

eBJ(r) falls off to zero as
rf ∞. This argument assumed that the density is dominated
by the highest occupied orbital as r f ∞. This condition

appears to be a very natural one and is fulfilled almost
everywhere in spacesbut not necessarily on nodal surfaces
of the highest-occupied Kohn-Sham orbital. Therefore, the
extended BJ expression can go to a nonvanishing asymptotic
constant on nodal surfaces of the highest-occupied Kohn-
Sham orbital that extend to infinity. We have checked this
explicitly for the example of the Carbon atom and indeed
find that the extended BJ expression goes to a nonvanishing
constant on the nodal line. Although this feature may appear
spurious on first sight, it is in fact a good one because it is
shared by the exact Kohn-Sham exchange potential! The
latter is also known to exhibit nonvanishing asymptotic
constants on nodal surfaces of the highest occupied orbital.41,42

The surprising asymptotics seen for the potential difference
at x ) 0.2 au in Figure 3 have a similar origin. In ref 32, the
term -Fz/�(-2εmax), compare eq 2, was introduced to
enforce the condition that νx falls off to 0 asymptotically
also for a system in an external dipole field. The derivation
was based on the argument that asymptotically, the density
is dominated by the highest occupied orbital. However, the
polyacetylene segments which we study here have a highest
occupied orbital for which the molecular plane is a nodal
surface. Thus, similar to the no-field case discussed in the
previous paragraph, the field-counteracting term involving
the highest occupied eigenvalue will enforce the proper
boundary condition νxc(r f ∞) f 0 everywhere except for
points lying on nodal surfaces of the highest occupied orbital
extending to infinity. When one is not exactly on but quite
close to a nodal surface, νxc will fall off to 0 eventually.
However, the closer one is to the nodal surface, the farther
away from the molecule one has to go in order to see this
falloff. In practical calculations, this region can be so far
out that it is not on the numerical grid. This is the explanation
for the surprising behavior of the x ) 0.2 au curve in the
left half of Figure 3.

Finally, we address a technical question. Our real-space
grid technique requires us to use pseudopotentials to

Figure 3. The difference between the exchange-correlation potentials with and without an externally applied electric field for
C8H10 (in atomic units). The molecule lies in the (y,z) plane. Left half: The full curve shows the νxc difference along the line (x )
5, y ) 0, z). The dashed curve shows the νxc difference along the line (x ) 0.2, y ) 0, z), which is the z line closest to the
molecular plane that lies exactly on our numerical grid. The straight dashed-dotted line indicates the external electric field.
Note that the extended BJ potential counteracts the external field, as it should. Also note that the asymptotic behavior of the BJ
νxc difference depends on the distance to the molecular plane. Right half: The same difference shown for LDA along the line (x
) 0.2, y ) 0, z). Note that the overall trend of LDA is with the external field.
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eliminate the nuclear singularity. Therefore, one may ask
how far this influences the results for the polarizability. For
the hydrogen atom, the pseudopotential does not model core
electrons but simply “smoothes” the nuclear divergence.
Thus, the pseudopotential approximation is particularly
harmless for H, and we have found that it makes practically
no difference for the polarizability calculation whether one
uses a norm-conserving pseudopotential43 or a local one.44

But even for carbon, the influence of the pseudopotential on
the polarizability is small. Switching from a standard LDA
norm-conserving pseudopotential43 to a self-consistently
constructed exact-exchange pseudopotential45 has a small but
visible influence on the plots in Figure 3 due to the changed
eigenvalues, but changes in the polarizability are less than
1%, that is, on a scale that is irrelevant for the purposes of
our work.46

3. The Becke-Johnson Expression and the
Exchange Virial Relation

Having seen that the extended BJ approach may offer a
chance to solve the static charge-transfer problem on the basis
of only semilocal functional ingredients, it is a natural next
step to investigate how the BJ approach can be turned into
a generally usable density functional. To this end, one needs
to find an energy functional corresponding to the extended
BJ potential.

One possible way of defining an energy functional
corresponding to a given exchange potential νx is to employ
the Levy-Perdew exchange virial relation33

In the case that νx(r) is a functional derivative, the virial
relation will yield the correct value of the energy functional
of which νx(r) is the functional derivative. The problem is,
however, that eq 3 will also yield some energy value if νx(r)
is not a functional derivative. Whether that value has physical
meaning is not clear.

In the context of polarizability calculations, a simple test
of Ex-νx correspondence is given by comparing the polar-
izability one obtains from the first derivative of the dipole
moment (as described above) to the one obtained from the
second derivative of the energy with respect to the applied
field. The former is the value which directly reflects the
potential and is thus the right one to look at when investigat-
ing potential approximations. The latter reflects the energy
expression. When the employed potential is the one that
minimizes the employed energy expression, the two values
one obtains for R should match. In this case, discrepancies
are only an indication for possible limitations of the
numerical quality of the calculation. However, if the rigorous
connection between energy functional and potential is
severed, this inconsistency manifests in noticeable differences
between the results obtained by the two ways of calculating
the polarizability. This has previously been discussed and
tested36 for the KLI approximation3 to the exchange-only
OEP. There, the polarizabilities obtained from µ and E
differed noticeably, although the KLI exchange ground-state
energy is typically very close to the OEP exchange energy.

Performing this test for whether using the virial expression
directly can be a reasonable way of defining an energy
functional corresponding to the BJ potential, we have
calculated the polarizabilities also from the energy. With
respect to polarizabilities obtained from the dipole moment
reported in Table 1, we find pronounced differences. They
are reported in Table 2. The comparison with LDA, also
given in Table 2, shows that this is not a problem of
numerical accuracy. This finding is in line with calculations
that reported considerable discrepancies for virial energies.49

Following the above logic, we have to conclude that the
extended BJ potential is not a functional derivative. This
seems highly plausible in view of the conjecture that the
Slater potential is not a functional derivative47 and that quite
generally it is a nontrivial requirement that a given function
be a functional derivative.48 Therefore, simply using the virial
expression with the BJ potential is not a rigorous way of
defining a consistent energy-potential pair.

One might adopt an alternative point of view and look at
the BJ potential in a way similar to the one adopted for the
KLI and other8 approximate potential expressions. In this
way of thinking, the proper energy expression is the Fock
exchange energy, and the BJ potential is an approximation
to the exchange-only OEP. However, trying to “discuss
away” the problem of energy-potential consistency in this
manner in our opinion is not a long-term solution either.
Ultimately, the extended BJ approach should show its true
strengths and capabilities in time-dependent DFT, because
a time-dependent extension of the BJ approach (or some
other semilocal construction sharing its main features) may
solve the problem of long-range charge-transfer excitations
in a computationally easy way. But without being a proper
functional derivative, the potential most likely will suffer
from the same problems that were observed for, for example,
the time-dependent KLI potential.50

One possible way of obtaining a consistent Ex-νx pair
having the important features of the BJ expression is to use
eq 3 in a different way. One may take the point of view that
plugging the BJ expression into the right-hand side of eq 3
defines an energy functional. The potential corresponding
to this energy expression must then be obtained by taking
the functional derivative of this energy with respect to the
density. One may hope that, in this way, one can derive a
potential that is “as close as possible” to the BJ potential,
but at the same time being a functional derivative. Having
tried this approach in practice does not make it look very
promising, though. Considering just one part of the BJ
potential for simplicity, for example, the Slater potential for
a system with N occupied orbitals

Ex ) -∫ n(r)r · ∇ νx(r) d3r (3)

Table 2. Differences in Percentage between the
Longitudinal Polarizabilities for Polyacetylene Units as
Obtained by Taking the Second Derivative with Respect to
the Field of the Energy and the First Derivative of the
Dipole Momenta

C4H6 C6H8 C8H10 C10H12 C12H14 C14H16

LDA <1 <1 <1 <1 1 2
ext. BJ 42 51 56 64 85 101

a cf. Table 1. For the extended BJ functional, the virial energy of
eq 3 was used.
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plugging this into the right-hand side of eq 3 and taking the
functional derivative δ/δn after some lengthy algebra leads
to the potential

with νKS(r) denoting the Kohn-Sham potential and �KS
-1

the inverse of the Kohn-Sham response function. This is
not a pleasant equation. Similarly, having to take the
functional derivative of νx

corr with respect to the density
quickly becomes involved as the functional chain rule must
be invoked to calculate the functional derivatives of the
Kohn-Sham orbitals. Thus, this approach, as far as we can
tell, leads to expressions that are more complicated than the
exact exchange OEP equation itself. The beauty of the BJ
expression, which to a considerable extent lies in its
simplicity, is thus lost.

From a pragmatic point of view and for certain applica-
tions, it may be possible to define an energy via one of the
routes discussed above. But one has to face the fact that
presently there is no rigorous or conceptually satisfying way
of defining an energy corresponding to the BJ potential. On
the other hand, being able to construct an easy-to-evaluate
semilocal functional that will capture the essence of the
charge-transfer physics is such a tempting idea that we
believe it is a worthwhile task to continue working on.

In this manuscript, we demonstrated the capabilities of
such “potential functionals” by showing that the extended
BJ potential leads to much better polarizabilities of poly-
acetylene molecules than typical semilocal functionals. We
further showed that there is a yet closer similarity between
the BJ expression and the exact exchange potential than
previously discussed, as both lead to nonvanishing asymptotic
constants on nodal surfaces of the highest occupied orbital
that extend to infinity. We demonstrated that, for the systems
studied here, the BJ potential can be used in combination
with pseudopotentials without a relevant loss of accuracy.
Finally, we critically discussed ways of how a consistent
energy- and potential-functional pair may be found.

Future work will focus on three aspects. First, it appears
quite feasible to eliminate the Slater potential. This was

already discussed by Becke and Johnson in their original
work,31 and this step will not only make the functional
computationally yet more attractive, it will also ameliorate
the problem of making the potential a functional derivative.
Second, it may be possible to replace νx

corr by a different
orbital expression,51 or possibly even by an expression which
does not depend on the Kohn-Sham orbitals explictly.
Again, this will not only improve computational efficiency
but may also allow for writing the potential in such a way
that eq 3 can be used for a proper “functional integration”.
Third, extending the BJ approach to the time domain51 may
be a way of constructing an exchange-correlation functional
that can handle dynamical long-range charge transfer. Thus,
semilocal functionals may still offer greater possibilities than
what one typically expects from them.
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Abstract: The application of conventional GGA and meta-GGA density functionals to van der
Waals interactions is fraught with difficulties. Conventional functionals do not contain the physics
of the dispersion interaction. To make matters worse, the exchange part alone can yield anything
from severe overbinding to severe over-repulsion depending on the choice of functional. We
have assessed a variety of exchange GGAs for their ability to reproduce exact Hartree-Fock
repulsion energies in rare-gas systems, and we find that PW86 [Phys. Rev. B 1986, 33, 8800]
performs remarkably well. The addition of a dynamical correlation GGA and the nonempirical
dispersion model of Becke and Johnson [J. Chem. Phys. 2007, 127, 154108] to PW86 gives a
simple GGA plus dispersion theory yielding excellent rare-gas interaction curves for pairs involving
He through Kr, with only two adjustable parameters for damping of the dispersion terms.

1. Introduction

Density functional theory (DFT) is a successful and accurate
method for electronic structure calculations of atoms, mol-
ecules, and solids. Its application to soft matter and weakly
bound systems, including intermolecular complexes, bio-
molecules, molecular crystals, and polymers, depends on a
realistic description of van der Waals (vdW) interactions
including the London dispersion force. Dispersion arises from
correlated motions of electrons on well-separated systems
and is an inherently nonlocal electron correlation effect.
Density functionals based on the local density approximation
(LDA) or the semilocal generalized gradient approximation
(GGA) do not account for such long-range correlations and,
consequently, fail to reproduce the attractive R-6 behavior
of the interatomic potential between closed-shell atoms at
large separation R.1

Problems with LDA and GGA functionals in vdW interac-
tions arise not only in the asymptotic region, however. At
the equilibrium separation of typical dispersion-bound van
der Waals complexes, such as rare-gas diatomics or stacked
aromatic rings, there is a weak wave function overlap leading
to considerable Hartree-Fock (HF) repulsion between the
monomers. Lacks and Gordon2 found that LDA and GGA

exchange functionals applied to the helium and neon dimers
give widely varying interaction energies, from too repulsive
(B88)3 to spurious binding (LDA, PW914,5), when compared
to exact Hartree-Fock repulsion.

A DFT treatment of vdW interactions should address both
issues, the erratic behavior of approximate exchange func-
tionals near equilibrium separations, as well as the missing
long-range attraction caused by dispersion.6 Many different
approaches have been used in the literature and only a
superficial overview is given here. For more complete
discussions, see refs 1 and 6-8.

The van der Waals density functional (vdW-DF) approach
of Langreth et al.9,10 uses an approximate nonlocal correlation
functional derived from response theory to account for long-
range dispersion interactions. It is combined with revPBE11

exchange and LDA correlation to give a seamless functional
valid at all interatomic distances. The revPBE GGA was
chosen for exchange as it does not produce artificial binding
in vdW complexes.12,13 The original vdW-DF method
consistently overestimated the separation in vdW complexes,
which was ascribed to the overestimation of Hartree-Fock
repulsion by revPBE.10 The substitution of revPBE by HF
exchange indeed improves the separations and establishes
the correct relative stability of different benzene dimer
conformations but leads to significant overestimation of
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binding energies,14-16 suggesting that the nonlocal correla-
tion part in vdW-DF is not fully compatible with HF
exchange.

Other nonempirical approaches circumvent the problems
associated with approximate exchange functionals by using
a separation of the electron-electron interaction into a long-
range part treated exactly and a short-range part described
by an exchange GGA. The method of Hirao et al.17,18

combines long-range HF with short-range B883 exchange.
Short-range correlation is treated by the OP19 functional,
while the long-range correlation comes from the nonlocal
Andersson-Langreth-Lundqvist20 (ALL) vdW functional
multiplied by a damping function depending on empirical
atomic radii. The range-separated hybrid (RSH+MP2)
method of Ángyán et al.6,21 employs the LDA for short-
range exchange and correlation, HF for long-range exchange,
and second-order perturbation theory (MP2) to account for
the dispersion interaction in a seamless manner.

The three methods mentioned so far have in common that
long-range dispersion is treated by explicitly nonlocal
correlation functionals of the vdW-DF, ALL, or MP2 type.
These are inherently more computationally demanding than
the (semi)local functionals of conventional DFT. To retain
the computational efficiency of DFT, empirical disper-
sion terms of the form -C6/R6 have been added to conven-
tional density functionals to give methods collectively known
as DFT-D.8,22-24 The C6 coefficients are empirical param-
eters derived from fits, atomic calculations, or approximate
formulas. In addition, the dispersion term must be attenuated
at small separations R by damping functions depending on
empirical vdW radii. Some DFT-D methods use additional
global scaling factors that depend on the underlying density
functional to account for differences in the description of
Hartree-Fock repulsion8,24 and may include reparametriza-
tion.24

Another approach involves modifying standard DFT
functionals to give a good description of van der Waals
interactions without an explicit dispersion or nonlocal
correlation correction. This is done by refitting the exchange-
correlation functional while including van der Waals com-
plexes in the training set.25-29 An exception is the
Wilson-Levy correlation functional30 combined with HF
exchange, which gives good results for various vdW
complexes near their equilibrium distances without adjust-
ment, although lacking theoretical justification.31

In summary, previous attempts to make DFT applicable
to van der Waals complexes either (a) include explicitly
nonlocal correlation which is computationally demanding,
(b) introduce highly empirical dispersion corrections, or (c)
refit functionals that are fundamentally unable to account
for dispersion interactions to van der Waals data nevertheless.

The nonempirical dispersion model of Becke and
Johnson32-37 has previously been used in conjunction with
exact Hartree-Fock exchange38,39 to give an accurate
treatment of vdW interactions. In this work, we replace
Hartree-Fock exchange with an exchange GGA that well
reproduces Hartree-Fock repulsion in rare-gas diatomics.
This functional is then combined with various correlation
GGAs and the Becke-Johnson dispersion model. The

method is calibrated on all pair interactions between the
atoms He, Ne, Ar, and Kr and yields excellent equilibrium
separations, binding energies, and interatomic potential
energy curves.

2. Hartree-Fock Repulsion in Rare-Gas
Diatomics

Hartree-Fock theory gives (in the complete basis set limit)
repulsive potentials for rare-gas diatomics. Exchange func-
tionals should accurately reproduce this Hartree-Fock repul-
sion if DFT is to be applied to vdW interactions.

The only systematic benchmark study of the ability of
exchange functionals to reproduce Hartree-Fock repulsion
in rare-gas diatomics is by Lacks and Gordon.2 They showed
that most exchange functionals give large errors, over 100%,
for the exchange-only interaction energy in He2 and Ne2,
even though total atomic exchange energies are within 1%.
Some functionals such as B88 are too repulsive, others such
as PW91 or the LDA give an artifactual attractiVe interaction.

The broad range of exchange-only interaction energies
obtained from approximate functionals is illustrated in Figure
1 for the neon dimer. The interaction energy of two Ne atoms
is plotted as a function of interatomic separation for exact
HF exchange, the exchange-only LDA (xLDA), and the
GGA exchange functionals B86,40 B86b,41 B88,3 PW86,42

PW91,4,5 PBE,43,44 and revPBE.11 The HF and xLDA curves
are self-consistent. The GGA curves are evaluated using the
xLDA orbitals (i.e., post-xLDA). All calculations are per-
formed with the fully numerical, basis-set-free Numol
program of Becke and Dickson.45,46

Van der Waals interaction curves are extremely sensitive
to the choice of GGA exchange functional.47-50 We obtain
in Figure 1 everything from massive “binding” of ∼500 µH
(xLDA and PW91) to repulsion of ∼800 µH (B88) compared
to the exact Hartree-Fock repulsion energy of ∼100 µH at
the experimental equilibrium separation of Ne2.

51 The curves
can be ordered according to the behavior of the exchange
GGA at large reduced density gradient �

GGA exchange functionals can be expressed in the form

where eX
LDA is the LDA exchange energy density, and F[�(r)]

is the “exchange enhancement factor”. Standard exchange
GGAs, such as those in Figure 1, all have similar behavior
for small �. However, they behave very differently at large
� (see Figure 1 in ref 47), corresponding in real space to the
region very far from nuclei (i.e., the asymptotic tail density).
The functionals displaying artifactual binding in Figure 1
are those with relatively small enhancement factor at large
�; those being overly repulsive have relatively large enhance-
ment factor at large �. Inspection of Figure 1 suggests that
PW86 best reproduces the exact Hartree-Fock repulsion
curve in Ne2, especially near the equilibrium separation.

�(r) ) |∇ p(r)|

p(r)4/3
(1)

EX
GGA ) ∫ eX

LDA(r)F[�(r)] (2)
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Lacks and Gordon concluded that PW86 and B86b best
reproduced Hartree-Fock repulsion in He2 and Ne2 on the
basis of post-HF calculations with the xLDA, PW86, PW91,
B86, B86b, B88, and DK8752 functionals.

We have extended their assessment to all pair interactions
between the rare-gas atoms He, Ne, Ar, and Kr, using both

Hartree-Fock and xLDA orbitals, and including the ex-
change functionals PBE43,44 and revPBE.11 Table 1 shows
exact Hartree-Fock repulsion energies ∆EHF computed with
Numol at the reference equilibrium separations of Tang and
Toennies.51 Table 2 gives the mean percent error (MPE),
mean absolute percent error (MAPE) and maximum absolute
percent error (MaxAPE) of GGA exchange functionals with
respect to ∆EHF, evaluated using Hartree-Fock orbitals (i.e.,
post-HF). In agreement with Lacks and Gordon, B86b and
PW86 best reproduce Hartree-Fock repulsion. With xLDA
orbitals however, we find that PW86 is superior to all other
functionals tested (Table 3). Self-consistent GGA calculations
are currently not possible with Numol.

We then used Gaussian0353 to obtain fully self-consistent
interaction energies with the PW86 functional using the
keyword iop(3/74)800). A numerical integration grid of 400
radial shells and 590 angular points per atom was used, the
SCF convergence criterion was set to 10-8 with full integral
accuracyduring theSCFcycles.Weusedtheaug-cc-pV5Z54-57

Figure 1. Hartree-Fock repulsion, xLDA, and exchange-only GGA interaction energies of Ne2.

Table 1. Hartree-Fock Repulsion Energies (µH) for
Rare-Gas Diatomics at Tang-Toennies Reference
Equilibrium Separations rref

TT (Å)

rref
TT51 ∆EHF

He2 2.97 28
He-Ne 3.05 47
He-Ar 3.50 85
He-Kr 3.69 103
Ne2 3.09 96
Ne-Ar 3.48 190
Ne-Kr 3.65 227
Ar2 3.76 435
Ar-Kr 3.89 538
Kr2 4.01 674

Table 2. Hartree-Fock Repulsion Energy Errors (%) of
Exchange GGAs at Reference Equilibrium Separations rref

TT

(Post-HF)

B86 B86b B88 PW86 PW91 PBE revPBE

MPE -76 32 374 34 -337 -106 2
MAPE 85 34 374 34 337 106 60
MaxAPE 239 57 679 53 832 259 153

Table 3. Hartree-Fock Repulsion Energy Errors (%) of
Exchange GGAs at Reference Equilibrium Separations rref

TT

(Post-xLDA)

B86 B86b B88 PW86 PW91 PBE revPBE

MPE -96 53 542 20 -418 -158 51
MAPE 111 53 542 22 418 158 75
MaxAPE 309 72 1126 82 1133 381 124

Table 4. Exact (Hartree-Fock) and PW86 Repulsion
Energies (µH) for Rare-Gas Diatomics at Equilibrium
Separations. Worst Cases (MaxAPE) in Bold

∆EHF SCF,
numerical

∆EPW86

post-xLDA,
numerical

∆EPW86 SCF,
aug-cc-pV5Z

(aug-cc-pV6Z, aug-pc-4) CP

He2 28 51 29 (30, 30)
He-Ne 47 64 52 (50, 51)
He-Ar 85 107 87 (89, 88)
He-Kr 103 116 98
Ne2 96 104 117 (113, 115
Ne-Ar 190 189 198 (197, 198)
Ne-Kr 227 201 219
Ar2 435 505 503 (507, 512)
Ar-Kr 538 611 626
Kr2 674 764 796
MPE 20 8 (6, 6)
MAPE 22 10 (6, 6)
MaxAPE 82 22 (18, 20)

Rare-Gas Diatomics J. Chem. Theory Comput., Vol. 5, No. 4, 2009 721



basis set throughout as well as aug-cc-pV6Z58,59 and aug-
pc-460 for the subset of systems containing only He, Ne, and
Ar atoms because these basis sets are not available for Kr.
Basis sets were obtained from the EMSL basis-set library.61,62

The counterpoise (CP)63 procedure was used to correct for
basis set superposition error, which was found to be up to
5% of ∆EPW86 for He-Ne and Ne2 with the aug-cc-pV5Z
basis set. The resulting PW86/aug-cc-pV5Z-CP interaction
energies are given in Table 4, with results for aug-cc-pV6Z
and aug-pc-4 in parentheses. The self-consistent PW86
interaction energies are even more accurate than the post-
HF and post-xLDA results. In particular, the overestimation
of Hartree-Fock repulsion in He2 is significantly improved.

PW86 is a remarkably accurate exchange GGA for
reproducing Hartree-Fock repulsion energies in rare-gas
diatomics. Compared to more sophisticated approaches to
correct for deficiencies in approximate exchange functionals
when applied to van der Waals complexes, such as the use
of long-range Hartree-Fock exchange6,17,18,21 or exact-
exchange-based functionals themselves,31,36,37 it has the
obvious benefit of computational efficiency.

PW86 is also appealing because of its simple functional
form and the absence of any empirical parameters.42 As with
any typical GGA, it gives atomic exchange energies accurate
to within 1%,2,42 and is therefore of similar utility for general
quantum chemistry as the more popular functionals B88,
PW91, or PBE (see section 5).

3. Dynamical Correlation and Dispersion
Corrections

Having found a suitable exchange GGA for use with van
der Waals interactions, we now consider the correlation
functional. Typical semilocal correlation functionals account
for short-range dynamical correlation arising from interelec-
tronic cusp conditions.64 Semilocal functionals are inherently
unable to describe the long-range electron correlations
between nonoVerlapping fragments that give rise to the
asymptotic dispersion interaction.1,6,12,65 The application of
GGAs to van der Waals interactions therefore requires an
explicit long-range dispersion correction. Empirical correc-
tions have been used successfully but suffer from limited
applicability and transferability.7,8,22-24,66-68 The recent
dispersion model of Becke and Johnson,35 however, is
nonempirical.

The Becke-Johnson model employs the dipole moment
of an electron and its associated exchange hole (as an
approximation to the full exchange-correlation hole) as the

source of position-dependent multipole moments leading to
the dispersion interaction.32,35,69 System-dependent inter-
atomic dispersion coefficients C6,ij, C8,ij, and C10,ij are thus
obtained from the exchange-hole dipole moment, effective
atomic polarizabilities, and second-order perturbation theory.
The dispersion model has two variants, an exact-exchange
version where the dipole moment of the exchange hole and
its reference electron is calculated using occupied orbitals
(XX), and a density-functional version based on the
Becke-Roussel model of the exchange hole (BR).70

The asymptotic dispersion terms need to be damped at
small separations R. The Becke-Johnson scheme37 uses

where the sum is over all pairs of atoms i and j, and the
effective interatomic van der Waals separation RvdW,ij is
related to a “critical” interatomic separation Rc,ij by

The critical separation Rc,ij is given by the average value of
the ratios (C8,ij/C6,ij)1/2, (C10,ij/C6,ij)1/4, and (C10,ij/C8,ij)1/2, and
corresponds to the separation where the three asymptotic
dispersion terms are approximately equal in magnitude

This is where the asymptotic series expansion is expected
to break down. The two coefficients a1 and a2 in eq 4 are
empirical parameters assumed to be universal and determined
as described below.

We combine the PW86 exchange functional with various
GGA functionals for dynamical correlation EC

GGA and the
Becke-Johnson dispersion model as follows:

We use the standard correlation GGAs P86,71,72 PW91,4,5

and PBE.43,44 All following calculations were performed with
theNumolprogramusingLDAorbitals and thePerdew-Wang
uniform-gas exchange-correlation parametrization73 (i.e.,
post-xcLDA). We used numerical grids of 302 angular points
per atom, and 80, 120, 160, and 200 radial shells for the
He, Ne, Ar, and Kr atoms, respectively.

The coefficients a1 and a2 in eq 4 were determined by
minimizing the root-mean-square percent error (RMSPE) for
the interaction energies of the ten rare-gas pairs involving
He, Ne, Ar, and Kr with respect to reference binding energies
at the experimental equilibrium separations of Table 1. We
chose the rare-gas reference data of Tang and Toennies
(TT)51 following the suggestion by Gerber and Ángyán.6

Results of our fits are shown in Table 5. The exact-
exchange version (XX) of the dispersion model gives
somewhat better fits than the density-functional version (BR)
for all correlation GGAs. The PW91 and PBE correlation

Table 5. Best-Fit Dispersion Damping Parameters and
Interaction-Energy RMS Percent Errors for Various
Combinations of Correlation GGA and Becke-Johnson
Dispersion

a1 a2/Å RMSPE

P86-XX 1.80 -1.16 20.5
P86-BR 1.54 -0.53 28.7
PW91-XX 0.96 0.87 8.1
PW91-BR 0.76 1.35 12.5
PBE-XX 0.95 0.87 7.8
PBE-BR 0.75 1.25 12.0

Edisp ) -1
2 ∑

i*j
( C6,ij

RvdW,ij
6 + Rij

6
+

C8,ij

RvdW,ij
8 + Rij

8
+

C10,ij

RvdW,ij
10 + Rij

10) (3)

RvdW,ij ) a1Rc,ij + a2 (4)

C6,ij

Rij
6

≈
C8,ij

Rij
8

≈
C10,ij

Rij
10

(5)

EXC ) EX
PW86 + EC

GGA + Edisp
BJ (6)
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functionals give almost identical results, not surprising given
that PBE generally behaves very much like PW91.43 P86,
however, yields errors more than twice as large compared
to PW91 and PBE. We therefore omit P86 from further
consideration.

4. Binding Energy Curves

We have calculated binding energy curves using PW86x and
PBEc and the dispersion damping parameters in Table 5.
These are shown for the homonuclear dimers of He, Ne, Ar,
and Kr in Figures 2-5, together with the TT reference
potentials. The PW91c curves are essentially identical to the

PBEc binding energy curves. For clarity, we also omit the
curves for the BR version of the Becke-Johnson dispersion
model. They are qualitatively similar to the XX-based curves
and only slightly inferior. PW86xPBEc+disp gives binding
energy curves that closely reproduce the reference curves.
The largest deviations are observed for the heavier diatomics
Ne-Kr, Ar-Ar, Ar-Kr, and Kr-Kr.

Equilibrium separations were found by potential-energy
scans in steps of 0.01 Å and are shown in Table 6, together
with the TT reference values (Å). Our results are reported
as reduced quantities, defined as equilibrium separation
divided by the reference value. The methods using either

Figure 2. He2 binding energy curves.

Figure 3. Ne2 binding energy curves.
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PW91 or PBE dynamical correlation are very accurate, with
mean absolute and maximum errors of about 1% and 2%,
respectively.

Binding energies obtained at the equilibrium separations
are given in Table 7 as reduced quantities, along with the
TT reference values (µH). For comparison, we also include
CCSD(T),6 DFT+CCSD(T),74 and RSH+MP26 results. We
obtain excellent binding energies with the dispersion-
corrected GGA functionals, surpassing even CCSD(T) in
accuracy, though our results are admittedly fits to the
reference data.

5. Conclusions

Standard semilocal density functionals without an explicitly
nonlocal correlation part or an asymptotic dispersion cor-
rection are unable to describe van der Waals interactions.
Not only do they miss the attractive R-6 behavior at long-
range but those that give vdW binding at shorter separations

do so as a result of artifactual binding in their exchange parts.
We have examined a variety of exchange GGAs for their
ability to reproduce exact Hartree-Fock repulsion in rare-
gas diatomics. While the selected functionals gave widely
differing results, the PW86 exchange functional was found
to be the most accurate.

PW86x was then combined with dynamical correlation
functionals P86, PW91, and PBE and the nonempirical
dispersion model of Becke and Johnson to give binding
energy curves for the diatomics of the rare-gas atoms He,
Ne, Ar, and Kr. The P86 correlation functional yielded poor
results in these systems. The PW91 and PBE correlation
functionals gave binding energy curves of excellent quality.
Our scheme contains only two empirical parameters in the
dispersion damping function. In future work, the method will
be tested on vdW complexes beyond rare-gas diatomics.

We expect that functionals like eq 6, containing PW86
for exchange, will have wide applicability beyond van der
Waals systems. PW86x has not been extensively bench-
marked in the past but should perform similar to other
exchange GGAs. The results of atomization-energy calcula-
tions on the 222 molecules of the G3/99 benchmark set of
Curtiss et al.75 are presented in Table 8. The computations
are done post-xcLDA with the Numol program. We compare
mean errors (ME), mean absolute errors (MAE), and
maximum absolute errors (MaxAE) for the functional

using the exchange GGAs B86, B86b, B88, PW86, and PBE.
We use the exact-exchange version of the Becke-Johnson
dispersion model (XX) with the optimized damping param-
eters from Table 5, a1 ) 0.95 and a2 ) 0.87 Å.

All exchange GGAs perform similarly with the exception
of PBE, which gives noticeably larger atomization energy

Figure 4. Ar2 binding energy curves.

Table 6. Reference Equilibrium Separations (Å) and
Calculated Reduced Equilibrium Separations for Various
Combinations of Correlation GGA and Becke-Johnson
Dispersion

reference
(TT)51 PW91-XX PW91-BR PBE-XX PBE-BR

He2 2.97 1.009 1.019 1.012 1.022
He-Ne 3.05 0.994 0.994 0.997 0.997
He-Ar 3.50 0.995 0.998 0.998 1.001
He-Kr 3.69 0.988 0.991 0.994 0.996
Ne2 3.09 1.006 1.000 1.010 1.003
Ne-Ar 3.48 1.007 0.998 1.010 1.004
Ne-Kr 3.65 0.993 0.990 0.996 0.993
Ar2 3.76 1.019 1.014 1.022 1.017
Ar-Kr 3.89 1.018 1.010 1.018 1.013
Kr2 4.01 1.012 1.007 1.015 1.010
MPE 0.4 0.2 0.7 0.6
MAPE 1.0 0.8 1.0 0.8
MaxAPE 1.9 1.9 2.2 2.2

EXC ) EX
GGA + EC

PBE + Edisp
BJ (7)
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errors compared to the other functionals. These results are
consistent with previous atomization energy benchmarks for
plain GGAs without a dispersion correction.76 We conclude
that PW86 exchange, combined with a dynamical correlation
GGA and the Becke-Johnson dispersion model, yields
excellent results for vdW interactions in rare-gas diatomics,
and its performance for atomization energies is comparable
to other standard GGAs.
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(8) Jurecka, P.; Cerný, J.; Hobza, P.; Salahub, D. R. J. Comput.
Chem. 2007, 28, 555.

(9) Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.;
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B86 6.8 9.2 37.4
B86b 11.1 12.2 50.5
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Abstract: We present in detail the recently derived ab initio molecular dynamics (AIMD)
formalism [Alonso et al. Phys. Rev. Lett. 2008, 101, 096403], which due to its numerical
properties, is ideal for simulating the dynamics of systems containing thousands of atoms. A
major drawback of traditional AIMD methods is the necessity to enforce the orthogonalization
of the wave functions, which can become the bottleneck for very large systems. Alternatively,
one can handle the electron-ion dynamics within the Ehrenfest scheme where no explicit
orthogonalization is necessary, however the time step is too small for practical applications.
Here we preserve the desirable properties of Ehrenfest in a new scheme that allows for a
considerable increase of the time step while keeping the system close to the Born-Oppenheimer
surface. We show that the automatically enforced orthogonalization is of fundamental importance
for large systems because not only it improves the scaling of the approach with the system size
but it also allows for an additional very efficient parallelization level. In this work, we provide the
formal details of the new method, describe its implementation, and present some applications
to some test systems. Comparisons with the widely used Car-Parrinello molecular dynamics
method are made, showing that the new approach is advantageous above a certain number of
atoms in the system. The method is not tied to a particular wave function representation, making
it suitable for inclusion in any AIMD software package.

1. Introduction

In the last decades, the concept of theoretical atomistic
simulations of complex structures in different fields of

research (from materials science, in general, to biology) has
emerged as a third discipline between theory and experiment.
Computational science is now an essential adjunct to
laboratory experiments; it provides high-resolution simula-
tions that can guide research and serve as tools for discovery.
Today, computer simulations unifying electronic structure
and ion dynamics have come of age, although important
challenges remain to be solved. This “virtual lab” can provide
valuable information about complex materials with refined
resolution in space and time, allowing researchers to gain
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understanding about the microscopic and physical origins
of materials behavior: from low-dimensional nanostructures
to geology, atmospheric science, renewable energy, (nano)-
electronic devices, (supra)molecular chemistry, etc. Since the
numerical approaches to handle those problems require
“large-scale calculations” the success of this avenue of
research was only possible due to the development of high-
performance computers.1 The present work addresses our
recent developments in the field of first-principles molecular
dynamics simulations. Before getting into the details, we
would like to frame properly the work from a historical
perspective.

Molecular dynamics (MD)2 consists of “following the
dynamics of a system of atoms or molecules governed by
some interaction potential; in order to do so, one could at
any instant calculate the force on each particle by considering
the influence of each of its neighbors. The trajectories could
then be traced by allowing the particles to move under a
constant force for a short-time interval and then by recal-
culating a new force to apply for the next short-time interval,
and so on.” This description was given in 1959 by Alder
and Wainwright3 in one the first reports of such a computer-
aided calculation,4 though the first MD simulation was
probably done by Fermi et al.5 for a one-dimensional model
solid. We can still use this description to broadly define the
scope of MD, although many variants and ground-breaking
developments have appeared during these fifty years, ad-
dressing mainly two key issues: the limitation in the number
of particles and the time ranges that can be addressed, and
the accuracy of the interaction potential.

The first issue was already properly stated by Alder and
Wainwright: “The essential limitations of the method are due
to the relatively small number of particles that can be
handled. The size of the system of molecules is limited by
the memory capacity of the computing machines.” This
statement is not obsolete, although the expression “small
number of particles” has today of course a very different
meaningslinked as it is to the exponentially growing
capacities of computers.

The second issuesthe manner in which the atomic
interaction potential is describedshas also developed sig-
nificantly over the years. Alder and Wainwright used solid
impenetrable spheres in the place of atoms; nowadays, in
the realm of the so-called “classical” MD, one makes use of
force fields: simple mathematical formulas are used to
describe atomic interactions. The expressions are param-
etrized by fitting either to reference first-principles calcula-
tions or experimental data. These models have become
extremely sophisticated and successful, although they are
ultimately bound by a number of limitations. For example,
it is difficult to tackle electronic polarization effects and one
needs to make use of polarizable models, whose transfer-
ability is very questionable but are widely used with success
in many situations. Likewise, the force field models are
constructed assuming a predetermined bond arrangement,
disabling the option of chemical reactionsssome techniques
exist that attempt to overcome this restriction,6 but they are
also difficult to transfer and must be carefully adapted to
each particular system.

The road toward precise, nonempirical interatomic poten-
tials reached its destination when the possibility of perform-
ing ab initio MD (AIMD) was realized.7,8 In this approach,
the potential is not modeled a priori via some parametrized
expression, but rather generated “on the fly” by performing
accurate first-principles electronic structure calculations. The
accuracy of the calculation is therefore limited by the level
of theory used to obtain the electronic structuresalthough
one must not forget that underlying all MD simulations is
the electronic-nuclear separation ansatz and the classical
limit for the nuclei. The use of very accurate first principles
methods for the electrons implies very large computational
times, and therefore, it is not surprising that AIMD was not
really born until density-functional theory (DFT) became
maturessince it provides the necessary balance between
accuracy and computational feasibility.9 Of fundamental
importance was the development of gradient generalized
exchange and correlation functionals, like the ones proposed
by John Perdew,10-12 that can reproduce experimental results
better than the local density approximation.13-15 In fact, the
whole field of AIMD was initiated by Car and Parrinello in
1985,16 in a ground-breaking work that unified DFT and MD
and introduced a very ingenious acceleration scheme based
on fake electronic dynamics. As a consequence, the term
AIMD in most occasions refers exclusively to this technique
proposed by Car and Parrinello. However, it can be
understood in a more general sense, including more pos-
sibilities that have developed thereaftersand in the present
work, we will in fact discuss one of them. The new scheme
proposed below will benefit from all the algorithm develop-
ments and progress being done in the CP framework.

As a matter of fact, the most obvious way to perform
AIMD would be to compute the forces on the nuclei by
performing electronic structure calculations on the ground-
state Born-Oppenheimer potential energy surface. This we
can call ground-state Born-Oppenheimer MD (gsBOMD).
It implies a demanding electronic minimization at each step,
and schemes using time-reversible integrators have been
recently developed.17 The Car-Parrinello (CP) technique is
a scheme that allows to propagate the Kohn-Sham (KS)
orbitals with a fictitious dynamics that nevertheless mimics
gsBOMDsbypassing the need for the expensive minimiza-
tion. This idea has produced an enormous impact, allowing
for successful applications in a surprisingly wide range of
areas (see the special number in ref 18 and references
therein). Still, it implies a substantial cost, and many
interesting potential applications have been frustrated due
to the impossibility of attaining the necessary system size
or simulation time length. There have been several efforts
to refine or redefine the CP scheme in order to enhance its
power: linear scaling methods19 attempt to speed-up in
general any electronic structure calculation; the use of a
localized orbital representation (instead of the much more
common plane-waves utilized by CP practitioners) has also
been proposed;20 recently, Kühne and co-workers21 have
proposed an approach which is based on CP, but which
allows for sizable gains in efficiency. In any case, the cost
associated with the orbital orthonormalization that is required
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in any CP-like procedure is a potential bottleneck that hinders
its application to very large-scale simulations.

Another possible AIMD strategy is Ehrenfest MD, to be
presented in the following section. In this case, the electron-
nuclei separation ansatz and the Wentzel-Kramers-
Brillouin22 (WKB) classical limit are also considered;
however, the electronic subsystem is not assumed to evolve
on only one of the electronic adiabatic statesstypically the
ground-state one. Instead the electrons are allowed to evolve
on an arbitrary wave function that corresponds to a combina-
tions of adiabatic states. As a drawback, the time-step
required for a simulation in this scheme is determined by
the maximum electronic frequencies, which means about 3
orders of magnitude less than the time step required to follow
the nuclei in a BOMD.

If one wants to do Ehrenfest MD, the traditional “ground-
state” DFT is not enough, and one must rely on time-
dependent density functional theory (TDDFT).23 Coupling
TDDFT to Ehrenfest MD provides with an orthogonalization-
free alternative to CP AIMDsplus it allows for excited-states
AIMD. If the system is such that the gap between the ground-
state and the excited states is large, Ehrenfest MD tends to
gsBOMD. The advantage provided by the lack of need of
orthogonalization is unfortunately offset by the smallness
of the required time step.7,13 Recently, some of the authors
of the present article have presented a formalism for large-
scale AIMD based on Ehrenfest and TDDFT, that borrows
some of the ideas of CP in order to increase this time step
and make TDDFT-Ehrenfest competitive with CP.24

This article intends to provide a more detailed description
of this proposed methodology: we start, in section 2 by
revisiting the mathematical route that leads from the full
many-particle electronic and nuclear Schrödinger equation
to the Ehrenfest MD model. Next, we clear up some
confusions sometimes found in the literature related to the
application of the Hellmann-Feynman theorem, and we
discuss the integration of Ehrenfest dynamics in the TDDFT
framework. Section 4 presents in detail the aforementioned
novel formalism, along with a discussion regarding sym-
metries and conservation laws. Sections 5 and 6 are dedicated
to the numerical technicalities, including several application
examples.

2. Ehrenfest Dynamics: Fundaments and
Implications for First Principles Simulations
The starting point is the time-dependent Schrödinger equation
(atomic units25 are used throughout this paper) for a molecular
system described by the wave function Φ({xj}j)1

n ,{XJ}J)1
N , t):

where the dot indicates the time derivative and we denote as
rj, σj, and RJ, ΣJ the Euclidean coordinates and the spin of the
jth electron and the Jth nuclei, respectively, with j ) 1,..., n,
and J ) 1,..., N. We also define xj :) (rj,σj) and XJ :) (RJ,ΣJ),
and we shall denote the whole sets r :) {rj}j)1

n , R :) {RJ}J)1
N ,

x :){xj}j)1
n , and X :){XJ}J)1

N , using single letters in order to
simplify the expressions.

The nonrelativistic molecular Hamiltonian operator is
defined as

where all sums must be understood as running over the whole
natural set for each index, unless otherwise specified. MJ is
the mass of the Jth nucleus in units of the electron mass,
and ZJ is the charge of the Jth nucleus in units of (minus)
the electron charge. Also note that we have defined the
nuclei-electrons potential V̂n-e(r,R) and the electronic Hamil-
tonian Ĥe(r,R) operators.

The initial conditions of eq 1 are given by

and we assume that Φ(x,X,t) vanishes at infinity ∀ t.
Now, in order to derive the quantum-classical molecular

dynamics (QCMD) known as Ehrenfest molecular dynamics
from the above setup, one starts with a separation ansatz for
the wave function Φ(x,X,t) between the electrons and the
nuclei,26 leading to the so-called time-dependent self-
consistent-field (TDSCF) equations.7,27 The next step is to
approximate the nuclei as classical point particles via short
wave asymptotics or WKB approximation.7,22,27 The result-
ant Ehrenfest MD scheme is contained in the following
system of coupled differential equations:27

where ψ(x,t) is the wave function of the electrons, RJ(t) are
the nuclear trajectories, and we have used dx to indicate
integration over all spatial electronic coordinates and sum-
mation over all electronic spin degrees of freedom. Also, a
semicolon has been used to separate the r from the R(t) in
the electronic Hamiltonian, in order to stress that only the
latter are actual time-dependent degrees of freedom the
system.

The initial conditions in Ehrenfest MD are given by

and we assume that ψ(x,t) vanishes at infinity ∀ t.
Also note that, since in this scheme {RJ,ψ} is a set of

independent variables, we can rewrite eqs 4b as

iΦ̇({xj}j)1
n , {XJ}J)1

N , t) ) ĤΦ({xj}j)1
n , {XJ}J)1

N , t) (1)

Ĥ :) -∑
J

1
2MJ

∇ J
2 - ∑

j

1
2

∇ j
2 + ∑

J<K

ZJZK

|RJ - RK|
+

∑
j<k

1
|rj - rk|

- ∑
J,j

ZJ

|RJ - rj|

:) -∑
J

1
2MJ

∇ J
2 - ∑

j

1
2

∇ j
2 + V̂n-e(r, R)

:) -∑
J

1
2MJ

∇ J
2 + Ĥe(r, R)

(2)

Φ0 :) Φ(x, X, 0) (3)

iψ̇(x, t) ) Ĥe(r, R(t))ψ(x, t) (4a)

MJR̈J(t) )

-∫ dx ψ*(x, t)[∇ JĤe(r;R(t))]ψ(x, t), J ) 1, ...,N (4b)

ψ0 :) ψ(x, 0) (5a)

RJ
0 :) RJ(0), ṘJ

0 :) ṘJ(0), J ) 1, ...,N (5b)

MJR̈J(t) ) -∇ J ∫ dx ψ*(x, t)Ĥe(r;R(t))ψ(x, t),

J ) 1, ...,N (6)
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a fact which is similar in form, but unrelated to the
Hellmann-Feynman theorem.28 As pointed out by Tully,29

it is likely that the confusion about whether eqs 6 should be
used to define the Ehrenfest MD, or the gradient must be
applied to the electronic Hamiltonian inside the integral, as
in (4b), has arisen from applications in which ψ(x,t) is
expressed as a finite expansion in the set of adiabatic basis
functions, ηa(x;R), defined as the eigenfunctions30 of Ĥe(r;R):

The use of a precise notation, such as the one introduced
in this section, helps to avoid this kind of confusions. An
example of a misleading notation in this context would
consist in writing ψ(r,R,t) for the electronic wave function,29,31

when, as we have emphasized, there exists no explicit
dependence of ψ on the nuclear positions R.

In Ehrenfest MD, transitions between electronic adiabatic
states are included. This can be made evident by performing
the following change of coordinates from {ψ,R} to {c,R′}
(with c :) {ca}a)1

∞ ):

where ηa(x;R) are known functions given by (7) and, even
if the transformation between the R and the R′ is trivial, we
have used the prime to emphasize that there are two distinct
sets of independent variables: {ψ,R} and {c,R′}. This is very
important if one needs to take partial derivatives, since a
partial derivative with respect to a given variable is only
well defined when the independent set to which that variable
belongs is specified.32 For example, a possible mistake is to
assume that, since ca “is independent of” RJ′ , and RJ ) RJ′ ,
then ca “is also independent” of RJ and, therefore, the
unprimed partial derivative ∇ Jca is zero. The flaw in this
reasoning is that the unprimed partial derivative ∇ J is defined
to be performed at constant ψ and not at constant c, since
the relevant set of independent variables is {ψ,R}. In fact,
if we write the inverse transformation

we can clearly appreciate that, even if it is independent from
R′ by construction, ca is neither independent from ψ nor from
R.33 On the other hand, if we truncated the sum in (8a), then
there would appear an explicit dependence of ψ on R and
the state of affairs would be different, since {ψ,R} would
no longer be a set of independent variables. However, in
the context of an exact (infinite) expansion in (8a), the right-
hand sides of eqs 4b and 6 are equal, as we mentioned before,
and we do not have to worry about which one is more
appropriate. It is in this infinite-adiabatic basis situation that
we will now use eq 4b and the expansion in (8a) to illustrate
the nonadiabatic character of Ehrenfest MD.

If we perform the change of variables described in eqs 8a
to the Ehrenfest MD eqs 4a and we use that

we see that we will have to calculate terms of the form

which can be easily extracted from the relation

In this way, we obtain for the nuclear Ehrenfest MD
equation

where the nonadiabatic couplings (NACs) are defined as

To obtain the new electronic Ehrenfest MD equation, we
perform the change of variables to (4a) and we then multiply
the resulting expression by ηb

*(x;R′(t)) and integrate over the
electronic coordinates x. Proceeding in this way, we arrive
at

In the nuclear eqs 13, we can see that the term depending
on the moduli |ca(t)|2 directly couples the population of the
adiabatic states to the nuclei trajectories, whereas interfer-
ences between these states are included via the c*a(t)cb*a(t)
contributions. Analogously, in the electronic equations above,
the first term represents the typical evolution of the coef-
ficient of an eigenstate of a Hamiltonian, but differently from
the full quantum case, in Ehrenfest MD, the second term
couples the evolution of all states with each other’s through
the velocity of the classical nuclei and the NACs.

Moreover, Ehrenfest MD is fully (quantum) coherent, since
the complex coefficients ca(t), are the ones corresponding
to the quantum superposition in the electronic wave function.
A proper theory that treats realistically the electronic process
of coherence and decoherence is of fundamental importance
to properly interpret transition rates and to have control over
processes happening at the attosecond/femtosecond time
scales, such as the description of the optimal-pulse laser (in
optimal control theory) that enhances a given channel in a
chemical reaction, the manipulation of qbits in quantum
computing devices, the generation of soft X-rays by high-
harmonic generation, or the energy transfer processes in
photosynthetic units.34

At finite temperature, it is known that Ehrenfest MD
cannot account for the Boltzmann equilibrium population of
the quantum subsystem.35,36 The underlying reason of this
failure is the mean field approximation in eq 4b which

Ĥe(r;R(t))ηa(x;R(t)) ) Ea(R(t))ηa(x;R(t)) (7)

ψ(x, t) ) ∑
a

ca(t)ηa(x;R′(t)) (8a)

RJ(t) ) RJ
′(t), J ) 1, ..., N (8b)

ca(t) ) ∫ dx ψ*(x, t)ηa(x;R(t)), a ) 1, ...,∞ (9a)

RJ
′(t) ) RJ(t), J ) 1, ..., N (9b)

∇ JĤe(r;R) ) ∇ J
′Ĥe(r;R′) (10)

∫ dx ηa*(x;R′(t))∇ j′Ĥe(r;R′(t))ηb(x;R′(t)) (11)

∇ J
′ ∫ dx ηa*(x;R′(t))Ĥe(r;R′(t))ηb(x;R′(t)) ) ∇ J′Ea(R′(t))δab

(12)

MJR̈J
′(t) ) -∑

a
|ca(t)|2∇ J

′Ea(R′(t)) -

∑
a,b

ca*(t)cb(t)[Ea(R′(t)) - Eb(R'(t))]dJ
ab(R'(t)), J ) 1, ..., N

(13)

dJ
ab(R′(t)):)∫ dx ηa*(x;R′(t))∇ J

′ηb(x;R′(t)) (14)

ipċa(t) ) Ea(R′(t))ca(t) - ip∑
b

cb(t)[ ∑
J

ṘJ
′(t)·dJ

ab(R′(t))]

(15)
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neglects the nuclei response to the microscopic fluctuations
in the electronic charge density.

In order to address this point, it is important to distinguish
between two different physical situations considered in the
literature for studying equilibrium within Ehrenfest: In ref
35, a mixed quantum-classical system is coupled, only via
the classical degrees of freedom, to a classical bath. The
dissipative dynamics is integrated using a Nosé thermostat,
while the mixed quantum-classical one is integrated using
Ehrenfest. In ref 36, on the other hand, the classical degrees
of freedom are the bath to which the quantum system is
coupled, i.e., the thermalization of a quantum system due to
its “Ehrenfest-like” coupling to a bath or solvent, is discussed.
Only the first of these two approaches corresponds to the
physical problem we want to deal with, namely, the ther-
malization of a mixed quantum-classical molecule in a bath.

Once the aforementioned drawback has been recognized,
some authors have proposed several patches to ensure the
Boltzmann population equilibrium for the quantum sub-
system: In Tully’s surface hopping (SH) method,37 the
quantum degrees of freedom also follow eq 4a; however,
instead of the mean-field dynamics (4b), the classical degrees
of freedom follow a stochasticlike equation describing jumps
between adiabatic states. Unfortunately, this method does
not give in general the desired equilibrium averages either,38

and it looses the physical meaning of time during propagation.
Another new method by Bastida and collaborators,39

proposes an ad-hoc modification of the Ehrenfest equations
in order to obtain the correct equilibrium distribution of a
quantum system coupled to a classical bath, i.e., the classical
degrees of freedom are the solvent for the quantum system.
Their idea can be summarized as follows: Expressing in (15)
the complex coefficients in polar form (ca ) Fa exp{iθa})
and writing the equations for the moduli, one obtains Ḟa )
-∑bFb cos(θa - θb)Dab, where we have used the compact
notation: Dab ) ∑JṘJ

′ (t) ·dJ
ab(R′(t)), cf. eq 15. Analogous

equations are derived for the phases θa. Written like this,
the equations are formally similar to balancelike equations
for the diagonal elements of the density matrix of the
quantum system in the adiabatic basis. These kinetic equa-
tions have been extensively studied in relaxation processes,
and it is known that, to ensure equilibrium, the coefficients,
Dab, must fulfill the detailed-balance condition, i.e., Dab )
exp{-�∆ba}Dba, with ∆ba being the energy difference
between the b and a states.40 The proposal by Bastida et
al.39 proceeds by defining some modified transition coef-
ficients D̃ab, such that detailed balance is enforced, thus
approaching the Boltzmann equilibrium population for the
quantum system.

Coming back to the situation discussed in ref 35, i.e.,
where the classical subsystem is not a bath but a part of the
mixed quantum-classical system coupled to a reservoir, one
can go beyond Ehrenfest and make use of the formalism
developed in refs 41-43. The description in these works is
not mean-field and the quantum-classical dynamics is treated
exactly. Although its practical implementation seems cum-
bersome, it is a path to explore, with possible modifications,
in the near future.

Finally we should mention ref 44, where the complemen-
tary situation to ref 35 is studied, coupling the quantum
system directly to the bath, while the classical degrees of
freedom are not coupled directly to any reservoir. A study
of the deviations from equilibrium in this case is still missing.

3. Ehrenfest-TDDFT

TDDFT offers a natural framework on which to implement
Ehrenfest MD. In fact, starting by an extension45 of the
Runge-Gross theorem46 to arbitrary multicomponent sys-
tems, one can develop a TDDFT47 for the combined system
of electrons and nuclei described by (1). Then, after imposing
a classical treatment of nuclear motion, one arrives to an
Ehrenfest-TDDFT dynamics. This scheme can also be
generated from the following Lagrangian:24,47,48

where we have denoted by � :) {�A}A)1
n/2 , the whole set of

Kohn-Sham (KS) orbitals of a closed-shell molecule, and
EKS[�,R] is the KS energy:

where EXC[F(r)] is the exchange-correlation energy and the
time-dependent electronic density is defined as

In the following section, we introduce a modification of
the Ehrenfest-TDDFT dynamics obtained from (16) aimed
to the study of situations in which the contribution of the
electronic excited states to the nuclei dynamics is negligible,
i.e., situations in which one is interested in performing
ground-state Born-Oppenheimer molecular dynamics (gs-
BOMD).7

4. Modified Ehrenfest-TDDFT Formalism

4.1. Lagrangian and Equations of Motion. We now
introduce the basic concepts and approximations that define
the new fast Ehrenfest-TDDFT dynamics framework that
some of the authors introduced in ref 24. The new scheme
can be obtained from the following Lagrangian

L[�(t), �(t), R(t), Ṙ(t)] :) i
2 ∑

A
∫ dr(�A*(r, t)�̇A(r, t) -

�̇A*(r, t)�A(r, t)) + ∑
J

MJ

2
ṘJ(t)·ṘJ(t) - EKS[�(t), R(t)] (16)

EKS[�, R] :) 2 ∑
A

∫ dr �A*(r, t)(- ∇ 2

2 )�A(r, t) -

∫ dr ∑
J

( ZJ

|RJ(t) - r|)F(r, t) +

1
2 ∫ dr dr′ F(r, t)F(r′, t)

|r - r′ | + EXC[F(r, t)] +

∑
J<K

ZJZK

|RJ(t) - RK(t)|
(17)

F(r, t) :) 2 ∑
A

|�A(r, t)|2 (18)
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Note that the major modification with respect to the
Ehrenfest-TDDFT Lagrangian in eq 16 is the presence of a
parameter µ that introduces a rescaling of the electronic
velocities (Ehrenfest-TDDFT is recovered when µ ) 1). The
equations of motion of the new Lagrangian, eq 19, are the
following:

where Veff is the time-dependent KS effective potential. As
we are interested in the adiabatic regime, we will restrict
the exchange and correlation potential to depend only on
the instantaneous density (in general the exchange correlation
potential in TDDFT depends on the density of all previous
times, although for practical calculation this same adiabatic
approximation is done).

Compare with the gsBOMD Lagrangian

and the corresponding equations of motion:

where ΛBO :) (ΛAB
BO) is a Hermitian matrix of time-dependent

Lagrange multipliers that ensure that the orbitals � form an
orthonormal set at each instant of time. The Euler-Lagrange
equations corresponding to ΛAB

BO in (22b) are exactly these
orthonormality constraints, and, together with eq 22a,
constitute the time-independent KS equations. Therefore,
assuming no metastability issues in the optimization problem,
the orbitals � are completely determined49 by the nuclear
coordinates R, being in fact the BO ground state (gs), � )
�gs(R), which allows us to write the equations of motion for
gsBOMD in a much more compact and familiar form:

We can also compare the dynamics introduced in eqs 20a
with CPMD, whose Lagrangian reads

and the corresponding equations of motion are

where ΛCP :) (ΛAB
CP) is again a Hermitian matrix of time-

dependent Lagrange multipliers that ensure the orthonor-
mality of the orbitals �, and µCP is a fictitious electrons
“mass” which plays a similar role to the parameter µ in our
new dynamics.

Before discussing in details the main concepts of the
present dynamics, it is worthwhile to state its main advan-
tages and deficiencies (that will be the topic of discussion
in the next sections). When applied to perform gsBOMD,
the method can gain a large speed-up over Ehrenfest MD; it
preserves exactly the total energy and the wave function
orthogonality and allows for a very efficient parallelization
scheme that requires low communication. However, the
speed-up comes at a cost as it increases the nonadiabatic
effects. Also, the method as discussed above will not work
properly for metals and small-gap systems.50

4.2. Symmetries and Conserved Quantities. In the
following we will study the conserved quantities associated
to the global symmetries of the Lagrangian in eq 19 and we
shall compare them with those of gsBOMD and CPMD. We
will also be interested in a gauge symmetry that is the key
to understand the behavior of eq 19 in the limit µ f 0 and
its relation with gsBOMD.

The first symmetry we want to discuss is the time
translation invariance of (19). This is easily recognized as L
does not depend explicitly on time. Associated to this
invariance there is a conserved “energy”. Namely, using the
Noether theorem, we have that

is constant under the dynamics given by eq 20a, where p )
1, 2, 3 indexes the Euclidean coordinates of vectors ṘJ (and
RJ if needed).

Notice that E does not depend on the unphysical parameter
µ and actually coincides with the exact energy that is
conserved in gsBOMD. The situation is different in CPMD.

L[�, �̇, R, Ṙ] :) µ i
2 ∑

A
∫ dr [�A*(r, t)�̇A(r, t) -

�̇A*(r, t)�A(r, t)] + ∑
J

MJ

2
ṘJ·ṘJ - EKS[�, R] (19)

iµ�̇A(r, t) )
δEKS[�, R]

δ�̇A*
) -1

2
∇ 2�A(r, t) +

Veff[�, R]�A(r, t), A ) 1, ...,
n
2

(20a)

MJR̈J ) -∇ JEKS[�, R], J ) 1, ...,N (20b)

LBO[�, R, Ṙ] :) ∑
J

MJ

2
ṘJ·ṘJ - EKS[�, R] +

∑
AB

ΛAB
BO(∫ dr �A*(r, t)�B(r, t) - δAB) (21)

-1
2

∇ 2�A(r, t) + Veff[�, R]�A(r, t) )

∑
B

ΛAB
BO�B(r, t), A ) 1, ...,

n
2

(22a)

∫ dr �A*(r, t)�B(r, t) ) δAB, A, B ) 1, ...,
n
2

(22b)

MJR̈J ) -∇ JEKS[�, R], J ) 1, ..., N (22c)

MJR̈J ) -∇ JEKS[�gs(R), R], J ) 1, ...,N (23)

LCP[�, �̇, R, Ṙ] :) 1
2

µCP ∑
A

∫ dr |�̇A(r, t)|2 +

∑
J

MJ

2
ṘJ·ṘJ - EKS[�, R] +

∑
AB

ΛAB
CP(∫ dr �A*(r, t)�B(r, t) - δAB) (24)

µCP�̈A(r, t) ) -1
2

∇ 2�A(r, t) + Veff[�, R] +

∑
B

ΛAB
CP�B(r, t), A ) 1, ...,

n
2

(25a)

∫ dr �A*(r, t)�B(r, t) ) δAB, A, B ) 1, ...,
n
2

(25b)

MJR̈J ) -∇ JEKS[�, R], J ) 1, ..., N (25c)

E ) ∑
A

∫ dr [ δL
δ�̇A(r, t)

�̇A(r, t) + δL

δ�̇A
*(r, t)

�̇A*(r, t)] +

∑
J,p

∂L

∂ṘJ
p
ṘJ

p - L ) ∑
J

1
2

MJṘJ
2 + EKS[�, R] (26)
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There, we also have time translation invariance, but the
constant of motion reads

which depends directly on the unphysical mass of the
electrons, µCP, and its conservation implies that the physical
energy E varies in time. Still, this drawback has a minor
effect, since it has been shown that the CP physical energy
follows closely the exact gsBOMD energy curve.

The second global symmetry we want to consider is the
change of orthonormal basis of the space spanned by
{�A}A)1

n/2 . Namely, given a Hermitian matrix SAB (S+ ) S),
we define the following transformation:

The Lagrangian in (19) depends on � only through F )
2∑A|�A|2 and ∑A�*A�̇A. Provided the matrix S is Hermitian
and constant in time, both expressions are left unchanged
by the transformation. Hence, we can invoke again Noether
theorem to obtain a new conserved quantity that reads

Observe that we have a constant of motion for any Hermitian
matrix S. This permits us to combine different choices of S
in order to obtain that

In other words, if we start with an orthonormal set of wave
functions � and we let evolve the system according to eqs
20a and 20b, the family of wave functions maintains its
orthonormal character along time, i.e. the operator preserves
the inner product of the wave functions that define the
Ehrenfest trajectory.

We would like to mention here that the above property is
sometimes substantiated on a supposed unitarity of the
evolution operator.7,48,51 Simply noticing that the evolution
of � is not linear as both (20a) and (20b) are nonlinear
equations and that unitary evolution requires linearity,52 one
can discard from the start the unitarity argument.

There is however a delicate point here that is worth
discussing. The issue is that the µf 0 limit of our dynamics
should correspond to gsBOMD in eqs 22a (which includes
Lagrange multipliers to keep orthonormalization), but the
Lagrangian in (19) does not contain any multipliers and in
fact they are unnecessary, as our evolution preserves the
orthonormalization. This may rise some doubts on the
equivalence between gsBOMD and the limit of vanishing µ
of our dynamics.

To settle the issue, we introduce the additional dynamical
fields Λ :) (ΛAB), corresponding to Lagrange multipliers,
in our Lagrangian in eq 19, i.e.,

This modification has an important consequence: the global
symmetry in (28) becomes a gauge one with time-dependent
matrix elements. Actually one can easily verify that L̃ is
invariant under

This implies that, for µ * 0, the fields ΛAB can be
transformed to any desired value by suitably choosing the
gauge parameters SAB(t). Their value is therefore irrelevant
and one could equally well take Λ ) 0, as in (19), or Λ )
ΛBO (the value it has in gsBOMD) without affecting any
physical observable. This solves the puzzle and shows that
the µ f 0 limit of the dynamics of eq 20a is in fact the
exact gsBOMD.

4.2.1. Physical Interpretation. If we take eq 20a and write
the left-hand side as

the resulting equation can be seen as the standard Ehrenfest
method in terms of a fictitious time te. Two important
properties can be obtained from this transformation.

On the one hand, it is easy to see that the effect of µ is to
scale the TDDFT (µ ) 1) excitation energies by a 1/µ factor.
So for µ > 1, the gap of the artificial system is decreased
with respect to the real one, while for small values of µ, the
excited states are pushed up in energy forcing the system to
stay in the adiabatic regime. This gives a physical explanation
to the µ f 0 limit shown before.

On the other hand, given the time step for standard
Ehrenfest dynamics, ∆t(µ ) 1), from (33), we can obtain
that the time step as a function of µ is

so, for µ > 1 propagation will be µ times faster than
Ehrenfest.

By taking into account these two results we can see that
there is a tradeoff in the value of µ: low values will give
physical accuracy while large values will produce a faster
propagation. The optimum value, that we will call µmax, is
the maximum value of µ that still keeps the system near the
adiabatic regime. It is reasonable to expect that this value
will be given by the ratio between the electronic gap and
the highest vibrational frequency in the system. For many
systems, like some molecules or insulators, this ratio is large
and we can expect large improvements with respect to
standard Ehrenfest MD. For other systems, like metals, this
ratio is small or zero and our method will not work well

ECP ) ∫ dr ∑
A

1
2

µCP�̇A*(r, t)�̇A(r, t) + E (27)

�′A ) ∑
B

(e-iS)AB�B (28)

-i ∑
A,B

∫ dr [ δL
δ�̇A(r, t)

SAB�B(r, t) -

δL
δ�̇A*(r, t)

SAB�B*(r, t)] )

µ ∑
A,B

∫ dr �A*(r, t)SAB�B(r, t) (29)

∫ dr �A*(r, t)�B(r, t) ) const, ∀ A, B ) 1, ...,
n
2

(30)

L̃[�, �̇, R, Ṙ, Λ] ) L[�, �̇, R, Ṙ] +

∑
AB

ΛAB(∫ dr �A*(r, t)�B(r, t) - δAB) (31)

�′ ) e-iS� (32a)

Λ′ ) e-iSΛeiS - iµe-iS d
dt

eiS (32b)

µ d�
dt

) d�
dte

(33)

∆t(µ) ) µ∆t(µ ) 1) (34)

734 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Andrade et al.



without modifications (that are presently being worked on).
We note that a similar problem appears in the application of
CP to these systems.

4.3. Numerical Properties. From the numerical point of
view, our method inherits the main advantage of Ehrenfest
dynamics: since propagation preserves the orthogonality of
the wave function, it needs not be imposed and the numerical
cost is proportional to NWNC (with NW as the number of
orbitals and NC as the number of grid points or basis set
coefficients). For CP, a reorthogonalization has to be done
each time step, so the cost is proportional to NW

2NC. From
these scaling properties, we can predict that for large enough
systems our method will be less costly than CP. As we will
show below this, crossing can occur for around 1000 atoms
for our implementation and the systems we have considered.

Due to the complex nature of the propagator, Ehrenfest
dynamics has to be performed using complex wave functions.
In CP, real wave functions can be used if the system is finite
(without a magnetic field) or if the system is a supercell using
only the gamma point. However, with respect to CP, the
actual number of degrees of freedom to be treated is the
same, since CP equations are second order a second field
has to be stored, either the artificial “velocity” of the wave
functions or the wave function of the previous step.

An important point of comparison between Ehrenfest and
CP is the dependency of the maximum time step with the
simulation parameters: µ, µCP, and the cutoff energy (Ecut).
While for our modified Ehrenfest scheme, it will scale like

For CP dynamics, we have that7

Since µ and µCP are different quantities, we cannot infer
anything without knowing the effect of their value in the
results, but as we will see from our calculations, even though
in the new scheme the time step increases linearly with µ,
the separation from the BO surface is also more sensitive to
its value. On the other hand, the dependence with the cutoff
energy is one of the major drawbacks of Ehrenfest dynamics,
and probably it can explain why, as we will see, it is slower
than CP for small systems. However in most cases, this cutoff
energy is independent from the size of the system and will
only represent a difference in the prefactor in the scaling of
both methods, so its effect should be compensated for large
systems.

5. Methods

The scheme described above was implemented in the
Octopus code.53,54 Octopus is a general purpose code to
handle equilibrium and nonequilibrium phenomena using
(TD)DFT. It can be used to simulate atoms, molecules, low
dimensional systems, and periodic structures under the
presence of arbitrary electromagnetic fields. The code is
distributed under a free software license, and many new

features are incorporated regularly. Octopus uses a real-space
grid representation combined with the finite differences
approximation for the calculation of derivatives.55,56 The
nuclei-electron interaction is replaced by norm-conserving
Troullier Martins pseudopotentials. Unless stated otherwise,
the Perdew-Zunger57 parametrization of the local density
approximation (LDA) is used for the exchange and correla-
tion functional. The Poisson equation is solved using the
interpolating scaling functions method.58

5.1. Time-Propagation. Given an initial condition φ(t )
0) and R(t ) 0), we want to calculate φ(t) and R(t) for a
time t > 0 from (20). For the ionic part, eq 20b, once the
forces are computed,59 the Newton equations can be handled
easily by the standard velocity Verlet algorithm.

For the electronic part, eq 20a, the transformation in eq
33 allows us to use the standard Ehrenfest propagation
methods, making our scheme trivial to implement in an
existing real-time Ehrenfest code. The key part for the real-
time solution of equation 20a is to approximate the propaga-
tion operator

in an efficient and stable way. From the several methods
available (see ref for a review), in this work, we have chosen
the approximated enforced time-reVersal symmetry (AETRS)
method. For a Hamiltonian Ĥ(t), in AETRS, the propagator
is approximated by the explicitly time-reversible expression

with Ĥ(t + ∆t) obtained from an interpolation from previous
steps. For the calculation of the exponential in eq 38, a simple
fourth-order Taylor expansion is used. Note that the trunca-
tion to any order of the Taylor expansion for the exponential
operator implies that the norm of the vector is no longer
conserved. This theoretical error must be kept below an
acceptable threshold in order to ensure the preservation of
the orthonormality of the orbitals. In any case, a small
inevitable error will always lead to a slight change in the
norm. If the norm is reduced, the method is said to be
“contractive”sthis property is desirable since it leads to
stable propagations, as opposed to the case in which the norm
increases: in this latter case, the propagation becomes
unstable. The choice for a fourth order truncation is advanta-
geous because it is, for a very wide range of time-steps, a
contractive approximation to the exponential.

Moreover, the careful preservation of time reversibility is
crucial to avoid unphysical drifts in the total energy. We
have found (for the cases presented in this work and for our
particular numerical implementation) the combination of the
AETRS approximation to the propagator together with
the Taylor expansion representation of the exponential, to
be the most efficient approach. Our tests show that numeri-
cally the error in orthonormality, measured as the dot product
between orbitals, has an oscillatory behavior and it is
typically of the order of 10-10 but for some pairs of orbitals
it can increase to 10-8.

∆tmax ∝ µ
Ecut

(35)

∆tmax
CP ∝ �µCP

Ecut
(36)

�(t + ∆t) ) Û(t + ∆t, t)�(t) (37)

Û(t + ∆t, t) ) exp{-i
∆t
2

Ĥ(t + ∆t)} exp{-i
∆t
2

Ĥ(t)}
(38)
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We also implemented the Car-Parrinello scheme to
compare it with our approach. In this case, the electronic
part is integrated by the RATTLE/Velocity Verlet algorithm
as described in ref 61.

5.2. Parallelization Strategy. The challenge of AIMD of
going toward very large systems and large simulation times
is clearly linked to implementations that run efficiently in
parallel architectures. This is the case of CP methods, that
are known to perform very well in this kind of system;62

the parallelization is usually based on domain decomposition
(known as parallelization over Fourier coefficients in plane-
wave codes) and K-points. However, good scalability can
only be obtained if the system is large enough to have a
favorable computation-communication ratio with respect to
the latency of the interconnection.

This type of parallelization is also applicable to the present
Ehrenfest dynamics, and on top of that, the new scheme can
add a different level of parallelization: since the propagation
step is independent for each orbital, it is natural to parallelize
the problem by distributing the Kohn-Sham states among
processors. Communication is only required once per time
step to calculate quantities that depend on a sum over states:
the time dependent densities and the forces over the ions.
This type of sum of a quantity over several nodes is known
as a reduction and the communication cost grows logarithmi-
cally with the number of nodes.

The main limitation to the parallel scalability in our real
space implementation was observed to come from the parts
of the code that do not depend on the states (global
quantities), mainly the regeneration of the ionic potential

and the calculation of the forces due to the local part of the
ionic potential

As these expressions depend on the atoms index J, a
complementary parallelization in atoms is used to speed-up
these code sections. For example, to generate the ionic
potential, each processor generates the potential for a subset
of the atoms and then a reduction operation is performed to
obtain the total ionic potential.

Once this auxiliary parallelization over atoms is taken into
account, it results in a very efficient scheme, similar to
K-point parallelization for periodic systems, where, as long
as there are enough states to distribute, the scaling is linear
even with slow interconnections (as a rule of thumb, for our
implementation 10-15 orbitals per processor are required
for a good efficiency). In the case of CP, due to orthogo-
nalization between states the evolution is not independent,
so this parallelization scheme is more complex to implement
and requires more communication, making it much less
practical.

In our implementation, we have combined this parallel-
ization over states with real space domain decomposition
(see ref 54 for details). This dual parallelization strategy also
has the advantage that allows us to decompose the two levels

of complexity, the size of the region of space simulated and
the number of orbitals, that increase when we move to study
larger systems.

Below we address the relative gain in performance of the
code once this second level of parallelization is used. To
avoid as much as possible issues related to different software
packages, we decided to implement the two schemes, CP
and Ehrenfest, in the same code. Although this might not be
the best parallel implementation of CP that is available in
the community, it allows a direct assessment of the impact
of this extra level of parallelization. Given the simplicity
and the high level nature of parallelization over states, it is
expected that this gain will be transferable to other
implementations.

6. Applications: Model and Realistic
Systems

6.1. Two Band Model. To illustrate the properties of the
new scheme, and also to compare it to CP in a complemen-
tary manner to the calculations in the rest of the manuscript,
we apply it to a model system. The simple toy model we
use is based on the one used in the work by Pastore et al. to
test CP.63 Its equations of motion are produced by the
Lagrangian

where θ1 and θ2 correspond to electronic degrees of freedom,
R corresponds to the nuclear motion, and G mimicks the
gap. The parameters MR, KR, R0, and G0 have been taken
from the experimental values for the N2 molecule (interpret-
ing R as the length of the N-N bond).

The dynamics produced by (41) has been then compared
to the analogous CP one [obtained by simply changing the
θ-kinetic energy by (µCP/2)(θ̇1

2 + θ̇2
2)] and to the gsBO

reference [defined by setting µ ) 0, and θ1 and θ2 to the
values that minimize the potential energy in (41), θ1 ) θ2

) R]. In all simulations, the initial conditions of R and G
have been increased a 10% from their equilibrium values
R0 and G0, we have set Ṙ(0) ) Ġ(0) ) 0, and the initial
electronic coordinates have been placed at the gsBO mini-
mum (for CP, θ̇1(0) ) θ̇2(0) ) 0).

To compare the approximate nuclear trajectory R(t) to the
gsBO one RBO(t), we define dR :) 100/∆R{(1/T)∫0

T[R(t) -
RBO(t)]2 dt}1/2, where ∆R is the maximum variation of R in
the gsBO case. In Figure 1a, we show that this distance
smoothly decreases to zero as µ f 0 for our model. In Fig-
ure 1b, in turn, we compare the gsBO force on R to the one
obtained from the new method averaging over a intermediate
time between those associated to the electronic and nuclear
motions. The distance dF between these forces (defined
analogously to dR), also goes to zero when µ f 0.

Now, we estimate the relation between the maximum time
step allowed by the fourth order Runge-Kutta numerical
integration of the equations of motion and the error, given

Vion ) ∑
J

V̂J
local(r - RJ) (39)

FJ
local ) ∫ dr

dF(r)
dr

V̂J
local(r - RJ) (40)

Ltoy ) µ
2

(θ̇1θ2 - θ̇2θ1) +
1
2

MRṘ2 + 1
2

MGĠ2 -

1
2

KR(R - R0)
2 - 1

2
KG(G - G0)

2 + G
2

[cos(θ1 - R) +

cos(θ2 - R)] (41)
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by dR. The first, denoted by ∆tmax, has been defined as the
largest time step that produced trajectories for all the
dynamical variables of the system with a distance less than
0.1% to the “exact” trajectories. In Figure 1c, we can see
that, although ∆tmax grows more slowly in our method than
in CP (as expected from the discussion in section 4.3), the
behavior of the error (dR) is better for the new dynamics
introduced here. These two effects approximately balance
each other yielding the error/time step relations depicted in
Figure 1d, where the new scheme is shown to behave
similarly to CPMD for a significant range of values of dR.
We stress however that, to actually compare the relative
performance of both methods the numerical work required
in each time step would have to be considered. In this sense,
the more realistic simulations in the next sections are more
representative.

6.2. Nitrogen Molecule. For the Nitrogen molecule (N2),
we calculate the trajectories for different values of µ, using
the same initial conditions as in the toy model. A time step
of µ × 0.0012 fs is used, and the system is propagated by
242 fs. In Figure 2, we plot the potential energy as a function
of the interatomic distance during the trajectory for each run;
in the inset, we also give the vibrational frequency for the
different values of µ, obtained as the position of the peak in
the Fourier transform of the velocity autocorrelation function.
It is possible to see that for µ ) 20 the simulation remains
steadily close to the BO potential energy surface and there
is only a 3.4% deviation of the vibrational frequency. For µ
) 30, the system starts to strongly separate from the gsBO
surface as we start to get strong mixing of the ground-state
BO surfaces with higher energy BO surfaces. This behavior

is consistent with the physical interpretation given in section
4.2.1 as for this system µmax ≈ 27.

6.3. Benzene. Next, we applied the method to the Benzene
molecule. We set up the atoms in the equilibrium geometry
with a random Maxwell-Boltzmann distribution for 300 K.
Each run was propagated for a period of time of ∼400 fs
with a time step of µ × 0.001 fs (that provide a reasonable
convergence in the spectra). Vibrational frequencies were

Figure 1. (a) Distance dR from the R-dynamics produced by (41) to the gsBO one as a function of µ. (inset) gsBO R-trajectory
[broken (black) line] and the approximate one for dR ) 10% [solid (blue) line]. (b) Distance between the averaged force on R
produced by (41) and the gsBO one. (inset) gsBO force [broken (black) line] and the approximate one for dF ) 10% [solid (blue)
line]. (c) Dependence on µ (and µCP) of the distance dR and of the maximum time ∆tmax step (inset) for both the new scheme
[solid (blue) line] and CP [broken (red) line]. (d) Error/time step profile for both the new dynamics and CP [same colors as in part
b].

Figure 2. KS potential energy EKS[�,R] as a function of the
internuclear distance R in N2 molecule simulations: (bottom
to top) gsBO result [broken (black) line] and µ ) 1 [solid (blue)
line], 10 [solid (green) line], 20 [solid (red) line], and 30 [solid
(violet) line]. (inset) Vibrational frequencies from experiment64

and calculated from the trajectory using different values of µ
and a spacing of 0.35 b and a box of radius 7.6 b around
each atom.
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obtained from the Fourier transform of the velocity auto-
correlation function. In Table 1, we show some low, medium,
and high frequencies of benzene as a function of µ. The
general trend is a red-shift of the frequencies with a
maximum deviation of 7% for µ ) 15. Still, to make a direct
comparison with experiment, we computed the infrared
spectra as the Fourier transform of the electronic dipole
operator. In Figure 3, we show how the spectra changes with
µ. For large µ, besides the red-shift, spurious peaks appear
above the higher vibrational frequency (not shown), this is
probably due to a nonadiabatic effect as µmax ≈ 14 if we
consider the first virtual TDDFT excitation energy. We
performed equivalent CP calculations for different values of
µCP and found that, as shown in Figure 3, it is possible to
relate the physical error induced in both methods and
establish and a relation between µ and µCP.

Having established the link between µ and µCP, we address
the numerical performance of our new method compared to
CP. As explained in section 4.3, the maximum time step has
a different behavior with the cutoff energy, or equivalently,
in this case, the grid spacing (the spacing is proportional to
(1/Ecut)1/2). This can be seen in Figure 4, where we plot the
maximum time step both Ehrenfest and CP as a function of
the grid spacing. This is important since, in order to be able
to do a comparison for large number of atoms, we use a
larger spacing (0.6 b or 14 Ha) than that required for the
converged results previously shown (0.35 b or 40 Ha). So
for the small spacing case, Ehrenfest results should be scaled
by a 1.7 factor; these two values gives us a range of

comparison, since most calculations are performed in this
range of precision (14-80 Ha).

To compare in terms of system size, we simulated several
Benzene molecules in a cell. For the new scheme, a value
of µ ) 15 is used while for CP µCP ) 750, (values that yield
a similar deviation from the BO surface, according to Figure
3). The time steps used are 3.15 and 7.26 a.u., respectively.
The computational cost is measured as the simulation time
required to propagate one atomic unit of time; this is an
objective measure to compare different MD schemes. We
performed the comparison both for serial and parallel
calculations; the results are shown in Figure 5. In the serial
case, CP is 3.5 times faster for the smaller system, but the
difference reduces to only 1.7 times faster for the larger one.
Extrapolating the results, we predict that the new dynamics
will become less demanding than CP for around 1100 atoms,
if we consider the small spacing the crossover point moves
to 2000 atoms. In the parallel case, the performance
difference is reduced, being CP only 2 times faster than our
method for small systems and with a crossing point below
750 atoms (1150 atoms with the smaller spacing). This is
due to the better scalability of the Ehrenfest approach, as
seen in Figure 5c. Moreover, in our implementation, memory
requirements are lower than those for CP: in the case of 480
atoms, the ground-state calculation requires a maximum of
3.5 Gb, whereas in the molecular dynamics, Ehrenfest
requires 5.6 Gb while CP needs 10.5 Gb. The scaling of the
memory requirements is the same for both methods, and we
expect this differences to remain proportional for all system
sizes.

6.4. Fullerene Molecule: C60. To end the computational
assessment of the new formalism, we illustrate out method
for the calculation of the infrared spectrum of a prototype
molecule, C60. This time we switch to the PBE12 exchange
and correlation functional since it should give slightly better
vibrational properties than LDA.15 For the simulation shown
below, we use a value of µ ) 5 that provides a reasonable
convergence in the spectra. The calculated IR spectra are in
very good agreement with the experiment (see Figure 6) for
low and high energy peaks (the ones more sensitive to the
values of µ as seen in Figure 3). The result is robust and
independent of the initial condition of the simulation. The
low energy splitting of IR spectrum starts to be resolved for
simulations longer than 2 ps.

7. Conclusions

First principles molecular dynamics is usually performed in
the framework of ground-state Born-Oppenheimer calcula-
tions or Car-Parrinello schemes. A major drawback of both
methods is the necessity to enforce the orthogonalization of
the wave functions, which can become the bottleneck for
very large systems. Alternatively, one can handle the
electron-ion dynamics within the Ehrenfest scheme where
no explicit orthogonalization is necessary. However, in
Ehrenfest, the time step needs to be much smaller than in
both the Born-Oppenheimer and the Car-Parrinello schemes.
In this work, we have presented a new approach to AIMD
based on a generalization of Ehrenfest-TDDFT dynamics.
This approach, we recall, relies on the electron-nuclei

Table 1. Selected Vibrational Frequencies (cm-1) for the
Benzene Molecule, Obtained Using Different Values of µ
and a Spacing of 0.35 b and a Box of Radius 7.6 b around
Each Atom

µ ) 1 398 961 1209 1623 3058
µ ) 5 396 958 1204 1620 3040
µ ) 10 391 928 1185 1611 2969
µ ) 15 381 938 1181 1597 2862

Figure 3. Calculated infrared spectrum for benzene for
different values of µ, compared to CP dynamics and to an
experiment from ref 65. A spacing of 0.35 b and a box of
radius 7.6 b around each atom were used.
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separation ansatz, plus the classical limit for the nuclei taken
through short-wave asymptotics. Then, the electronic sub-
system is handled with time-dependent density functional
theory. The resulting model consists of two coupled sets of
equations: the time-dependent Kohn-Sham equations for the
electrons and a set of Newtonian equations for the nuclei,
in which the expression for the forces resembles, but is in
fact unrelated to, the Güttinger-Hellmann-Feynman form.
We have stressed the relevance of notational precision, in
order to avoid this and other possible common misunder-
standings.

We have shown how the new scheme preserves the
desirable properties of Ehrenfest allowing for a considerable
increase of the time step while keeping the system close to
the Born-Oppenheimer surface. The automatically enforced
orthogonalization is of fundamental importance for large
systems because it reduces the scaling of the numerical cost
with the number of particles and, in addition, allows for a
very efficient parallelization, hence giving the method
tremendous potential for applications in computational sci-
ence. Specially if the method is integrated into codes that
have other levels of parallelization, enabling them to scale

Figure 4. Comparison of the dependence of the time step in terms of the spacing. In the case of Ehrenfest, the time step
dependence is quadratic, while for CP, it is linear.

Figure 5. Computational performance comparisons of our method, with µ ) 15 and CP, with µCP ) 750 for an array of benzene
molecules with finite boundary conditions, a spacing of 0.6 b, and a box of radius 7.6 b around each atom. Performance is
measured as the computational time required to propagate one atomic unit of time. (a) Scheme of the benzene molecule array.
(b) Single processor computational cost for different system sizes. (inset) Polynomial extrapolation for larger systems. This
simulation was performed on one core of an Intel Xeon E5435 processor. (c) Parallel computational cost for different system
sizes. This simulation was performed on 32 Intel Itanium 2 (1.66 GHz) processor cores of a SGI Altix. (d) Parallel scaling with
respect to the number of processor for a system of 480 atoms in a SGI Altix system. In both cases, a mixed states-domain
parallelization is used to maximize the performance.

Modified Ehrenfest Formalism J. Chem. Theory Comput., Vol. 5, No. 4, 2009 739



to even more processors or to keeping the same level of
parallel performance while treating smaller systems.

Our approach introduces a parameter µ that for particular
values recovers either Ehrenfest dynamics or Born-
Oppenheimer dynamics. In general µ controls the tradeoff
between the closeness of the simulation to the BO surface
and the numerical cost of the calculation (analogously to the
role of the fictitious electronic mass in CP). We have shown
that for a certain range of values of µ, the dynamics of the
fictitious system is close enough to the Born-Oppenheimer
surface while allowing for a good numerical performance.
We have made direct comparisons of the numerical perfor-
mance with CP, and, while quantitatively our results are
system- and implementation-dependent, they prove that our
method can outperform CP for some relevant systems.
Namely, large-scale systems that are of interest in several
research areas and that can only be studied from first
principles MD in massively parallel computers. To increase
its applicability, it would be important to study if the
improvements developed to optimize CP can be combined
with our approach,67 in particular techniques to treat small
gap or metallic systems.68

Note that the introduction of the parameter µ comes at a
cost, as we change the time scale of the movements of the
electrons with respect to the Ehrenfest case, which implies
a shift in the electronic excitation energies. This must be
taken into account to extend the applicability of our method
for nonadiabatic MD and MD under electromagnetic fields,
in particular for the case of Raman spectroscopy, general
resonant vibrational spectroscopy as well as laser induced
molecular bond rearrangement. In this respect, we stress that
in the examples presented in this work, we have utilized the
new model to perform Ehrenfest dynamics in the limit where
this model tends to ground state, adiabatic MD. In this case,
as it became clear with these examples, the attempt to gain
computational performance by enlarging the value of the
parameter µ must be done carefully, since the nonadiabatic
influence of the higher lying electronic states states increases
with increasing µ. We believe, however, that there are a
number of avenues to be explored that could reduce this
undesired effect; we are currently exploring the manner in
which the “acceleration” parameter µ can be introduced while
keeping the electronic system more isolated from the excited
states.

Nevertheless, Ehrenfest dynamics incorporates in principle
the possibility of electronic excitations and nonadiabaticity.
The proper incorporation of the electronic response is crucial
for describing a host of dynamical processes, including laser-
induced chemistry, dynamics at metal or semiconductor
surfaces, or electron transfer in molecular, biological,
interfacial, or electrochemical systems. The two most widely
used approaches to account for nonadiabatic effects are the
surface-hopping method and the Ehrenfest method imple-
mented here. The surface-hopping approach extends the
Born-Oppenheimer framework to the nonadiabatic regime
by allowing stochastic transitions subject to a time- and
momenta-dependent hopping probability. On the other hand,
Ehrenfest successfully adds some nonadiabatic features to
molecular dynamics but is rather incomplete. This ap-
proximation can fail either when the nuclei have to be treated
as quantum particles (e.g., tunnelling) or when the nuclei
respond to the microscopic fluctuations in the electron charge
density (heating)69 not reproducing the correct thermal
equilibrium between electrons and nuclei (which constitutes
a fundamental failure when simulating the vibrational
relaxation of biomolecules in solution). We have briefly
addressed these issues in section 2; as mentioned there, there
have been some proposals in the literature to modify
Ehrenfest in order to fulfill Boltzmann equilibrium.37,39

Currently we are also investigating related extensions to
Ehrenfest to obtain the correct equilibrium in our simulations.

Acknowledgment. We would like to thank A. Bastida,
G. Ciccotti, and E. K. U. Gross for illuminating discussions.
This work has been supported by the research projects DGA
(Aragón Government, Spain) E24/3, and MEC (Spain). P.E.
is supported by a MEC/MICINN (Spain) postdoctoral
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(73) Hellmann, H. Einführung in die Quantenchemie; Frank
Deuticke: Leipzig, 1937; p 285.

(74) Feynman, R. P. Phys. ReV. 1939, 56, 340–343.

CT800518J

〈U(f1 + f2), Ug〉 ) 〈f1 + f2, g〉
) 〈f1, g〉 + 〈f2, g〉
) 〈Uf1, Ug 〉 + 〈Uf2, Ug〉
) 〈Uf1 + Uf2, Ug〉

U(f1 + f2) ) Uf1 + Uf2

742 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Andrade et al.



Electronic Zero-Point Oscillations in the
Strong-Interaction Limit of Density Functional Theory

Paola Gori-Giorgi,*,†,‡ Giovanni Vignale,§ and Michael Seidl|
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Abstract: The exchange-correlation energy in Kohn-Sham density functional theory can be
expressed exactly in terms of the change in the expectation of the electron-electron repulsion
operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real
parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process,
usually called adiabatic connection, the one-electron density is kept fixed by a suitable local
one-body potential. The strong-interaction limit of density functional theory, defined as the limit
λf∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λf0) mathematically
simpler than the physical (λ ) 1) case and can be used to build an approximate interpolation
formula between λf0 and λf∞ for the exchange-correlation energy. Here we extend the
systematic treatment of the λf∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term,
describing zero-point oscillations of strictly correlated electrons, with numerical examples for
small spherical atoms. We also propose an improved approximate functional for the zero-point
term and a revised interpolation formula for the exchange-correlation energy satisfying more
exact constraints.

1. Introduction

Kohn-Sham (KS) density functional theory (DFT)1-3 is a
very successful method for electronic structure calculations
thanks to its unique combination of low computational cost
and remarkable accuracy. In the Kohn-Sham formalism, the
ground-state energy of a many-electron system in a given
external potential V̂ext ) ∑i)1

N Vext(ri) is rewritten as a
functional of the one-electron density F(r)

where

with the operators (in Hartree atomic units e ) m ) p ) a0

) 1 used throughout)

In eq (2) the minimum search is carried over all antisym-
metric wave functions yielding a given density F.4 The
universal functional F[F] of eq (2) is further divided into

where the noninteracting kinetic energy functional Ts[F] is
obtained by replacing V̂ee with zero in eq (2)

* Corresponding author e-mail: gori@lct.jussieu.fr.
† CNRS, Université Pierre et Marie Curie.
‡ Vrije Universiteit.
§ University of Missouri.
|University of Regensburg.

E[F] ) F[F] + ∫ d3rF(r)Vext(r) (1)

F[F] ) min
ΨfF

〈Ψ|T̂ + V̂ee|Ψ〉 (2)

T̂ ) - 1
2 ∑

i)1

N

∇ i
2 (3)

V̂ee )
1
2 ∑

i,j)1

N 1 - δij

|ri - rj|
(4)

F[F] ) Ts[F] + U[F] + Exc[F] (5)
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and the Hartree functional U[F] is the classical electrostatic
repulsion energy

The only quantity that needs to be approximated is the
functional for the exchange-correlation energy, Exc[F], de-
fined as the quantity needed to make eq (5) exact. The great
success of KS DFT in solid state physics stems from the
fact that even the simplest approximation for Exc[F], the local-
density approximation (LDA), already gives remarkable
results for basic properties of simple solids. A fundamental
step forward to improve the solid-state physics results, and
to spread the use of KS DFT into the quantum chemistry
world, has been the advent of generalized gradient ap-
proximations (GGA), which are, to a large amount, due to
the work of John P. Perdew and his co-workers.5-7

Despite its success in scientific areas now ranging from
material science to biology, KS-DFT is far from being
perfect, and a huge effort is put forth nowadays in trying to
improve the approximations for Exc[F] (for recent reviews
see, e.g., refs 8 and 9). The focus of a large part of the
scientific community working in this area has shifted from
seeking explicit functionals of the density (like the GGAs)
to implicit density functionals that construct the exchange-
correlation energy from the KS orbitals. For example,
predicted atomization energies of molecules have been
improved by meta-GGAs (MGGA)10,11 which make use of
the orbital kinetic energy density, by hybrid functionals (see,
e.g., refs 12 and 13) which mix a fraction of exact exchange
with GGA exchange and correlation, and by range-separated
hybrids, in which only long- or short-range exact exchange
is used (see, e.g., refs 14-18).

The next step19 toward higher accuracy could be fully
nonlocal functionals, which use 100% of exact exchange (for
a recent review, see ref 20). Despite several attempts and
the increasing understanding of the crucial problems,21 the
construction of a fully nonlocal correlation energy functional
compatible with exact exchange is still an issue. A possible
way to address this problem is to use the information
contained in the strong-interaction limit of DFT.22 To explain
this strategy, we have first to recall an exact formula23-25

for Exc[F]

The integrand Wλ[F] is given by

where Ψλ[F], for a given value of λg 0, is the wave function
that minimizes 〈Ψ|T̂ + λV̂ee|Ψ〉 and yields the density F. If
F is V-representable for all λ g 0, Ψλ[F] is the ground-state
of a fictitious N-electron system with the Hamiltonian

where the λ-dependent external potential

ensures that Ĥλ[F] have the same given (λ ) 1) ground-
state density F(r) for all λ. When λ ) 0, the Hamiltonian of
eq (10) becomes the KS Hamiltonian, and Vext

λ)0([F];r) )
VKS(r), the familiar KS potential, while for λ ) 1 we recover
the Hamiltonian of the physical system.

We can use perturbation theory to obtain an expansion of
Wλ[F] in powers of λ starting from λ ) 0

where Ex[F] is the exchange energy, and Ec
GL2[F] is the

second-order correlation energy in Görling-Levy26 perturba-
tion theory. However, like in the Møller-Plesset case,27 this
perturbation series expansion seems to have a finite radius
of convergence which for many atoms and molecules is less
than 1.22 Moreover, evaluating terms of ever higher order
becomes impracticably expensive. Nevertheless, the exact
lowest-order terms Ex[F] and Ec

GL2[F] can be used for an
alternative approach,22 called interaction-strength interpola-
tion (ISI), to approximate the integrand in eq (8). The basic
idea of ISI is to combine the λf0 limit of eq (12) with the
information from the opposite strong-interaction limit, λf∞,
to construct an interpolation formula for Wλ[F]. This way,
the information on the physical system at λ ) 1 is extracted
from an interpolation between λf0 and λf∞. ISI is based
on previous ideas and attempts to construct approximate
formulas for Wλ[F] when 0 e λ e 1.12,13,28,29 Its novelty is
the introduction of the strong-interaction limit, thus extending
the construction of Wλ[F] to the whole domain λ ∈ [0,∞].

In the strong-interaction limit, λf∞, we will show in the
next sections that Wλ[F] has the asymptotic expansion

where p g 5/4. The expansion (13) was justified from
physical arguments in refs 30 and 31, and a simple
approximation for the two functionals W∞[F] and W∞

′ [F], the
point-charge plus continuum (PC) model,32 has been used
for the ISI, yielding atomization energies with errors within
4.3 kcal/mol.22 In a recent paper,33 the functional W∞[F] of
eq (13) has been constructed exactly. The main object of
the present work is the extension of the systematic treatment
of ref 33 to the next term, W∞′ [F].

The paper is organized as follows. In the next section 2,
we briefly review the results of ref 33, recalling that the
strong-interaction limit of DFT reduces to a 3N-dimension
classical equilibrium problem whose minimum is degenerate
over a three-dimensional subspace. In sections 3 and 4 we
define local curvilinear coordinates based on the local normal
modes around the degenerate minimum. These local curvi-
linear coordinates will be used, in section 5, to expand the
Hamiltonian of eq (10) for λf∞, up to the order λ1/4. The
corresponding expansion of Ψλ[F] is carried out in section
6, and the exact expression for W∞′ [F] is obtained in section

Ts[F] ) min
ψfF

〈ψ|T̂|ψ〉 (6)

U[F] ) 1
2 ∫ d3r∫ d3r′F(r)F(r′)

|r - r′|
(7)

Exc[F] ) ∫0

1
dλWλ[F] (8)

Wλ[F] ) 〈Ψλ[F]|V̂ee|Ψλ[F]〉 - U[F] (9)

Ĥλ[F] ) T̂ + λV̂ee + V̂ ext
λ [F] (10)

V̂ext
λ [F] ) ∑

i)1

N

Vext
λ ([F];ri) (11)

Wλ[F] ) Ex[F] + 2λEc
GL2[F] + O(λ2) (12)

Wλ[F] ) W∞[F] +
W∞′ [F]

√λ
+ O(λ-p) (13)
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7, where we also report numerical results for small spherical
atoms, and we propose an improved PC functional for
W ∞′ [F]. In section 8 we revise the interpolation formula for
the ISI functional in order to satisfy the exact expansion of
eq (13) up to O(λ-1). The last section 9 is devoted to
conclusions and perspectives. More details of the derivation
of our expansion are given in Appendix A, and a fully
analytic example is reported in Appendix B.

2. Strictly Correlated Electrons (SCE)

In the λf∞ limit it has been shown30,33 that, in order to
keep the N electrons in the given density F, the external
potential in eq (10) must compensate the infinitely strong
interelectronic repulsion, thus becoming proportional to λ

with a smooth finite function VSCE([F], r). (For brevity, the
argument [F] will be often dropped in the following).

The leading term in eq (10) when λf∞ is then a purely
multiplicative potential-energy operator

The square |Ψλf∞[F]|2 of the corresponding wave function
is a distribution that is zero everywhere except for electronic
configurations for which V̂ee + V̂SCE has its global minimum.
In order to guarantee a given smooth density F(r) in such a
“classical” state, this global minimum must be degenerate
over a three-dimensional subspace of R3N33 (otherwise, the
density would be a sum of delta peaks centered in the
equilibrium positions of the N electrons). We call this
classical state with a smooth density “strictly correlated
electrons” (SCE). The square of the SCE wave function
|ΨSCE[F]|2 ) |limλf∞Ψλ[F]|2 reads

where f1,.., fN are “comotion functions”, with f1(r) ) r, and
P denotes a permutation of {1,... N}. This means that the N
points r1,..., rN in 3D space found upon simultaneous
measurement of the N electronic positions in the SCE state
always obey the N - 1 relations

If the N - 1 comotion functions fi(s) satisfy the differential
equation

together with special transformation properties33 (see also
ref 34), the SCE wave function of eq (16) yields the given
density F(r). One has then to find the initial conditions for
the integration of eq (18) that minimize the expectation of
V̂ee. The leading coefficient W∞[F] in eq (13) has a simple

analytic expression in terms of the fi(s) [see eq (80)] and
has been evaluated for spherical atoms with up to N ) 10
electrons.33

In order to treat the next leading term, W ∞′ [F] of eq (13),
we have to consider the next terms in the λf∞ expansion
of the Hamiltonian of eq (10), i.e., the kinetic energy T̂ and
the next orders of V̂ext

λ . Physically, we expect that W ∞′ [F] is
determined by zero-point oscillations around the degenerate
SCE minimum. In the following, we give a formal justifica-
tion to this physical argument.

3. The SCE Potential-Energy Minimum

Writing r ≡ (r1,..., rN) ∈ R3N ≡ Ω, we consider the
asymptotic potential-energy function (ΩfR)

As said, the SCE external potential VSCE(r) has the very
special property that the function Epot(r) has a degenerate
minimum ESCE on the 3D subset

where f(s) ) (s, f2(s),..., fN(s)), with the R3fR3 comotion
functions fi(s). In other words, for all r ∈ Ω0, the function
Epot(r) assumes the same constant value

which, in particular, is its global minimum within Ω. For
illustration, see the analytical example of eq (108) in
Appendix B.

In the very limit λf∞, when Ĥλ[F]fλEpot(r) + O(�λ),
the square of the wave function |Ψλ[F]|2 becomes the
distribution |ΨSCE[F]|2 of eq (16), which is strictly zero
everywhere in Ω except for the 3D subset Ω0 where Epot(r)
is minimum33

For large, but finite λ . 1, the electrons are expected to
perform small zero-point oscillations about the SCE con-
figurations r ∈ Ω0, within a narrow 3N-D “envelope” Ωε

(with a small width ε > 0) of the 3D subset Ω0 ⊂ Ω

Here, for a given r ∈ Ω, the quantity

is the minimum 3N-D distance between r and any f(s) ∈
Ω0. Notice that Ω0 ⊂ Ωε ⊂ Ω and Ω0 ) limεf0Ωε.

For r ∈ Ωε, Epot(r) may be expanded about f(s) ∈ Ω0

lim
λf∞

Vext
λ ([F], r)

λ
) VSCE([F], r) (14)

Ĥλf∞[F] ) λ(V̂ee + V̂SCE) + O(√λ) (15)

|ΨSCE(r1, ..., rN)|2 ) 1
N! ∑P

∫ ds
F(s)
N

δ(r1 - fP(1)(s))δ(r2 -

fP(2)(s))...δ(rN - fP(N)(s)) (16)

ri ) fi(r1) (i ) 2, ..., N) (17)

F(fi(r))d3fi(r) ) F(r)d3r (18)

Epot(r_) :) lim
λf∞

Ĥλ[F]

λ

) 1
2 ∑

i,j)1

N 1 - δij

|ri - rj|
+ ∑

i)1

N

VSCE(ri)

) V̂ee + V̂SCE (19)

Ω0 ) {f_(s)|s ∈ R
3} ⊂ Ω (20)

ESCE ) W∞[F] + U[F] + ∑
i)1

N

VSCE(fi(s)) (21)

ΨSCE([F], r_) ≡ 0 ∀ r_ ∈ Ω\Ω0 (22)

Ωε ) {r_ ∈ Ω|d(r_, Ω0) < ε} (23)

d(r_, Ω0) :) min
s∈ R3

|r_ - f_(s)| (24)
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Since Epot(r) is minimum at r ) f(s), there are no first-order
terms. [The dots represent the terms of third and higher
orders.] For any given s ∈ R3, the Hessian matrix Mµν(s) in
the second-order term has 3N non-negative eigenvalues
ωµ(s)2 which can be labeled such that

The corresponding 3N-D normalized eigenvectors eµ(s), with
components eσ

µ(s) (σ ) 1,..., 3N), are pairwise orthogonal

The first three eigenvectors, with zero eigenvalues, lie in the
space “tangential” to Ω0, and the remaining 3N - 3
eigenvectors are “orthogonal” to Ω0

where R ) 1, 2, 3 denotes the three Cartesian components
(x, y, z) of s.

4. Local Normal Modes

For sufficiently small ε > 0, we use these eigenvectors to
introduce a set of 3N curvilinear coordinates in Ωε. A given
point r ) (r11, r12, r13,..., rN1, rN2, rN3) ∈ Ωε is written in
terms of these local curvilinear coordinates as follows. The
first three curvilinear coordinates are the Cartesian coordi-
nates s1, s2, s3 of the minimizing vector s in eq (24), fixed
by the condition that the 3N-D vector r - f(s) in Ω is
orthogonal to Ω0 in the point f(s)

The remaining 3N - 3 coordinates are the projections q4,...,
q3N of r - f(s) onto the local eigenvectors e4(s),..., e3N(s)

The first three eigenvectors e1,2,3(s) are not needed, since they
are tangential to Ω0 at the point f(s) and therefore orthogonal
to r - f(s). Inverting eq (30) yields

For these new curvilinear coordinates, we also write

Notice that r has 3N components, while q has only 3N - 3
ones. In this notation, eq (30) reads

This is the transformation formula between the Cartesian
coordinates r and the “local normal modes” (s, q) in the 3N-D
configuration space Ω.

In terms of the qµ, the second-order contribution in the
Taylor expansion (25) becomes diagonal

Here, the third-order term is derived from the corresponding
term in eq (25) (in the present notation)

Using here eq (33) for rν - fν(s), we find

Substituting eq (33) for r in the wave function Ψλ(r) that
represents the state Ψλ[F] yields the transformed wave
function Ψ̃λ(s, q). While the original wave function obeys

the transformed one is normalized according to

where J(s, q) is the Jacobian associated with the coordinate
transformation (33), see eq (101) in Appendix A.

For sufficiently large λ . 1, the wave function Ψλ(s, q)
strongly suppresses all configurations r ∈ Ω except for the
ones inside the narrow envelope Ωε of the 3D subset Ω0.
This means that Ψ̃λ(s, q) is essentially different from zero
only for (q4

2 +... + q3N
2 )1/2 < ε, where ε decreases with

growing λ . 1 and goes to zero in the limit λf∞.
More precisely, since the quadratic term in eq (34) is

multiplied by λ in the Hamiltonian (10), the scale of the
quantum fluctuation is ε ∼ λ-1/4 ≡ R for λf∞. Therefore, it
will be useful to switch for a given value of λ . 1 from the
present curvilinear coordinates (s, q) to scaled coordinates
(s, u) where

This second transformation yields the wave function

According to eq (38), we now have

Epot(r_) ) ESCE + 1
2 ∑

µ,ν)1

3N

Mµν(s)(rµ - fµ(s))(rν - fν(s)) + ...

(25)

ωµ(s)2 ) 0 (µ ) 1, 2, 3)

ωµ(s)2 > 0 (µ ) 4, ..., 3N) (26)

e_µ(s) · e_ν(s) ≡ ∑
σ)1

3N

eσ
µ(s)eσ

ν(s) ) δµν (27)

e_µ(s) ·
∂f_ (s)

∂sR
) 0 (µ ) 4, ..., 3N, R ) 1, 2, 3) (28)

(r_ - f_(s)) ·
∂f_ (s)

∂sR
) 0 (R ) 1, 2, 3) (29)

r_ - f_(s) ) ∑
µ)4

3N

qµe_µ(s) (30)

qµ ) e_µ · (r_ - f_(s)) (µ ) 4, ..., 3N) (31)

(s1, s2, s3, q4, ..., q3N) ) (s, q_) (32)

rν ) fν(s) + ∑
µ)4

3N

eν
µ(s)qµ (ν ) 1, ..., 3N) (33)

Ẽpot(s, q_) ) ESCE + 1
2 ∑

µ)4

3N

ωµ(s)2qµ
2 +

1
3! ∑

µ,ν,σ)4

3N

Eµνσ
(3) (s)qµqνqσ + ... (34)

1
3! ∑

�,η,
)1

3N ∂
3Epot(r_)

∂r�∂rη∂r

|
r_)f_(s)

(r� - f�(s))(rη - fη(s))(r
 - f
(s))

(35)

Eµνσ
(3) (s) ) ∑

�,η,
)1

3N ∂
3Epot(r_)

∂r�∂rη∂r

|
r_)f_(s)

e�
µ(s)eη

ν(s)e

σ(s) (36)

∫ d3r1...∫ d3rN|Ψλ(r_)|2≡∫ dr_|Ψλ(r_)|2 ) 1 (37)

∫ d3s∫ dq_J(s, q_)|Ψ̃λ(s, q_)|2 ) 1 (38)

u_ ) λ1/4q_ S q_ ) Ru_ (R ) λ-1/4) (39)

Ψ̄R(s, u_) ) Ψ̃λ(s,Ru_) (40)

∫ d3s∫ du_KR(s, u_)|Ψ̄R(s, u_)|2 ) 1 (41)
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with the scaled Jacobian

Later on, we shall make use of the expansion

whose derivation is reported in Appendix A.

5. Expansion of the Hamiltonian

To obtain an expansion for large λ . 1 (or, equivalently,
for small R ≡ λ-1/4 , 1), we must express the Hamiltonian
Ĥλ[F] of eq (10) in terms of the scaled coordinates (s, u). To
this end, we split Ĥλ[F] into three pieces

and treat these separately now.
5.1. Kinetic Energy (First Term). For the kinetic-energy

operator T̂, the 3N-D Laplacian is obtained in Appendix A
in terms of the curvilinear coordinates qµ from the general
transformation rule

(To simplify the notation, we write sµ ≡ qµ for µ ) 1, 2, 3
in this subsection.) Here, the matrix Gµν is the inverse of
the metric tensor Gµν, defined by

and G is its determinant, G ) det(Gµν). Switching in a second
step from the qµ to the scaled coordinates uµ yields the
expansion (see Appendix A)

The operators T̂(n) are independent of λ (or R ≡ λ-1/4)

where Xµ(s) is reported in Appendix A. Notice that the R2

term is constant, since R2�λ ) 1.
5.2. SCE Potential Energy (Second Term). For the

second term in eq (44), we use the Taylor expansion (34),
with qµ ) Ruµ, to find

5.3. The Remaining External Potential (Third
Term). For the last term in eq (44), we make an ansatz that
will later on turn out to be consistent

Using eq (30) for r and qµ ) Ruµ, we may expand

V(n)(r_) ≡ V(n)(f_(s) + R∑
µ)4

3N

e_µ(s)uµ)

) V(n)(f_(s)) + R∑
σ)1

3N

Vσ
(n)(f_(s)) ∑

µ)4

3N

eσ
µ(s)uµ +

+ R2

2 ∑
σ,τ)1

3N

Vστ
(n)(f_(s)) ∑

µ,ν)4

3N

eσ
µ(s)eτ

ν(s)uµuν +

+ O(R3) (52)

Here, the coefficients Vσ
(n), Vστ

(n), etc. denote the partial
derivatives of V(n)(r) at r ) f(s)

Now, eq (51) yields the expansion

with R-independent (multiplicative) operators

5.4. Full Hamiltonian. Eventually, combining eqs (47),
(50), and (54), we obtain the expansion (recall that R ) λ-1/4)

with R-independent operators Ĥ(n). The first two terms read

KR(s, u_) ) R3N-3J(s,Ru_) (42)

J(s, q_) ) J(s, 0_) + ∑
µ)4

3N

Jµ
(1)(s)qµ + O(qν

2) (43)

Ĥλ[F] ) T̂ + λEpot(r_) + (V̂ ext
λ - λV̂SCE) (44)

∑
i)1

3

∇ i
2 ≡ ∑

µ)1

3N
∂

2

∂rµ
2
) ∑

µ,ν)1

3N
1

√G

∂

∂qµ
(√GGµν ∂

∂qν
) (45)

Gµν ) ∑
�)1

3N ∂r�

∂qµ

∂r�

∂qν
≡ ∂r_

∂qµ
· ∂r_
∂qν

(46)

T̂ ) √λ[T̂(0) + RT̂(1) + R2T̂(2) + O(R3)] (47)

T̂(0) ) -1
2 ∑

µ)4

3N
∂

2

∂uµ
2

(48)

T̂(1) ) -1
2 ∑

µ)4

3N

Xµ(s)
∂

∂uµ
(49)

λEpot(r_) ) λ[ESCE + R2

2 ∑
µ)4

3N

ωµ(s)2uµ
2 +

R3

3! ∑
µ,ν,σ)4

3N

Eµνσ
(3) (s)uµuνuσ +

R4

4! ∑
µ,ν,σ,τ)4

3N

Eµνστ
(4) (s)uµuνuσuτ + O(R5)] (50)

V̂ext
λ - λV̂SCE ) √λ ∑

n)0

∞

RnV(n)(r_) (51)

Vστ
(n)(f_(s)) ) ∂

2V(n)(r_)
∂rσ∂rτ

|
r_)f_(s)

etc. (53)

V̂ext
λ - λV̂SCE ) √λ[V̂(0) + RV̂(1) + R2V̂(2) + O(R3)]

(54)

V̂(0) ) V(0)(f_(s)) (55)

V̂(1) ) V(1)(f_(s)) + ∑
σ)1

3N

Vσ
(0)(f_(s)) ∑

µ)4

3N

eσ
µ(s)uµ (56)

V(2) ) V(2)(f_(s)) + ∑
σ)1

3N

Vσ
(1)(f_(s)) ∑

µ)4

3N

eσ
µ(s)uµ +

+ 1
2 ∑

σ,τ)1

3N

Vστ
(0)(f_(s)) ∑

µ,ν)4

3N

eσ
µ(s)eτ

ν(s)uµuν (57)

Ĥλ[F] ) λESCE + √λ[Ĥ(0) + RĤ(1) + R2Ĥ(2) + O(R3)]
(58)
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6. Expansion of the Ground State

Due to eq (58), the lowest eigenvalue Eλ[F] of Ĥλ[F] (i. e.,
its ground-state energy) has the expansion

We define ER′ [F] ) E(0) + RE(1) + R2E(2) + O(R3) as the
lowest eigenvalue of the operator

Since ESCE is a constant, Ĥλ[F] and ĤR′ [F], with R ) λ-1/4,
have the same ground state

For the R-dependent normalization constant

we obtain

when Ψ(0) is normalized according to

Collecting terms of equal orders O(Rn) in the eigenvalue
equation ĤR′ [F]ΨR ) ER′ [F]ΨR yields a hierarchy of equations.
The leading one is Ĥ(0)Ψ(0) ) E(0)Ψ(0), where Ĥ(0) is given
by eq (59). For a given fixed s ∈ R3, the Hamiltonian Ĥ(0)

describes an uncoupled set of 3N - 3 harmonic oscillators
in 1D. To be more precise, these oscillators are coupled via
the dynamical variable s, but the dynamics of s is much
slower, only appearing at orders O(λ0). Consequently, the
leading term in the wave function factorizes into a product
of Gaussians Φω(u) ) (ω/π)1/4e-ωu2/2, with
∫-∞

∞ du|Φω(u)|2 ) 1

Since V(0)(f(s)) is a pure multiplicative operator, the resulting
eigenvalue of Ĥ(0) is, for a given s

Due to eq (61), this expression cannot depend on the variable
s, implying a condition on the n ) 0 coefficient V(0)(r) in
our ansatz (51)

The role of the external potential at the order �λ in eq (10)
is thus to keep the degeneracy of the SCE minimum (found
at the order λ) through the order �λ. This is necessary in
order to keep the given smooth density F(r): if one of the
SCE configurations (i.e., a given particular s0) had a lower
energy than the others, the SCE wave function would
collapse in that particular s0, and the density would become
a sum of delta peaks centered in fi(s0) (with i ) 1,..., N).

The degeneracy with respect to s allows us to weight each
configuration with the density F(s) and to write

This expression for E(0) is consistent with the wave function
of eq (67), as we we will now discuss. In order to determine
the prefactor C(0)(s) of the wave function we observe that in
the wave function Ψ̃λ(s, q), the coordinate s ∈ R3 has the
probability distribution

where R ) λ-1/4. Using eqs (63) and (65), we find

In the limit λf∞ when Fλ(s) must become rigorously
proportional to the electron density F(s)

the terms O(R) in eq (72) can be dropped and eq (67) yields

Since Φω(u) is a normalized Gaussian, the µ-th factor of the
product in eq (74) approaches the δ-function δ(qµ) as λf∞.
Therefore, the right-hand side of eq (74) equals |C(0)(s)|2J(s,
0), implying the result

Ĥ(0) ) -1
2 ∑

µ)4

3N
∂

2

∂uµ
2
+ V(0)(f_(s)) + 1

2 ∑
µ)4

3N

ωµ(s)2uµ
2 (59)

Ĥ(1) ) -1
2 ∑

µ)4

3N

Xµ(s)
∂

∂uµ
+ V(1)(f_(s)) +

+ ∑
σ)1

3N

Vσ
(0)(f_(s)) ∑

µ)4

3N

eσ
µ(s)uµ +

+ 1
3! ∑

µ,ν,σ)4

3N

Eµνσ
(3) (s)uµuνuσ (60)

Eλ[F] ) λESCE + √λ[E(0) + RE(1) + R2E(2) + O(R3)]
(61)

ĤR
′ [F] ) Ĥ(0) + RĤ(1) + R2Ĥ(2) + O(R3) (62)

Ψ̄R(s, u_) ) Ψ(0) + RΨ(1) + R2Ψ(2) + O(R3)

√NR

(63)

NR ) ∫ d3s∫ du_KR(s, u_)|Ψ(0)(s, u_) + O(R)|2 (64)

NR ) R3N-3[1 + O(R)] (65)

∫ d3s∫ du_J(s, 0_)|Ψ(0)(s, u_)|2 ) 1 (66)

Ψ(0)(s, u_) ) C(0)(s) ∏
µ)4

3N

Φωµ(s)(uµ) (67)

E(0)(s) ) V(0)(f_(s)) + ∑
µ)4

3N ωµ(s)

2
(68)

V(0)(f_(s)) ) - ∑
µ)4

3N ωµ(s)

2
+ const ∀ s ∈ R

3 (69)

E(0) ) ∫ d3s
F(s)
N [V(0)(f_(s)) + ∑

µ)4

3N ωµ(s)

2 ] (70)

Fλ(s) ) ∫ dq_J(s, q_)|Ψ̃λ(s, q_)|2

) ∫ dq_J(s, q_)|Ψ̄R(s, λ1/4q_)|2 (71)

Fλ(s) ) ∫ dq_J(s, q_)
|Ψ(0)(s, λ1/4q_)|2

R3N-3
[1 + O(R)] (72)

lim
λf∞

Fλ(s) ) F(s)
N

(73)

F(s)
N

) lim
λf∞

|C(0)(s)|2 ∫ dq_J(s, q) ×

∏
µ)4

3N

λ1/4|Φ�µ(s)(λ
1/4qµ)|2 (74)

|C (0)(s)|2 ) 1
N

F(s)
J(s, 0_)

(75)
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Notice that the uncoupled oscillator wave function of eq (67)
has the correct density to the order λ-1/2 targeted here.
Corrections to the density (and the coupling between the
oscillators) enter Wλ[F] at higher orders.

The next order in the perturbative treatment of the ground-
state energy of eq (62) leads to

The same argument used for eq (69) yields

independent of s. The important point here is that the terms
coming from T̂ and V̂ee in the Hamiltonian Ĥ(1) of eq (60)
have zero expectation on the ground-state of the harmonic
oscillator, so that there is no contribution to this order to the
large-λ expansion of Wλ[F]. As we shall see in the next
section 7, the order √λR ) λ1/4 in Eλ[F] of eq (61)
corresponds to the order λ-3/4 in the large-λ expansion of
Wλ[F].

Notice that, in our treatment of the strong-interaction limit
of DFT, we did not consider the effect on the energy of the
spin state or, more generally, of the statistics. This is because
the electrons are always localized in different regions of space
well separated from each other. The effect on the energy of
the spin state or of statistics in the λf∞ limit can be
estimated as being of the order O(e-λ1/4

), which is the order
of magnitude of the overlap between two different gaussians
of eq (67).

7. The Functional W∞′ [G]

From the expansion of Eλ[F] of the previous section 6, we
can easily compute Wλ[F] using the Hellmann-Feynmann
theorem

From section 6, we obtain, in the λf∞ limit

By differentiating both sides with respect to λ, from eq (78)
we obtain the expansion for Wλ[F] of eq (13) with

in agreement with the results of ref 33, and the exact
expression for the next leading term

This result generalizes (and proves) eq (35) of ref 30 for
spherical two-electron densities. As shown by eq (76), there
is no λ-3/4 term in Wλf∞[F]. There is also no term ∝ λ-1,

which would imply a term ∝ log(λ) in Eλ[F] and thus in the
kinetic energy 〈Ψλ|T̂|Ψλ〉 . Such a term would violate the
known high-density scaling of 〈Ψλ|T̂|Ψλ〉35 (see also the
erratum).36

As an example of application, we have computed W∞′ [F]
for the same set of spherical (or sphericalized) atomic
densities used in ref 33 to evaluate W∞[F]. For each point
(f1(s),..., fN(s)) on the degenerate SCE minimum constructed
in ref 33, we have evaluated the Hessian matrix, the
corresponding eigenvalues ωµ

2(s), and thus W∞′ [F] of eq (81).
In Table 1 we compare our results with the approximate PC
functional32

where C ) 1.535 and D ) -0.02558.
As explained in ref 33, the SCE minimum for spherical

densities is constructed from a set of radial comotion
functions and the angular minimization is done numerically.
When one of the electrons is close to the nucleus, the
numerical minimization displays instabilities in the smallest
(but nonzero) eigenvalues of the Hessian. However, as shown
by eq 81, such configurations are weighted by the density
(in the spherically symmetric case by 4πs2F(s)) so that the
error they introduce is relatively small. This error, however,
increases with the number of electrons. The number of digits
in our results of Table 1 is determined by this numerical
error. Notice, however, that Table 1 shows that the discrep-
ancy of the PC model with respect to our results is much
larger than our estimated numerical errors on the SCE values.

While the PC model for the coefficient W∞[F] makes errors
of the order of 60 mH,33 we see from Table 1 that the
functional W∞

′ [F] is much more seriously overestimated. We
can reduce these errors by recalling that in the PC model
for W∞

′ [F] the coefficient D of eq (82) was fixed by the
condition that the PC value for the He atom be equal to the
one obtained from the MGGA functional of ref 10. Now
that we have exact values, it seems natural to change D in
order to make the PC model equal to the SCE result for the
He atom. This gives D ) -0.028957. The values for the
other atoms obtained with the revised PC model are reported
in Table 2: we see that the error is now substantially reduced.

8. Revised ISI

In refs 22 and 32 an expression for Wλ[F] that interpolates
between the two limits of eqs (12) and (13) has been

E(1) ) 〈Ψ(0)|Ĥ(1)|Ψ(0)〉 ) V(1)(f_(s)) (76)

V(1)(f_(s)) ) const. (77)

Wλ[F] + U[F] )
∂Eλ[F]

∂λ
- ∫ F(r)

∂Vext
λ (r)

∂λ
d3r (78)

Eλ[F] - ∫ F(r)Vext
λ (r)d3r ) λ〈ΨSCE|V̂ee|ΨSCE〉 +

+ √λ∫ d3s
F(s)
N ∑

µ)4

3N ωµ(s)

2
+ O(λ0) (79)

W∞[F] ) ∫ d3s
F(s)
N ∑

i)1

N

∑
j>i

N
1

|fi(s) - fj(s)|
- U[F] (80)

W ∞
′ [F] ) 1

2 ∫ d3s
F(s)
N ∑

µ)4

3N ωµ(s)

2
(81)

Table 1. Comparison of the Values W ∞
′ [F] in Hartree

Atomic Units Obtained with the SCE Construction and with
the PC Model32a

SCE (H) PC (H) error (mH)

He 0.62084 0.729 108
Li 1.38 1.622 240
Be 2.59 2.928 334
B 4.2 4.702 502
C 6.3 7.089 840
Ne 22 24.423 2423

a The absolute errors of the PC model are also reported.

W∞
′PC[F] ) ∫ d3r[CF(r)3/2 + D

|∇ F(r)|2

F(r)7/6 ] (82)
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proposed and tested using the PC approximation for the
functionals W ∞[F] and W∞

′ [F]. The interaction-strength
interpolation (ISI) formula for Wλ[F] of refs 22 and 32,
however, contains a spurious term ∝ λ-1 in its λf∞
expansion,32 which, as explained after eq (81), has the wrong
scaling behavior in the high-density limit. Here we propose
a revised ISI functional which does not have this problem.

Instead of modeling Wλ[F], we use the same ISI interpola-
tion formula of ref 22 directly for the integral Exc

λ [F]

satisfying the exact λf0 and λf∞ asymptotic behaviors

The four functionals a[F], b[F], c[F], and d[F] are determined
by imposing the λf0 expansion of eq (12) and the λf∞
expansion of eq (13), and they are thus determined by the
two weak-interaction limit functionals Ex[F] and Ec

GL2[F] and
the two strong-interaction limit functionals W∞[F] and W∞

′ [F]

The final formula for the revised ISI functional is obtained
by putting λ ) 1 in eq (84)

For the correlation energy of the neutral atoms considered
here, this revised ISI gives essentially the same results of
the original ISI of ref 22. This is probably due to the fact
that neutral atoms are much more similar to the λ ) 0 wave
function than to the infinitely strongly interacting system (for
an illustration from the pair-density point of view, see ref
37). We can expect to observe more sensitivity on how the
λf∞ limit is treated when studying more correlated systems,

like stretched bonds or low-density quantum dots. Such
studies will be the object of future work.

9. Conclusions and Perspectives

We have presented a systematic treatment of the strong-
interaction limit of density functional theory up to the second
leading term, describing zero-point oscillations of strictly
correlated electrons. We have evaluated numerically this
zero-point contribution for small atoms, and we have used
our results to improve a previous approximate functional for
this term. A new interpolation formula for the exchange-
correlation energy, satisfying more exact constraints, has been
proposed, and will be tested elsewhere.

Besides the possibility of constructing an interpolation
formula for Exc[F], the two functionals W∞[F] of ref 33 and
W∞

′ [F] evaluated in this work, are of valuable interest for
the development of Kohn-Sham DFT. They are an example
of exact implicit density functionals for systems in which
the electron-electron repulsion largely dominates over the
kinetic energy. They can be used to test properties of the
exact exchange-correlation functional like the Lieb-Oxford
bound38,39 and to test how approximate functionals perform
in this limit.40,41

Several issues still need to be addressed and will be the
object of future work. The main problem of the ISI functional
is the lack of size consistency. A possible remedy is to
perform the interpolation of eq (84) locally, using energy
densities all defined in the same gauge (this is, at least, the
standard way in which approximate DFT addresses size
consistency, even if it is not always a solution in the presence
of degeneracy).42,43 A first step in our future work, thus,
will be the analysis of exact energy densities for the
functionals W∞[F] and W∞′[F] (see also ref 37) and the
construction of corresponding approximations. Another
important problem is the development of a reliable algorithm
to solve the SCE problem for a given nonspherical density.
Other promising research lines are the study of the next
leading term, which is of purely kinetic origin, and the
construction of approximations to describe the effect of the
spin state on the energy.
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ported by DOE under Grant No. DE-FG02-05ER46203.

A. Transformation of the Laplacian

In order to write down the components of the metric tensor
Gik of our local curvilinear coordinate transformation, we
define the indices as follows: R, , γ,.. denote the Cartesian
components 1, 2, 3 ≡ x, y, z of s, the indices µ, ν, σ, τ,...
denote the normal-mode components qµ, and the Latin indices
i, k,... denote general components, either R,.. or µ,.... We
then have to distinguish three blocks in the metric tensor
Gik: R, µν, and Rµ

Table 2. Comparison of the Values W ∞
′ [F] in Hartree

Atomic Units Obtained with the SCE Construction and with
the Revised PC Model of Section 7a

SCE (H) revPC (H) error (mH)

Li 1.38 1.4066 26
Be 2.59 2.579 11
B 4.2 4.207 7
C 6.3 6.43 130
Ne 22 22.96 960

a The absolute errors of the revised PC model are also
reported.

Exc
λ [F] ) ∫0

λ
dλ′Wλ′[F] (83)

Exc
λ,revISI[F] ) a[F]λ + b[F]λ

√1 + c[F]λ + d[F]
(84)

a[F] ) W∞[F] (85)

b[F] ) -
8Ec

GL2[F]W∞
′ [F]2

(Ex[F] - W∞[F])2
(86)

c[F] )
16Ec

GL2[F]2W∞
′ [F]2

(Ex[F] - W∞[F])4
(87)

d[F] ) -1 -
8Ec

GL2[F]W∞
′ [F]2

(Ex[F] - W∞[F])3
(88)

Exc
revISI[F] ) a[F] + b[F]

√1 + c[F] + d[F]
(89)
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where in eq (90) we have defined the 3 × 3 metric tensor
gR(s) which only concerns the coordinates s1, s2, and s3

When λf∞, our wave function is zero everywhere except
very close to Ω0, i.e., for very small qµ ∝ λ-1/4. Introducing
the scaled coordinates uµ ) λ1/4qµ, we see that the metric
tensor Gik has the λ-dependence

where ∆µ and Z µν are tensors of elements

and

and Gik
(0) has elements GR

(0) ) gR and Gµν
(0) ) δµν and all the

off-diagonal components equal to zero. In order to compute
the large-λ expansion of eq (45), we have to expand the

determinant G, and the components Gik of the inverse metric
tensor. Using standard formulas, we obtain

where g is the determinant of gR, and gR are the components
of its inverse. The tensor G-1 of components Gik has the
large-λ expansion, up to orders λ-1/2

Inserting these expansions into eq (45) we obtain eqs (48)
and (49) with

Finally, the Jacobian of our change of coordinates is simply
equal to �G of eq (101).

B. Analytic Example

As an illustration, we consider a system of two electrons
in 1D space (i.e., on the x-axis) with a given ground-state
density F(x)

In this case, eq (17) reads x2 ) f2(x1), with the single
comotion function f2(s) ≡ f(s) which, according to ref 33,
obeys the differential equation F(f(s))f ′(s) ) F(s). For the
Lorentzian density, f(s) is found analytically

In this case, the SCE external potential, fixed by the
conditions (d/dx)VSCE(x) ) sgn(x)|x - f(x)|-2 and VSCE(x)f0
for xf (∞, is given by

In terms of f(s) ≡ (s, f(s)), eq 20 now yields a 1D subset of
Ω ) R2

In the example (105), Ω0 is given by the two branches of
the hyperbola x2 ) f(x1) ≡ -1/x1 in the x1x2-plane Ω. In the
following, we focus on the branch Ω0

+ with x1 > 0 and x2 <
0, Ω0

+ ) {f(s)|s ∈ R+}.
The asymptotic potential-energy function, cf. eq (19)

assumes its highly degenerate minimum for all x ∈ Ω0.
Consequently, the first partial derivatives

Gγ ) gγ(s) - 2 ∑
µ)4

3N

qµ

∂
2f_ (s)

∂sγ∂s
· e_µ(s) +

∑
µ,ν)4

3N ∂e_µ(s)

∂s
·
∂e_ν(s)

∂sγ
qµqν (90)

Gν ) ∑
µ)4

3N

qµ
∂e_µ(s)
∂s

· e_ν(s) (91)

Gµν ) δµν (92)

gR(s) )
∂f_(s)

∂sR
·
∂f_(s)

∂s
(93)

Gik ) Gik
(0) + 1

λ1/4 ∑
µ)4

3N

uµ∆ik
µ + 1

λ1/2 ∑
µ,ν)4

3N

uµuν Z ik
µν (94)

∆γ
µ ) -2

∂
2f_ (s)

∂sγ∂s
· e_µ(s) (95)

∆ν
µ ) ∂e_µ(s)

∂s
· e_ν(s) (96)

∆ντ
µ ) 0 (97)

Z γ
µν ) ∂e_µ(s)

∂s
· ∂e_ν(s)

∂sγ
(98)

Z τ
µν ) 0 (99)

Z τσ
µν ) 0 (100)

√G ) √g(1 + 1

2λ1/4 ∑
µ)4

3N

uµ ∑
R

gR∆R
µ ) + O(λ-1/2)

(101)

G-1 ) G(0)-1
- 1

λ1/4 ∑
µ)4

3N

uµG(0)-1∆µG(0)-1
(102)

Xµ(s) ) 1
2 ∑

R
gR(s)∆R

µ (s) (103)

∫-∞

∞
dxF(x) ) 2 (104)

F(x) ) 2
π

1

1 + x2
⇒ f(s) ) -1

s
(105)

VSCE(x) ) |arctan(x) - x

1 + x2 | - π
2

(106)

Ω0 ) {f_(s)|s ∈ R} ⊂ Ω (107)

Epot(x_) ) 1
x1 - x2

+ VSCE(x1) + VSCE(x2) (108)

Electronic Zero-Point Oscillations J. Chem. Theory Comput., Vol. 5, No. 4, 2009 751



are vanishing for x ) f(s) when the Hessian matrix of Epot(x)
becomes

It has the two eigenvalues

The corresponding normalized eigenvectors are

While e1(s) is tangential, e2(s) is orthogonal to Ω0
+ at f(s) ∈

Ω0
+ and generally given by

For a point x ) (x1, x2) ∈ Ωε, close to Ω0
+, the curvilinear

coordinates (s, q) are defined by eq (30)

where s is fixed by the condition that the vector e(s) in the
x1x2-plane is orthogonal to Ω0

+ at f(s) ∈ Ω0
+.

In terms of the partial derivatives of eq (114), the metric
tensor is given by the (2 × 2)-matrix

Using eqs (113) and (114), we obtain

and thus

where g(s, q) ) J(s, q)2, with the Jacobian

In the particular case of the density (105), we have

and the coefficients of eq (13) are given by
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Abstract: By admixing a fraction of exact Hartree-Fock-type exchange with conventional
semilocal functionals, global hybrids greatly improve the accuracy of Kohn-Sham density
functional theory. However, because global hybrids exhibit incorrect asymptotic decay of the
exchange-correlation potential, they can have large errors for diverse quantities such as reaction
barrier heights, nonlinear optical properties, and Rydberg and charge-transfer excitation energies.
These errors can be removed by using a long-range-corrected hybrid, which uses exact exchange
in the long range. Evaluating the long-range-corrected exchange energy requires a model for
the semilocal exchange hole, and such models are scarce. Recently, two of us introduced one
such model (J. Chem. Phys. 2008, 128, 194105). This model obeys several exact constraints
and was designed specifically for use in long-range-corrected hybrids. Here, we give sample
results for three long-range-corrected hybrids based upon our exchange hole model and show
how the model can easily be applied to any generalized gradient approximation (GGA) for the
exchange energy to create a long-range-corrected GGA.

1. Introduction

Due to its remarkable combination of accuracy and compu-
tational simplicity, Kohn-Sham (KS) density functional
theory (DFT)1,2 has become the predominant method in
electronic structure calculations for molecules and solids.3

The key ingredient in KS-DFT is the exchange-correlation
functional, which accounts for many-body effects in a simple
single-particle picture. Unfortunately, while many properties
of the exact exchange-correlation functional are known, and
(through the constrained search formalism)4,5 even the precise
form is available, a computationally tractable form is not.

Simple semilocal functionals, in which the exchange-
correlation energy density at a point r depends only the
density, its derivatives, and possibly the KS orbitals and their
derivatives at r, have been reasonably successful. The
simplest (semi)local functional is the local density ap-
proximation (LDA), which takes the exchange-correlation
energy density at a point with density n to be the exchange-

correlation energy density of a homogeneous electron gas
(HEG) with density n. More sophisticated generalized
gradient approximations6-10 (GGAs) and meta-GGAs11-14

improve upon this basic form by adding information about
the local density gradient (GGAs) and the local kinetic energy
density or local density laplacian (meta-GGAs).

To reach the accuracy expected in molecular calculations,
however, it is generally necessary to incorporate some
fraction of nonlocal Hartree-Fock-type exchange. Usually,
this is done by means of a global hybrid functional,15-19 in
which the exchange-correlation energy is written as

Here, Exc
DFA, Ex

DFA, and Ex
HF are respectively some semilocal

density functional approximation (DFA) to the exchange-
correlation energy, a semilocal approximation to the ex-
change energy, and nonlocal Hartree-Fock (HF) exchange.
The constant c controls the fraction of exact exchange
included and usually varies between about 1/5 and 1/2. But
while the simple global hybrid form is the most commonly
used way of including some amount of HF-type exchange,
much progress has been made over the past decade in

* Corresponding author e-mail: Thomas.Henderson@rice.edu.
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Exc
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functionals with more flexible admixtures. One promising
route is tousearange-separatedfractionofexactexchange.20-22

(Note that these works propose also to use a range-separated
fraction of wave function correlation, which we here prefer
to avoid.)

In a range-separated hybrid, the interelectronic Coulomb
operator is generally decomposed into a long-range (LR) and
a short-range (SR) part, typically as

Different fractions of exact exchange are used in the two
ranges. That is, the exchange-correlation energy of a range-
separated hybrid can be written as

For applications to solids, in which the long-range HF-type
exchange is both computationally and formally problematic,23

we use a screened exchange which sets cLR ) 0.24-27 In
finite systems, long-range HF-type exchange is the exact
long-range exchange-correlation functional, unless long-range
correlations (such as might be found, for instance, in
dissociation on the symmetry-restricted surface) are present.
It is therefore common in finite systems to set cLR ) 1 and
cSR ) 0.28-33 Functionals which use 100% long-range HF-
type exchange are termed long-range-corrected hybrids.
Long-range-corrected hybrids dramatically improve upon
global hybrids in the description of charge transfer and
Rydberg excitations,29,34 nonlinear optical properties,28,35

reaction barrier heights,30-32 and so on. The two limits of
screened and long-range-corrected functionals can be rec-
onciled by using exact exchange in the middle range, as in
the recently proposed functional of Henderson et al.36,37

To define the long-range or short-range semilocal exchange
energy, we require a semilocal model for the exchange hole.
While many semilocal functionals are constructed from such
a model, many others are not. Most range-separated hybrids
of GGAs have used one of two models: the LDA-based
model of Iikura and co-workers28 (ITYH) or the model of
Ernzerhof and Perdew38 (EP). The ITYH model is quite
flexible and can readily be applied to any GGA or meta-
GGA. The EP model was parametrized to reproduce the
GGA of Perdew et al.9 (PBE), and while it could be
reparameterized to fit other GGAs, this has not, to the best
of our knowledge, been done.

Recently, two of us proposed a new GGA model, based
on that of EP, but constructed specifically for use in range-
separated hybrids.39 This new exchange hole model (here
denoted HJS) follows the EP model in satisfying more exact
constraints than does the model of ITYH, but differs from
the EP model in that the range-separated exchange energy
density can be evaluated analytically.

In this work, we examine the performance of three long-
range-corrected hybrid functionals based on our newer
exchange hole model. Let us be clear at the outset that our
intention is not to provide a thorough benchmarking of new

long-range-corrected hybrids. Rather, it is to show how, by
modifying a few parameters in the HJS hole model, one can
construct long-range-corrected hybrids of various GGAs,
affording much (but not all) of the flexibility inherent in the
approach of ITYH while avoiding some of its weaknesses
(see ref 39).

Section 2 of this paper briefly describes the HJS model
exchange hole, while in section 3 we remind the reader of
the form of the exchange functionals considered here. Section
4 presents the results of long-range-corrected hybrids based
on those GGAs, and general conclusions are drawn in section
5. Appendix A provides a numerically stable expression for
the short-range exchange energy coming from the HJS model
exchange hole.

2. HJS Model Exchange Hole

The HJS model exchange hole is given by

where

The exchange hole for σ-spin electrons can readily be
obtained by replacing the total density n with the density of
σ-spin electrons nσ, and writing kF,σ ) (6π2nσ)1/3.

The parameters A, B, C, D, and E are chosen so that, at
s ) 0, the HJS model exchange hole reduces to a nonoscil-
lating approximation to the LDA exchange hole, with proper
value and curvature at y ) 0, proper energy and normaliza-
tion, and minimal oscillation. Numerical values to six digits
are A ) 0.757211, B ) -0.106364, C ) -0.118649, D
) 0.609650, and E ) -0.0477963. (Note that B, C, and E
are defined in terms of A and D, and so are defined to more
decimal places; see ref 39 for the equations relating the
various parameters.)

The function G (s) is chosen to enforce normalization for
nonzero gradients, while F (s) enforces proper curvature at
y ) 0 for small gradients, and is restricted such that it remains
bounded. These functions take the form

where s0 ) 2, and where we have defined

Exc
RSH ) Exc

DFA + cSR(Ex
SR-HF - Ex

SR-DFA) +

cLR(Ex
LR-HF - Ex

LR-DFA) (3)
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4y4
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27C
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� ) s2H (s) (7a)
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Finally, the function H (s) is chosen so that the HJS model
exchange hole gives the desired exchange energy. The ratio
of the GGA exchange energy density to the LDA exchange
energy density is termed the enhancement factor:

For a GGA, Fx depends only the reduced gradient s. In terms
of the model exchange hole, it is given by

Given a GGA (and thus an enhancement factor), we solve
the foregoing equation numerically for H (s) over a range
of values of s and fit the resulting curve to

constraining this rational function to have the correct small
s and large s expansion when possible. [Usually, this means
fixing a2 to give the second-order gradient expansion
coefficient from the target enhancement factor, setting a3 )
a2b1 to eliminate the third-order gradient expansion coef-
ficient, and writing a7 ) ab9, a6 ) ab8, and a5 ) ab7 + bb9,
where a is chosen so that the sf∞ limit of the enhancement
factor is the correct constant, and b is chosen so that the
next term in the asymptotic expansion of Fx(s) is also
correct.]

Once we have defined H (s), we use our model exchange
hole to define the range-separated enhancement factor. Most
commonly, we use

in which case the range-separated enhancement factor is
given by

where ν ) ω/kF. This integral can be evaluated explicitly,
and the result is

where

Evaluating this expression for large ν is fraught with
numerical problems; see Appendix A for an analytic
simplification which allows more robust evaluation of the
enhancement factor.

3. Three Prototype Exchange Functionals

We do not wish here to provide an exhaustive survey of long-
range-corrected hybrids based on various combinations of
semilocal exchange and semilocal correlation functionals.
Instead, we wish to consider three functionals in particular:
the PBE GGA of Perdew, Burke, and Ernzerhof,9 the PBEsol
functional of Perdew and co-workers,10 and the BLYP
combination of Becke’s 1988 exchange functional6 and the
correlation functional of Lee, Yang, and Parr.7 While PBE
provides a reasonably balanced description of finite systems
and solids, PBEsol is geared principally for applications to
solids, and BLYP is more successful for atoms and mol-
ecules. The three functionals thus provide prototype cases
for us. The parameters defining H (s) for each are listed in
Table 1. Note that we show the coefficients of powers of
sσ ) |∇ nσ|/(2(6π2)1/3nσ

4/3).
3.1. PBE and PBEsol. The PBE exchange enhancement

factor can be written as

where κ ) 0.804 enforces the local Lieb-Oxford bound,
and µ ≈ 0.2195 controls the small gradient behavior, which
for the foregoing functional form is

The exact small gradient expansion turns out to be40

so PBE responds too strongly to small fluctuations in the
density. This is intentionalsthe gradient expansion of the
PBE correlation functional is correct, and the exact gradient
response of the PBE exchange functional is sacrificed so that
the linear response of the PBE exchange-correlation func-
tional is the same as that of the LSDA.

Unfortunately, the overly large value of the second-order
gradient coefficient in Fx causes problems in solids, in which

η ) A + s2H (s) ) A + � (7b)

λ ) D + s2H (s) ) D + � (7c)

Fx )
εx
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∞
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for many properties, PBE offers little improvement over
LDA. To remedy this, PBEsol takes the PBE form, but
enforces the exact gradient expansion for exchange instead
of for correlation. Accordingly, the PBEsol exchange en-
hancement factor is

with µj ) 10/81. The corresponding PBEsol correlation
functional sacrifices the exact gradient expansion for cor-
relation, and is chosen to provide a best fit to jellium surface
energies (really, to jellium surface energies as predicted by
the TPSS meta-GGA). The resulting functional performs
more like LDA than does PBE, and performance improves
for solids but degrades for molecules.

3.2. BLYP. In finite systems, the exchange energy density
should asymptotically behave as -F/r, essentially so that the
self-Coulomb repulsion of electrons in density tails can
cancel with their self-exchange. Neither PBE nor PBEsol
satisfies this constraint. It can, however, be enforced in the
GGA framework. The B88 exchange functional does so by
writing the enhancement factor for σ-spin electrons as

Here, we have defined

The functional form of eq 19 guarantees the proper decay
of the exchange energy density (but not the exchange
potential) for exponentially decaying densities, though for
large gradients the enhancement factor is not bounded.

Because the B88 enhancement factor is unbounded, the
functional form we have chosen for H (s) is not asymptoti-
cally correct. We note from eq 10 that s2H (s) goes to a finite

limiting value as s goes to infinity. With bounded s2H (s),
we have bounded F (s), hence bounded G (s), and hence a
bounded enhancement factor, Fx(s). In fact, near s ) 70,
our best fit to H (s) has a pole, and, for larger s, H (s) is
negative and the enhancement factor acquires an imaginary
part.

Since we do not wish to change the functional form of
H (s) in our model exchange hole, we are forced to do
something about the large s behavior. We choose to modify
the dimensionless density gradient, replacing s with σ(s) in
our code for the B88 exchange hole, with

For small s, σ(s) ≈ s, while, for large s, σ(s) approaches 20.
In doing so, we keep a reasonable fit to the exact B88
enhancement factor for s j 20, but the enhancement factor
from our exchange hole model is bounded as s goes to
infinity. Since the discrepancies between the B88 enhance-
ment factor and that from our exchange hole model occur
only at quite large s, we do not anticipate any significant
energetic effects. Figure 1 shows the B88 enhancement
factor, the enhancement factor from our exchange hole
model, and the enhancement factor from our exchange hole
model with σ(s) used in place of s. As we shall see shortly,
the energetic effects of cutting off the reduced gradient at s
) 20 are negligible.

Note that we have reparametrized H (s) for our B88 hole
model to improve agreement with the B88 enhancement
factor for small gradients.

4. Results

In this section, we show results for long-range-corrected
hybrids of the GGAs listed earlier. We also include a long-
range-corrected LDA based on the s ) 0 limit of the HJS
exchange hole. For each functional considered, we optimize
the parameter ω of eq 2 against the AE6 set of heats of

Table 1. Parameters in the Rational Functions Defining
H(s) for Various GGAs

PBE PBEsol B88

a2 0.015 9941 0.004 7333 0.025 3933
a3 0.085 2995 0.040 3304 -0.067 3075
a4 -0.160 368 -0.057 4615 0.089 1476
a5 0.152 645 0.043 5395 -0.045 4168
a6 -0.097 1263 -0.021 6251 -0.007 6581
a7 0.042 2061 0.006 3721 0.014 2506
b1 5.333 19 8.520 56 -2.650 60
b2 -12.478 0 -13.988 5 3.911 08
b3 11.098 8 9.285 83 -3.315 09
b4 -5.110 13 -3.272 87 1.544 85
b5 1.714 68 0.843 499 -0.198 386
b6 -0.610 380 -0.235 543 -0.136 112
b7 0.307 555 0.084 7074 0.064 7862
b8 -0.077 0547 -0.017 1561 0.015 9586
b9 0.033 4840 0.005 0552 -2.450 66 × 10-4

Fx
PBEsol ) 1 + κ

µs2

κ + µs2
(18)

Fx
B88 ) 1 + 1

Cx

	xσ
2

1 + 6	xσ sinh-1(xσ)
(19)

xσ )
|∇ nσ|

nσ
4/3

) 2(6π2)1/3sσ (20a)

Cx ) 3
4π

(6π2)1/3 (20b)

	 ) 0.0042 (20c)

Figure 1. Exchange enhancement factors for the B88
functional, our exchange hole model to it, and the exchange
hole model incorporating σ(s).

σ(s) ) -ln(e-s + 

1 + 
 ) (21)


 ) 1

e20 - 1
(22)
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formation41 and the BH6 set of barrier heights.41 We then
examine errors for the G1,42,43 G2,44 and G345 sets of heats
of formation, the HTBH3846 and NHTBH3847 sets of
reaction barriers, and the total atomic energies of H-Ar.48

Throughout this work, we use the 6-311++G(3df,3pd) basis
set and define errors as theory - experiment.

Before we examine long-range-corrected hybrids, however,
we validate our parametrizations of the exchange holes by
comparing, for several test sets, the results from the GGAs
we consider to the results from our exchange holes. Table 2
shows the mean errors (ME) and mean absolute errors
(MAE) for the AE6 set, the BH6 set, and the total atomic
energies of H-Ar. We also include LDA and the results from
the PBE hole model of Ernzerhof and Perdew.

As Table 2 makes clear, the PBE hole model of Ernzerhof
and Perdew does not quite reproduce the PBE exchange
energy, but actually gives results superior to those of PBE.
This may explain some small portion of the accuracy of
range-separated hybrids based upon it (because the values
for very large or very small ω are more accurate than are
those from PBE itself). The HJS version of the PBE hole
more precisely reproduces the PBE results, and thus its
thermochemical performance is slightly worse than that of
the EP hole model. This can be expected to carry over to
range-separated hybrids as well.

Table 2 also verifies that, as expected, PBEsol is inter-
mediate in quality between LDA and PBE. Finally, we see
that BLYP significantly outperforms the other two GGAs
for thermochemistry and that cutting off the reduced gradient
at s ) 20 indeed has no significant effect.

4.1. Optimizing ω for Long-Range-Corrected Hybrids.
To optimize the value of ω for the long-range-corrected
hybrids under consideration, we minimize the mean absolute
error in the AE6 set of atomization energies and the BH6
set of barrier heights. Since, for the very successful long-
range-corrected LC-ωPBE hybrid of Vydrov and Scuseria,31

the errors in atomization energies are roughly three times as
large as the errors in barrier heights, we weight barrier heights

as three times as important as atomization energies in
choosing ω. We use LC-ωPBE orbitals in this portion of
the work; our experience shows that self-consistency makes
only a small difference. Figures 2-4 show the MAE in
kilocalories per mole for the AE6 and BH6 sets as a function
of ω, as well as the MAE in milliHartree per electron for
the total energies of H-Ar. Note the significant difference
in scale on the three figures. All three figures include results
for “PBE”, which signifies what we shall term LC-ωPBE08
and by which we mean a version of LC-ωPBE based on the
HJS exchange hole.

We begin with a few general comments before turning to
the individual GGAs. Performance for thermochemistry is
very strongly functional-dependent. Indeed, while LC-
ωLDA, LC-ωPBEsol, and LC-ωPBE08 show a minimum
in the error as a function of ω, LC-ωBLYP does not, at least
in the range considered here. The optimal value of ω appears
to increase as the functional becomes more like LDA. Note
in this context that even the best results for LC-ωPBEsol
and LC-ωLDA yield errors on the order of 10-15 kcal/mol.
Barrier heights, by contrast, all show minima in the range
of ω considered, and over a fairly narrow range at that. Note
also that the best results for barrier heights are consistently

Table 2. Mean and Mean Absolute Errors for the AE6 Set
of Atomization Energies, BH6 Set of Barrier Heights, and
the Total Atomic Energies of H-Ar, Comparing GGAs
(PBE, PBEsol, and BLYP) to Functionals Obtained from
GGA Hole Models (EP PBE Hole, HJS PBE Hole, PBEsol
Hole, and BLYP Hole)a

AE6 BH6 atoms

method ME MAE ME MAE ME MAE

LDA 76.96 76.96 -18.05 18.05 67.78 67.78
LDA hole 76.96 76.96 -18.05 18.05 67.78 67.78
PBEsol 35.40 35.40 -12.99 12.99 40.09 40.09
PBEsol hole 35.39 35.39 -12.99 12.99 40.09 40.09
PBE 11.89 15.14 -9.57 9.57 8.55 8.55
HJS PBE hole 11.88 15.13 -9.57 9.57 8.55 8.55
EP PBE hole 9.75 13.23 -9.41 9.41 7.21 7.24
BLYP -1.96 6.88 -8.03 8.03 -0.56 1.21
BLYP hole -1.94 6.88 -8.04 8.04 -0.56 1.21

a Results are in kilocalories per mole (AE6, BH6) or mH/
electron (atomic total energies). We include LDA and the LDA limit
of our hole model for comparison. Results are reported to two
decimal places because it is only at this level that discrepancies
between our exchange hole models and their parent semilocal
functionals can be seen.

Figure 2. Mean absolute errors in the AE6 set (kcal/mol) from
the LC-ωPBE08, LC-ωPBEsol, LC-ωLDA, and LC-ωBLYP
functionals as a function of ω.

Figure 3. Mean absolute errors in the BH6 set (kcal/mol) from
the LC-ωPBE08, LC-ωPBEsol, LC-ωLDA, and LC-ωBLYP
functionals as a function of ω.
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in the range of 1-3 kcal/mol. We are less interested in atomic
total energies but wish to remind the reader of the charac-
teristically large errors in LDA-based hybrids and to point
out that these errors are also observed in LC-ωLDA and LC-
ωPBEsol.

We now turn to the selection of ω for the various long-
range-corrected hybrids under consideration, beginning with
PBE. Since the differences between the EP and HJS hole
models for PBE are rather small, we do not expect significant
differences between LC-ωPBE and what we shall term LC-
ωPBE08. We also expect the value of ω in LC-ωPBE08 to
be similar to the value used in LC-ωPBE (ω ) 0.40a0

-1,
where a0 is the Bohr radius). In fact, the optimal value for
LC-ωPBE08 is, by our criterion, ω ) 0.45a0

-1. As can be
seen from Figures 2 and 3, this value essentially optimizes
the barrier heights, as errors in atomization energy are rather
flat near this value.

Before considering PBEsol, we turn to LC-ωLDA. We
should emphasize here that, by LC-ωLDA, we mean a long-
range-corrected functional based on the zero-gradient limit
of the HJS exchange hole (which is a nonoscillating
approximation to the true LDA exchange hole). Results are
thus expected to be similar to, but not identical to, previous
results using a long-range-corrected LDA. Figures 2 and 3
show that, unlike with LC-ωPBE08, the minima for the AE6
and BH6 sets as a function of ω do not overlap particularly
well. While barrier heights are optimized with ω ≈ 0.5a0

-1,
atomization energies prefer ω ≈ 0.6a0

-1 - 0.65a0
-1. This is

in qualitative agreement with the results of ref 49, which
finds that the optimal value of ω for long-range-corrected
LDA is smaller for barrier heights than it is for thermo-
chemistry. Our criterion selects ω ) 0.60a0

-1, essentially
because barrier heights are rather less sensitive to the precise
value of ω than are atomization energies, at least in the range
under consideration.

Since PBEsol is intermediate between PBE and LDA, we
expect the value of ω to be between that used in LC-ωPBE
and the optimal value in a long-range-corrected LDA. From
Figure 2, it is clear that LC-ωPBEsol does not perform as
well for thermochemistry as does LC-ωPBE, and the
thermochemically optimal ω is essentially the same as for

LC-ωLDA. But LC-ωPBEsol performs almost as well as
does LC-ωPBE for barrier heights, though the value of ω
needed is rather larger. We select ω ) 0.60a0

-1 for the
functional, though any value between 0.55a0

-1 and 0.65a0
-1

would do.
Finally, since B88 is in some sense “farther” from LDA

than is PBE, we might expect the optimal value of ω for
LC-ωBLYP to be somewhat lower than the 0.45a0

-1 used
in LC-ωPBE08. As Figures 2 and 3 establish, this is indeed
the case. While there is a broad minimum in the error for
barrier heights, the error for atomization energies strictly
increases as a function of ω in the region considered. We
choose ω ) 0.40a0

-1 as a compromise between accuracy
for reaction barriers and that for atomization energies, though
a slightly smaller value would also suffice.

With these optimized values for ω, we use self-consistent
orbitals in what follows. Note that optimization using self-
consistent orbitals and larger test sets could lead to slightly
different choices of ω, as could weighting atomization
energies differently relative to barrier heights. Throughout,
we use the procedures described in ref 50.

4.2. Thermochemistry. Performance for thermochemistry
can be examined somewhat more thoroughly by calculating
the heats of formation for the molecules in the G1, G2, and
G3 sets. Because the G2 (G3) set is a superset of the G1
(G2) set which primarily adds larger molecules, we can
identify size-dependent errors by examining the relative
performance for the three sets. Results are shown in Table
3. We also include results for total atomic energies, since it
is known that, by adjusting the atomic energies, one can
dramatically improve heats of formation.51

As might be expected, LC-ωPBE08 does not perform
much differently than does LC-ωPBE. Since we have already
seen that the EP PBE hole model gives slightly better
thermochemistry than does PBE, it is not terribly surprising
that LC-ωPBE08 is slightly inferior to LC-ωPBE. Nonethe-
less, results from LC-ωPBE08 are quite reasonable, and it
is reassuring to note that the small differences between the
EP and HJS model exchange holes have only small effects
on the accuracy of long-range-corrected hybrids.

The success of LC-ωPBE is already well-documented, and
it is not our intent to belabor the point, even with a slightly
different hole model. But we do wish to point out that there

Figure 4. Mean absolute errors in the atomic total energies
of H-Ar (mH/electron) from the LC-ωPBE08, LC-ωPBEsol,
LC-ωLDA, and LC-ωBLYP functionals as a function of ω.

Table 3. Errors in Thermochemistry for Several
Long-Range-Corrected GGAs and for Their Parent GGAsa

G1 G2 G3 atoms

model ME MAE ME MAE ME MAE ME MAE

LDA -36.2 36.2 -83.3 83.3 -121.5 121.5 67.8 67.8
PBEsol -16.9 17.2 -40.7 40.9 -58.7 58.8 40.1 40.1
PBE -6.7 8.2 -16.1 16.9 -21.7 22.2 8.6 8.6
BLYP -2.9 4.8 -0.6 7.3 3.8 9.5 -0.6 1.2
LC-ωLDA -2.3 8.4 -6.2 12.0 -8.4 14.6 39.9 42.9
LC-ωPBEsol 1.5 5.5 -5.1 9.5 -9.9 13.6 28.5 29.2
LC-ωPBE 2.1 3.5 -0.4 3.7 -0.9 4.2 4.4 5.0
LC-ωPBE08 2.8 3.9 0.0 3.9 -1.1 4.7 5.0 5.7
LC-ωBLYP 3.1 4.5 7.8 8.3 13.1 13.5 -2.6 2.7

a We show mean errors (ME) and mean absolute errors (MAE)
in kilocalories per mole for the G1, G2, and G3 sets of heats of
formation, and in mH/electron for the total atomic energies of
H-Ar.
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is something rather special about the PBE GGA; other long-
range-corrected hybrids based on the same hole model but
parametrized to reproduce different GGAs are noticeably
inferior. That LC-ωPBEsol is not as accurate for thermo-
chemistry as is LC-ωPBE is unsurprising, since LC-ωLDA
is less accurate than is LC-ωPBE. We see large size-
dependent errors in LC-ωPBEsol and LC-ωLDA, which is
not terribly surprising since the atomic total energies are very
poor. Interestingly, the size effects in LC-ωLDA are notice-
ably weaker than are those in LC-ωPBEsol.

Surprisingly, LC-ωBLYP fares little better in this regard
than does LC-ωPBEsol or LC-ωLDA. While atomic energies
are much better than they are for the other long-range-
corrected hybrids investigated (but worse than those from
BLYP itself), the heats of formation predicted by LC-ωBLYP
are disappointingly poor. Additionally, unlike in BLYP, there
is a large size-dependent error.

4.3. Barrier Heights. To more thoroughly assess perfor-
mance for reaction barriers, we consider the HTBH38 set of
38 hydrogen-transfer barriers, and the NHTBH38 set of 38
non-hydrogen-transfer barriers. Results are presented in Table
4. Here, we see that, in all cases, semilocal functionals
struggle to accurately describe reaction barriers, while the
long-range-corrected hybrids are uniformly accurate. Part of
this accuracy, admittedly, is due to ω being chosen with
barrier heights emphasized, but a glance at Figure 3 shows
that the range of ω over which long-range-corrected hybrids
give reasonable barrier heights is rather broad. We note also
that the errors in barrier heights are somewhat increased with
LC-ωPBEsol and particularly with LC-ωLDA.

4.4. Ionization Potentials and Electron Affinites. We
have thus far avoided any consideration of charged species.
Since ions do play important roles in chemistry, it is worth
considering performance of long-range-corrected hybrids for
these cases. To assess performance of our long-range-
corrected hybrids for charged species, we examine the G2
ion test set,52 excluding N2

+ and H2S+, which do not converge
at the GGA level.52 Our test set thus includes 86 ionization
potentials (IPs) and 58 electron affinities (EAs). Results are
calculated as the difference between the self-consistent
energies of the neutral and charged species (in other words,
these are “∆-SCF” calculations). We report them in Table
5.

The principle result to which we should draw attention is
that for neither IPs nor EAs does the long-range-correction
improve upon the parent semilocal functional. That the
semilocal functionals perform so well for electron affinites
may be somewhat surprising, though it is documented in the
literature. (See, for example, ref 50; note, however, that
because we do not include plane waves in our basis set, these
results may be somewhat artifactual.53) It is also perhaps
somewhat surprising that LC-ωLDA fares so poorly for these
compounds, even though the LSDA itself is not significantly
worse than the GGAs we have examined. We note that while
having the correct asymptotic decay of the exchange potential
is critical if the ionization potential is to be evaluated from
the highest occupied orbital energy, it is less important for
ionization potentials evaluated in the ∆-SCF approach. We
can of course evaluate the electron affinity from the ioniza-
tion potential of the negatively charged species, and the same
consideration would apply there.

5. Conclusions

Long-range-corrected hybrids offer some significant advan-
tages, provided that they can be constructed. We feel that in
constructing such a hybrid, one should make every effort to
satisfy as many exact constraints as possible. By using the
recently proposed GGA exchange hole model of ref 39, we
can construct long-range-corrected hybrids from an exchange
hole that obeys numerous exact constraints. Various GGAs
differ only in the parameters used to define the function
H (s), and once those parameters are determined for one’s
GGA of choice, the same code can be used for any long-
range-corrected hybrid. Of course, which GGAs yield
accurate long-range-corrected hybrids within this scheme is
not known, but we can draw a few tentative conclusions.
First, it does not seem to be particularly important which
GGA is used in treating barrier heights of chemical reactions,
though LC-ωLDA is notably poorer in this regard. The
choice of GGA matters significantly more for atomic energies
and for thermochemistry. Naturally, the proper range-
separation parameter ω depends on the functional, and while
we can draw no firm conclusions here, for the functionals
we have considered, the optimal ω decreases as the gradient-
dependence increases.

Table 4. Errors in Barrier Heights for Several
Long-Range-Corrected GGAs and for Their Parent GGAsa

HTBH38 NHTBH38

model ME MAE ME MAE

LDA -17.9 17.9 -12.4 12.7
PBEsol -13.1 13.1 -9.9 10.1
PBE -9.7 9.7 -8.5 8.6
BLYP -7.8 7.8 -8.7 8.7
LC-ωLDA 3.7 4.2 5.6 5.8
LC-ωPBEsol 1.3 2.1 4.1 4.4
LC-ωPBE -0.5 1.3 1.4 2.4
LC-ωPBE08 0.4 1.4 2.5 2.9
LC-ωBLYP 0.0 2.2 0.5 1.8

a We show mean errors (ME) and mean absolute errors (MAE)
in kcal/mol for the HTBH38 and NHTBH38 sets of reaction
barriers.

Table 5. Errors in Ionization Potentials (eV) and Electron
Affinites (eV) for Several Long-Range-Corrected GGAs and
for Their Parent GGAsa

IP EA

model ME MAE ME MAE

LDA 0.05 0.23 0.23 0.24
PBEsol -0.15 0.24 -0.08 0.21
PBE -0.11 0.23 0.06 0.12
BLYP -0.19 0.29 0.01 0.12
LC-ωLDA 0.64 0.64 0.46 0.46
LC-ωPBEsol 0.28 0.31 0.14 0.22
LC-ωPBE 0.07 0.19 0.02 0.18
LC-ωPBE08 0.11 0.20 0.02 0.19
LC-ωBLYP -0.02 0.20 -0.03 0.18

a We show mean errors (ME) and mean absolute errors (MAE)
for the 86 ionization potentials and 58 electron affinites of the G2
ion test set.
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Appendix A: Analytic Simplifications of the
Range-Separated Enhancement Factor

We can identify several areas where numerical difficulties
in evaluating the range-separated enhancement factor of eq
13 are likely to occur as ν becomes large. The polynomials
in � multiplying B/λ, CF (s)/λ2, and EG (s)/λ3 all go to
zero as ν goes to infinity. The logarithms vanish, and the
remaining terms cancel up to order 1/ν2. Here, we simplify
the result in such a way as to be more numerically stable.

To simplify the polynomials in �, we observe that

where this serves to define Λ. We note that, as νf0, Λfλ,
while, as νf∞, Λf2ν2.

To simplify the logarithms, we use, for example,

For large ν, this is 1 + O(1/ν2), and we can expand the
logarithm in a power series.

We can simplify the remaining terms by noting that

We thus have

Putting it all together, a numerically more robust expres-
sion for the range-separated GGA enhancement factor is
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Abstract: A new, regularized gradient expansion (RGE) approximation density functional (i.e.,
a generalized gradient approximation or GGA that recovers the second-order gradient expansion
for exchange in the slowly varying limit) was designed in an attempt to obtain good solid-state
and molecular properties at the same time from a single GGA. We assess the performance of
this functional for molecular atomization energies, solid lattice constants, and jellium surface
energies. We compare the performance of this functional to the modified Perdew-Burke-Ernzerhof
generalized gradient approximation (PBEsol GGA), the original PBE GGA, and the Tao-Perdew-
Staroverov-Scuseria (TPSS) meta-GGA.

I. Introduction

Kohn-Sham spin density functional theory1,2 is now the
most widely used method to calculate the ground-state
energies of atoms, molecules, solids, surfaces, and more
complex systems. In Kohn-Sham theory, the exchange-
correlation energy is a functional of the electron spin densities
and is the only quantity that must be approximated. The
development of increasingly accurate but universal ap-
proximations, for use throughout condensed matter physics
and quantum chemistry, is the aim of this work. This
development relies upon physical insights, paradigm ex-
amples, and exact constraints on the exchange-correlation
energy, plus minimal empiricism where necessary.

The popular density functionals can be assigned to the
rungs of a Jacob’s ladder3 according to their number and
kind of ingredients. The local ingredients include the electron
density, the gradient and Laplacian of the density, and other
quantities that are indirectly determined by the density,
constructed from the Kohn-Sham orbitals. The more
sophisticated density functionals4-7 include the kinetic
energy density as well. Climbing up to the ladder, the

accuracy of the density functionals increases, and the high-
level approximations are expected to achieve the goal of
functional development: to achieve high accuracy for a wide
range of systems from solids to atoms.

The lowest rung of the ladder, the LSDA (local spin
density approximation),1 uses the electron density only, is
exact for the uniform electron gas, and reaches moderate
accuracy for systems with slowly varying density. The
nonempirical GGA (generalized gradient approximation)8

density functionals rely on the correct features of the LSDA
while improving the atomization energies which are seriously
overestimated by the LSDA. Although some semiempirical
GGAs are more accurate for molecules, they all fail to
provide good lattice constants and surface energies. The
generally useful nonempirical PBE-GGA9 satisfies two
constraints relevant to solids, the uniform-density limit and
the good linear response of the LSDA.

It was shown in ref 10 that the exchange energy of neutral
atoms is well approximated by an asymmetric expansion in
the atomic number Z: Ex) -2.208Z5/3 - 0.196Z +... The
first term is determined by the LSDA, while the second term
arises from the gradient expansion of a GGA approximation.
In order to be asymptotically exact for large Z, and accurate
for most finite Z, the functional must account for both the
slowly varying term and the cusp correction. No GGA can
get both effects right individually. The exchange gradient
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expansion coefficient (µ) of the popular GGAs was set to
obtain good atomic and atomization energies and good
thermochemistry. This coefficient, however, is about twice
as large as the exact slowly varying gradient expansion
coefficient for exchange (µGGA ) 0.22-25 vs µGEA ) 10/
81).

Results for molecular atomization energies support the
conclusion that PBE is a generally useful nonempirical GGA.
The PBE form satisfies two constraints for solids, and thus
it can be a reasonable starting point for further development.
Unfortunately, the surface energy of jellium in the PBE
approximation is less accurate than that of LSDA.11

On the other hand, the GGA is a very limited functional
form that must necessarily be somewhat biased toward either
atoms and small molecules or toward solids and surfaces.
The derivation of the PBE GGA by constraint satisfaction9

had to choose two out of three constraints on the small-
gradient behavior, since a single GGA cannot satisfy all three
together. And it had to choose a particular way of satisfying
these constraints. These choices were influenced by the prior
GGA construction from the sharp real-space cutoff of the
spurious long-range parts of the gradient expansions8 for the
exchange and correlation hole densities. The employed sharp
or step-function cutoffs are parameter-free but are more
appropriate to atoms and small molecules (where the electron
density cuts off exponentially) than to solids (where the holes
can be more diffuse).

Reference 10 concluded that while the second-order
gradient expansion is relevant to solids, those real systems
are much closer to the limit of validity of the expansion for
exchange than they are for correlation. If we are interested
only in solids, it makes more sense to use the first principles
gradient coefficient for exchange µ)0.123 and choose
�)0.037 to recover the good LSDA linear response. Greater
accuracy requires us to make a fission and led us recently to
develop the successful PBEsol12 for solids while keeping
the successful PBE for atoms.

By incorporating more complex ingredients and exact
properties into the exchange-correlation energy, a higher-
rung functional can simultaneously recover the good LSD
linear response and the correct second-order gradient expan-
sion for both exchange and correlation. Meta-GGAs improve
upon the GGAs by the satisfaction of one paradigm for
condensed matter and another for quantum chemistry. The
paradigm for condensed matter physics is the slowly varying
limit,13 and that for quantum chemistry is the one and two-
electron density.14 The kinetic energy density is an ingredient
which permits recovery of the slowly varying limit through
higher-orders in the 3 operator.

Since meta-GGAs are not widely available in solid state
codes, there has been a great need to develop simple low-
level functionals that are accurate for restricted classes of
systems (e.g., solids). The semilocal functionals of the first
three rungs are computationally efficient in self-consistent
calculations.

Predicting lattice constants more accurately than LSDA
remains a challenge, even for state-of-the-art meta-GGAs;
the TPSS meta-GGA only achieves a moderate improvement
upon the Perdew-Burke-Ernzerhof (PBE) GGA.15 We built

the correct physics for solids into the new PBEsol generalized
gradient approximation,12 and we have cast it in a form that
makes it extremely easy for solid-state calculators to test and
apply. On the other hand the PBE is more successful in
chemistry than PBEsol, because it more radically reduces
the LSD overestimate of molecular atomization energies.
This situation motivated us to try to develop GGAs without
being biased toward either atoms and small molecules on
the one hand or toward solids and surfaces on the other,
combining all the favorable properties of different GGAs.
For recent developments building on the PBEsol concept see
ref 16.

II. Regularized Gradient Expansion

A universally useful GGA is approached in this work by
adding a higher-order term to the denominator of the PBEsol
GGA enhancement factor. We recall the exchange enhance-
ment factor Fx

PBE(s) for PBE GGA, which gives the
enhancement over LSDA exchange as a function of the
reduced density gradient s (defined below). The parameter
µ controls the approach of Fx

PBE to its slowly varying or s
f 0 and rapidly varying or s f ∞ limits (1 and 1 + κ,
respectively), while the parameter κ ) 0.804 sets the large-
gradient limit. (Satisfaction of the Lieb-Oxford bound17 on
Ex for all possible densities requires κ e 0.804, and κ ) 0
recovers LSDA exchange.)

PBEsol is a first (RGE1) regularized gradient expansion
(RGE) approximation, because it removes the spurious
divergence of the second-order gradient expansion. A second
RGE or RGE2 exchange energy also has the form

where εx
unif(n) ) -3(3π2n)1/3/4π is the exchange energy per

electron for the uniform electron gas of density n, and s )
|∇ n|/[4(3π2n)1/3n] is the dimensionless density gradient. The
form of eq 1 satisfies the uniform density scaling property
of the exchange energy.

For the second-order gradient coefficient for exchange,
valid for the slowly varying limit, we use the first-principles
µ ) 10/81 as justified in ref 12

Note that Fx(s) ) 1 + µs2 +... as sf0 and that the s4 term
of this expansion is designed to vanish for RGE2. In other
words, RGE2 is designed to recover the second-order
gradient expansion for exchange over a wide range of s. In
the large- gradient limit

In this work we restore the slowly varying limit over a
wide range of s. This choice can give more accurate lattice
constants and surface energies than PBE.12 But with the
successful PBEsol functional for solids we encountered a
dilemma: no functional achieved high accuracy for solid

Ex
RGE2[n] ) ∫ d3rn·εx

unif(n)·Fx
RGE2(s) (1)

Fx
RGE2(s) ) 1 + κ - κ

1 + µs2

κ
+ (µs2

κ )2
(2)

lim98
s f ∞

Fx f 1 + κ (3)
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properties and atomic energies at the same time. With the
selection of µ ) 10/81 we cannot ensure good quality
atomization energies within the limited frame of the PBEsol
GGA, since GGAs cannot use other inputs than the electron
density and its gradient. At the higher meta-GGA level, the
parameter µ is determined by recovering the PBE-GGA large
gradient limit, and the functional can be exact to fourth-
order in the slowly varying limit. We miss this flexibility at
the GGA level and have to find a reasonable interpolation
between the large gradient and small gradient limits. In other
words we have to find the way to resolve this inconsistency
of the GGAs without climbing up to the meta-GGA level.

With this formulation of the denominator of Fx in the
RGE2, we try to restore the approach of Fx to the large
gradient limit at the GGA level, keeping µ at its exact value
justified in the successful PBEsol functional. This form gives
better atomic exchange energies that the PBEsol (RGE1)
form. The RGE1 functional is defined as PBEsol exchange
combined with the standard PBE correlation. Our RGE2
formula satisfies the Lieb-Oxford bound like PBE,9 and, since
the spin-polarized Fx increases with s to a maximum value
of Fx e 1.804, the Lieb-Oxford bound is satisfied as well.

The nonlocality of Fx is displayed in Figure 1, where we
also compare Fx of the RGE2 and RGE1 (PBEsol) func-
tionals over the range of interest for real systems. The range
0 e s e 3 is the important region for most properties of real
systems, while 0 e s e 1 is relevant for the valence-electron
regions of densely packed solids. For a universally useful
functional, the nonlocality must be enhanced for s g 2,
compared to the RGE1 functional. The approach of Fx to
the large-gradient limit seems to be relevant for free atoms.12

The RGE2 Fx agrees well with the RGE1 in the valence
region of densely packed solids and increases over the PBE-
GGA in the relevant large gradient region for the free atoms.

The increase with s has been discussed in the context of
the atomization energies.18 Other works on atomization
energies and isodesmic stabilization energies19 confirm that
real systems can be split into two groups: solids and
molecules.20 These groups represent two different universal-
ity classes for the gradient expansion; in the solids the
electrons live in the classically allowed region, while in the

molecules they spend considerable time in classically forbid-
den regions.

Our universally useful RGE2 is expected to respect both
classes, and in addition an earlier work by us19 confirmed
that the diminished gradient makes the semilocal functionals
better not only for solids but also for single-bonded
hydrocarbons.

It has been known for a long time that the PBE-GGA
overestimates the atomization energies. This overbinding is
attributed to an inconsistency of the atomic and molecular
energies at the GGA level of approximation.18 The overes-
timation is increased with the reduced gradient expansion
PBEsol and arises from the worsened total energies of the
free atoms. The RGE2 is expected to improve the bad-quality
atomization energies of the PBEsol GGA due to increased
Fx values in the large-s region. Accurate total energies of
free atoms call for an increased Fx in the region of s g 2
relevant to free atoms, although an overenhanced exchange
might spoil the energies of molecules leading to overestima-
tion of atomization energies.

For a slowly varying density, the correlation energy has a
second-order gradient expansion

where

is the reduced correlation gradient on the scale of the
Thomas-Fermi screening wave vector instead of the Fermi
wave vector used in the exchange. The value of the
correlation gradient expansion coefficient � respects the
expansion from the work of Langreth and Perdew, which
implies the Ma-Brueckner high-density limit for the gradient
coefficient for correlation.21,22

Once again, as in our PBEsol work, the role of correlation
should be revisited. Since the convergence conditions are
more severe for the second-order gradient expansion in the
case of correlation than they are in the case of exchange, it
may not be so important in practice to recover the correct
Langreth-Vosko gradient expansion for correlation, even in
solids.23

Another condition relevant to solids is the linear response
of the uniform electron gas to a weak perturbing potential.
For small density variations of the uniform gas, the LSD is
an accurate approximation, while the second-order gradient
expansion is not. For such small density variations, s and t
will be small, and a GGA will have the expansions (1) and
(4). A good description which recovers the LSD requires a
cancelation between the second-order gradient terms

We have shown in the PBEsol construction that the GGA
form is too limited to allow for a perfect description of all
small density variations, so a choice must be made among
the constraints. We can keep the original PBE form but

Figure 1. Comparison of the PBE, RGE1 (PBEsol), RGE2,
and GEA (1 + 10/81 s2) exchange enhancement factors for
reduced exchange gradient s (0 e s e 6).

Ec[n] ) ∫ dr3n[εc
unif(n) + �t2] (4)

t ) |∇ n|

[2√4(3π2n)
1

3 /π]n
(5)

µ ) π2

3
� (6)
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change the second-order gradient coefficients for exchange
and correlation to satisfy solidlike constraints. The expansion
of the correlation has proven to be less relevant, and eq 6
can be respected by a reduced gradient coefficient for
correlation. With this choice we could keep the constraint
of the linear response in our RGE2 as well, but we decided
to follow the way we chose for the PBEsol functional and
sacrifice the constraint of the linear response for the sake of
good surface energies. The correlation gradient expansion
coefficient � ) 0.053 of the RGE2 correlation was set to
obtain TPSS jellium surface exchange-correlation energies
in the same way as in PBEsol (see discussion later). Figure
2 shows the comparison between the PBE, PBEsol, and
RGE2 exchange-correlation enhancement factors Fxc(s,rs,�
) 0) for the spin-unpolarized density, where rs is the Wigner-
Seitz radius and � ) (nv-nV)/n is the relative spin polarization
(here � ) 0) and

For small s, the PBEsol and RGE2 functionals are quite
similar for electron densities around 2 < rs < 6 (typical for
valence region of the metals studied in this paper). However,
for large s values, the two functionals behave quite differ-
ently, as shown in Figure 2.

The exchange-correlation (xc) energy Exc
hybid of the hybrid

functionals is defined as

where a is a mixing factor of Ex
HF Hartree-Fock, and Ex

DFA

density functional approximation (local GGA or meta-GGA

functionals) exchange energies, and Ec
DFA is a density

functional approximation correlation energy. The value of a
cannot be fixed universally. Good thermochemistry can be
obtained by setting 0.1 < a < 0.25 (cf. PBEh and TPSSh in
Table 1). To obtain good reaction energy barriers usually a
> 0.5 values are required. The amount of HF exchange was
controlled via Iop(3/76) of the GAUSSIAN program.30

III. Results and Discussion

In an assessment of a universal density functional, the
performance has to be tested on a test of atomization energies
and bulk solids. We used a triple-�-quality basis set. The
AE6 test set of Lynch and Truhlar24 provides a quick but
representative evaluation for the atomization energies of
diverse molecular systems: the AE6 set of atomization
energies includes six molecules: SiH4, S2, SiO, C3H4, C2H2O,
and C4H8.

This test set is small, however quite diverse, and was
constructed to reproduce the error of larger sets. For the AE6
data set, we show two sets of results coming from different
correlation parameters � of eq 4. � ) 0.066725 reproduces
the original PBE correlation, while the selection of � ) 0.053
sacrifices the good linear response in favor of better surface
energies (Vide infra) and comes from a fitting to meta-GGA
(TPSS) quality surface energies.

The results in Table 1 show that the value of the parameter
� influences the results, and � ) 0.066725 gives better
agreement with experiment. Both version of the RGE2/
6-311G(3df,2p) improve the atomization energies consider-
ably compared to the PBEsol/6-311G(3df,2p) results. This
shows clearly the importance of the larger enhancement
factor Fx for the large gradient limit for better atomization
energy. For functionals that show overbinding tendency, like
PBE, PBEsol, and RGE2, applying a smaller basis set (e.g.,
6-311G(d,p)) improves the agreement with the experimental
results, as shown in ref 18. We constructed hybrids from
the PBEsol and RGE2 functionals, denoted as PBEsolh and
RGE2h in Table 1 (cf. eq 8). To obtain best agreement with
experiment for the AE6 test set, we mix 37% exact exchange
with the RGE2 GGA exchange. This gives almost as good
a result as that of the quite good TPSSh functional. It is
expected that the large exact exchange ratio in RGE2h would
help to obtain improved barrier heights for chemical reac-
tions. (This will be studied elsewhere.) To obtain good
atomization energies, the PBEsol hybrid functional requires
more than 50% exact exchange. However, PBEsol was
constructed for solids, and we do not detail the optimization
of the PBEsol hybrid in this paper.

The test set of 18 solids15 was distributed over simple
metals, semiconductors, ionic solids, and transition metals,
and for this test set PBEsol showed essentially 0% error in
the lattice constant, when compared to experimental values
extrapolated to absolute zero temperature and corrected for
zero-point anharmonic expansion.15 The experimental low
temperature (5 K) lattice constants values are from refs 25
(Li), 26 (Na, K), 27 (Al, Pb, Cu, Rh, Pd, and Ag), and 28
(NaCl). The rest are based on room temperature values from
refs 29 (C, Si, SiC, Ge, GaAs, NaF, LiF) and from 26 (LiCl),
corrected to the T ) 0 limit using thermal expansion

Figure 2. Exchange-correlation gradient enhancement fac-
tors, Fxc(s,rs,�)0) vs the reduced density gradient s in the
range 0 e s e 3 for the generalized gradient approximations
PBE (dash dot black), PBEsol (dash red), and RGE2 (solid
blue) for rs ) 2, 3, 4, 5, and 6 (PBEsol) and rs ) 2, and 6
(PBE and RGE2). rs denotes the Wigner-Seitz radius, and �
denotes the relative spin polarization. rs ) 2 and 6 are the
smallest and largest enhancement curves, respectively. In
LDA Fxc(s,rs,�)0) ) Fxc(s)0,rs,�)0).

Exc
RGE2[n] ) ∫ d3rn·εx

unif(n)·Fxc
RGE2(s, rs, �) (7)

Exc
hybid ) a·Ex

HF + (1 - a)·Ex
DFA + Ec

DFA (8)

766 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Ruzsinszky et al.



corrections from ref 27 (Note that a linear extrapolation of
the lattice constant from 300 K to 0 K is neither accurate
nor used here.) Note that in ref 15 the ZPAE corrections for
C, Si, SiC, Ge, GaAs, NaCl, NaF, LiCl, LiF, and MgO are
incorrectly given; those values should be multiplied by 2,
as corrected in the erratum of ref 12. This small test set is
not representative, but a recent study shows32 that the
extension of the test set does not radically change the overall
statistics.

Our original calculations for solids were made with the
periodic-boundary-condition version of the Gaussian30 code.
The RGE2 functional is implemented self-consistently into
the developmental version of Gaussian, and the lattice
constants are computed with optimized geometry. We use
the same Gaussian-type orbital (GTO) basis sets as in our
earlier work.12 In order to make the calculations efficient,
the small-exponent functions have to be removed from the
molecular GTOs and the exponents of the remaining valence
functions reoptimized. For details see refs 15 and 31. It was
observed that the GTO basis set used in this study makes
the lattice constants slightly larger (by 0.01 Å on average)
compared to solid state codes like BAND or VASP.32

The valence electron densities of the 18 solids we have
studied have reduced density gradients in the range 0 < s <
2.2.32 To make the GGA recover the second-order gradient
expansion for exchange over a wide range of solid-state-
like densities, we have to enhance the gradient expansion
beyond the one used in the PBEsol functional. This enhance-
ment is achieved by adding the higher-order term to the
denominator of the enhancement factor.

In Table 2 we compare the new RGE2 results with the
PBE-GGA, PBEsol, and TPSS lattice constants. The PBEsol
is very accurate and produces a mean error (ME) of 0.02 Å
for these 18 solids, as noted earlier.12,32 The TPSS lattice
constants are somewhat too long and cannot compete in
accuracy with the PBEsol values. Notice that the TPSS and
RGE2 lattice constants are quite similar for simple metals
and semiconductors. The RGE2 shows a good performance
for transition metals in this test set (actually better than
PBEsol). The lesson we take from our PBEsol work is that

Table 1. Errors (kcal/mol) of the Atomization Energies of the AE6 Test Set Calculated with PBE, PBEsol, RGE2, and
TPSSh Functionals Using the 6-311G(3df,2p) Basis Setb

PBE PBEsol PBEsolh RGE2a RGE2 RGE2h RGE2h RGE2h RGE2h TPSSh expt

µ 0.21951 0.12346 0.12346 0.12346 0.12346 0.12346 0.12346 0.12346 0.12346 -
� 0.0667 0.0460 0.0460 0.0667 0.0530 0.0530 0.0530 0.0530 0.0530 -
a 0.00 0.00 0.25 0.00 0.00 0.25 0.30 0.37 0.40 0.10
SiH4 -9.2 1.3 1.5 -8.8 -4.8 -3.1 -2.7 -2.1 -1.8 10.7 322.4
SiO 3.6 12.9 -3.0 2.9 4.3 -8.7 -11.2 -14.4 -16.1 -11.0 192.1
S2 13.1 21.9 10.5 16.5 16.2 7.2 5.5 3.2 2.1 3.4 101.7
C3H4 16.4 45.1 26.0 18.9 22.4 8.8 6.2 2.7 1.0 0.0 704.8
C2H2O2 31.8 64.7 28.0 35.9 38.5 10.2 4.7 -2.4 -6.0 -7.0 633.4
C4H8 18.7 69.5 47.7 27.7 33.4 20.5 18.1 14.9 13.3 5.3 1149.0
ME 12.4 35.9 18.4 15.5 18.3 5.8 3.4 0.3 -1.2 0.2
MAE 15.5 35.9 19.5 18.5 20.0 9.8 8.1 6.6 6.7 6.2
rms 17.8 44.1 25.4 21.5 23.8 11.1 9.6 8.7 8.9 7.3
StDev 14.0 28.2 19.1 16.3 16.7 10.4 9.8 9.6 9.7 8.0
Min -9.2 1.3 -3.0 -8.8 -4.8 -8.7 -11.2 -14.4 -16.1 -11.0
Max 31.8 69.5 47.7 35.9 38.5 20.5 18.1 14.9 13.3 10.7

a RGE2 exchange + PBE correlation with � ) 0.066725. This choice of � results in slightly too large surface energies, and has negligible
influence on the lattice constants compared to the choice of � ) 0.0530. b The values of the exchange (µ) and correlation (�) gradient
expansion coefficients are shown. The weight of the exact exchange (a) is also shown for the hybrid functionals (cf. eq 8).

Table 2. Strukturbericht Symbols (Str.), Equilibrium Lattice
Constants (Å), and Statistical Data of 18 Test Solids
Calculated with the GAUSSIAN Programe

a Mean error. b Mean absolute error. c Total mean error. d Total
mean absolute error. e µ and � are the parameters of the
exchange and correlation enhancement factors in eqs 2 and 4.
The Strukturbericht symbols are used for the structure as follows:
A1, fcc; A2, bcc; A4, diamond; B1, rock salt; B3, zinc blend. The
experimental (5-50 K) lattice constants values are from refs 25
(Li), 26 (Na, K), 27 (Al, Cu, Rh, Pd, Ag), and 28 (NaCl). The rest
are based on room temperature values from refs 29 (C, Si, SiC,
Ge, GaAs NaF, LiF, MgO) and 26 (LiCl), corrected to the T ) 0
limit using the thermal expansion from ref 27. An estimate of the
zero-point anharmonic expansion is subtracted out from the
experimental values.32 The best theoretical values are in boldface.
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good lattice constants can be achieved when the correct
Antoniewicz-Kleinman33second-order gradient expansion for
exchange is recovered oVer a wider range of solid-state-
like densities than it is in TPSS. The TPSS meta-GGA
already recovers this expansion, but only for solid-like
densities that are very slowly varying over space. This
observation applies especially for ionic solids, for which
TPSS and RGE2 seriously overestimate the lattice con-
stants.15 A similar observation has been made recently32 for
the Armiento-Mattsson 2005 GGA.34

Overall, the performance of our RGE2 functional lies
between PBE and TPSS. Transition metals have very slowly
varying densities, with a maximum reduced gradient of less
than one, while ionic crystals have a maximum reduced
gradient around two (2.2).32 To achieve accurate atomization
energies, we have to enhance the nonlocality of our
functional, but this comes at the price of reduced accuracy
for lattice constants of ionic solids at the GGA level.

The surface energies of different approximations were
tested on jellium, a model for simple metals in which the
electrons are distributed in a positive background truncated
at a plane. The density of the bulk region is characterized
by the Wigner-Seitz radius, rs, which stems from the density
of the positive background. The exact value of the exchange
component of the jellium surface energy is known.35 There
is a significant improvement in the exchange energy of a
slowly varying density when we pass from PBE to TPSS,
and thus the inner part of the surface density profile is better
treated as shown in Table 3. The excellent performance of
the RGE2 exchange functional is apparent from Table 3. Note
that the RGE2 exchange functional has no empirical param-
eter, and it is better than the similarly nonempirical PBEsol
exchange. For the surface exchange-correlation energy, the

RGE2 results were fitted to the TPSS functional, and they
show an excellent agreement with the TPSS functional for
whole rs range in Figure 3. The diffusion Monte Carlo36 and
the most precise surface exchange-correlation energy results
coming from the random phase approximation (RPA+) with
short-range correction37 are also shown in Table 3. Com-
parison of the results in Tables 2 and 3 shows that the
excellent RGE results for jellium surface energies do not
guarantee good lattice constants, for a wide range of solids.

IV. Conclusions

We designed a new generalized gradient expansion or GGA,
a regularized gradient expansion or RGE2 that recovers the
second-order gradient expansion for exchange in the slowly
varying limit, in an attempt to obtain good solid-state and
molecular properties at the same time from a single GGA.
The performance of this functional for molecular atomization
energies is better than the performance of PBEsol but worse
than that of PBE. For the AE6 atomization test set, we
constructed an optimized RGE2 hybrid, with 37% exact
exchange and 63% RGE2 exchange. This RGE2h gives
reasonable molecular atomization energies with mean abso-
lute error (MAE) of 6.6 kcal/mol (while the quite good
nonempirical TPSSh functional has MAE ) 6.2 kcal/mol).
For lattice constants of solids, the RGE2 functional is worse
than the PBEsol functional except for transition metals.
Interestingly the overall performance of the RGE2 for solids
is similar to TPSS. However this test set of 18 solids is not
representative, and thus tests on larger test sets are planned.
The correlation gradient expansion coefficient � of the RGE2
correlation was set to obtain TPSS jellium surface exchange-
correlation energies in the same way as in PBEsol, but the
RGE2 agrees somewhat better with TPSS than PBEsol. Our
results show that the excellent RGE2 jellium surface energies
do not guarantee good lattice constants, for a wide range of
solids.

Table 3. Jellium Surface Exchange σx and
Exchange-Correlation Energies σxc (erg cm-2) for LSDA,
PBE, PBEsol (κ ) 0.804, µ ) 0.1234568, � ) 0.046),
RGE2 (κ ) 0.804, µ ) 0.1234568, � ) 0.053), TPSS,
Exact, Diffusion Monte Carlo (DMC), and Corrected
Random Phase Approximation (RPA+)f

rs

method σ 2 3 4 6

LSDAa x 3037 669 222 43.0
PBEa x 2438 468 128 11.8
PBEsol x 2666 540 162 22.9
RGE2 x 2622 523 153 19.5
TPSSa x 2553 498 141 15.4
exactb x 2624 526 157 22
LSDAa xc 3354 764 261 53
PBEa xc 3265 743 252 52
PBEsol xc 3374 774 267 56
RGE2 xc 3373 771 265 55
TPSSa xc 3380 772 266 55
DMCc xc 3392 768 261 52.5
RPA+d xc 3413 781 268 54
RGE2xPBEce xc 3449 797 278 59.5

a Reference 15. b Reference 35. c Diffusion Monte Carlo.36

d Corrected random phase approximation.37 e RGE2 exchange +
PBE correlation with � ) 0.066725. This choice of � results in
slightly too large surface energies and has negligible influence on
the lattice constants but improves atomization energies (cf. Table
1 compared to the choice of � ) 0.0530. f rs is the Wigner-Seitz
radius. (1 au ) 1.557 106 erg cm-2).

Figure 3. Ratio of calculated surface exchange-correlation
energy to that of LSDA, as a function of rs for various
approximations. The upper and lower error bars of the
diffusion Monte Carlo (DMC) surface exchange-correlation
energy (ref 36), err + and err -, are also shown for rs < 4.
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Abstract: A two-electron one-dimensional model of a heteroatomic molecule composed of two
open-shell atoms is considered. Including only two electrons isolates and examines the effect
that the highest occupied molecular orbital has on the Kohn-Sham potential as the molecule
dissociates. We reproduce the characteristic step and peak that previous high-level wave function
methods have shown to exist for real molecules in the low-density internuclear region. The
simplicity of our model enables us to investigate in detail their development as a function of
bond-length, with little computational effort, and derive properties of their features in the
dissociation limit. We show that the onset of the step is coincident with the internuclear separation
at which an avoided crossing between the ground-state and lowest charge-transfer excited-
state is approached. Although the step and peak features have little effect on the ground-state
energetics, we discuss their important consequences for dynamics and response.

I. Introduction

The unprecedented balance between accuracy and efficiency
of density functional theory (DFT)1-5 is in large part the
result of the discoveries of John Perdew. The mapping of
the true system of interacting electrons to a fictitious one in
which the electrons do not interact, yet reproduce the true
electron density, requires accurate approximations for the
exchange-correlation (xc) potential, which remained elusive
until the developments in the 1980’s of Perdew and co-
workers. Understanding and incorporating exact conditions
and physical principles underlie the robustness and reliability
of Perdew’s functionals. In this spirit, we study here the
structure of the exact xc potential as a molecule dissociates,
whose landscape of steps and peaks Perdew was one of the
first to explore.

In DFT, one solves self-consistently the Kohn-Sham (KS)
single-particle equations

where VS[F](r) is the KS potential, a functional of the ground-
state electronic density, F. (Atomic units, e2 ) p ) me ) 1,
are used throughout this paper). It is usually written as the
sum VS[F](r) ) Vext[F](r) + VH[F](r) + VXC[F](r), where
Vext(r) is the potential due to the nuclei, VH(r) ) ∫d3r′F(r′)/
|r - r′| is the classical Hartree potential and VXC(r) is the
exchange-correlation (xc) potential, incorporating the re-
maining many-body effects in a one-body potential. The KS
orbitals φi yield the true density according to

In principle, the ground-state density and all static properties
of the true interacting system are exactly recovered, but in
practice approximations are needed for the unknown xc
potential Vxc[F] as a functional of the density. Typically,
semilocal functionals, such as GGA’s6 and meta-GGA’s7,8

give good energies and structural properties at equilibrium
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molecular geometries; the nonempirical constructions of
Perdew and co-workers impart a reliability to the description
of diverse systems and properties. However, GGA’s do not
perform so well for weakly coupled subsystems. Notably,
recent work has been very successful in describing van der
Waal’s forces using sophisticated nonlocal approximations
in DFT.9-11 For molecules dissociating into open-shells, the
failure of semilocal approximations becomes drastic, yielding
unphysical fractional charges on the separated species.12-15

This problem was first highlighted by Perdew,13,14 motivated
by the observation of Slater12 that his “XR” method yields a
similar result.

Figure 7 of ref 14 shows that the exact xc potential
develops a “region of positive constant” around the atom
with the “tighter density distribution”, in the limit of infinite
separation, using a simple one-dimensional model. More
generally, the effect of molecular dissociation on the ground-
state xc potential for the case of real diatomic closed-shell
molecules consisting of open shell atoms has been studied
systematically, by Baerends, Gritsenko, and co-workers, in
a series of papers.16-21 In ref 16, the simplest case of this,
the two-electron H2 molecule was studied. The absence of
long-range left-right correlation in Hartree-Fock, renders
its potential overly repulsive near the nuclei, leading to an
overly diffuse density. A highly accurate xc potential was
constructed from correlated CISD first- and second- order
density matrices in ref. 16, and the resulting correlation
potential was shown to considerably reduce the repulsion at
the nuclei. It was also shown that the xc potential develops
a sharp maximum (peak) at the bond midpoint. A very
thorough analysis of the KS potential in stretched H2 was
performed later in ref 21, where the effect of different
approximate constructions for the KS orbital was investigated
and explained in detail (see also section IVB). Using an
iterative method introduced in ref 22, the authors of ref 17
were the first to construct molecular KS potentials for more
than two electrons from correlated densities. They studied
LiH (and H2) and found significant differences with the local
density approximation (LDA) at large separations. The
authors of ref 19 calculated the xc potential for the mono-
hydrides XH (X ) Li, B, F), analyzing its structure via a
decomposition or “partitioning” of VXC into various “energy”
and “response” components related to the electronic
structure.16,18,20 It was shown that left-right correlation leads
to a build-up in the xc potential around the H atom (a “step”,
as was observed in the simple model of ref 14). The peak
present in the bond midpoint of H2 was found, in the case
of the monohydrides, to shift toward the H atom while
becoming significantly smaller because of the presence of
core electrons softening the left-right correlation effects. The
partitioning scheme (reviewed in section II), which had
earlier been used to examine atomic xc potentials,18,20 proved
to be a particularly useful tool in the analysis, providing
insight into the origin of the peak and step structures.

Molecular dissociation in DFT is particularly relevant
when considering time-dependent processes and nuclear
dynamics on potential energy surfaces. The advent of time-
dependent density functional theory (TDDFT)23-25 allows
for a density-functional description of full electron dynamics

and here accurate long-range potentials are an important
ingredient for many applications, for example, photodisso-
ciation dynamics, excitations in large molecules, including
charge-transfer, and molecular transport. A recent paper26

discussed promising aspects, as well as challenges, in getting
accurate excited energy surfaces from TDDFT; certainly it
is important to get the ground-state potential energy surface
correct.

In the present paper, we study the xc potential of a
dissociating closed-shell heteroatomic molecule consisting
of two open-shell atoms by analyzing a simple one-
dimensional model of two different “one-electron atoms”.
The two “electrons” and two “nuclei” interact via soft-
Coulomb interactions with the softening parameters chosen
to approximate certain properties of the real LiH molecule.
This simple model allows numerically exact solution at a
wide range of separations with little computational effort,
while reproducing the essential features, from the point of
view of molecular dissociation, of the xc potential for real
three-dimensional molecules. It allows some analytic treat-
ment of these features that yields further insight into the
“step” and “peak” structures mentioned above; for example,
predicting the asymptotic height and position of the peak
and an explanation of why such a structure, that hardly affects
the energetics, must be there. A detailed examination of the
stretched bond-length where the step begins to appear, reveals
a correlation with the position of the avoided crossing
between the ground-state and lowest charge-transfer states.
We explain why.

A two-electron model isolates the effects caused by the
valence electrons, which play the major role in dissociative
processes, without additional potential-features arising from
core electrons. In the KS description of dissociation, the
major role is played by the KS HOMO, which in the case
of open-shell fragments, is delocalized across the molecule.
By including only the HOMO in our model, we isolate and
examine effects on the dissociating potential energy surface
caused solely by this most important orbital. The model is
presented in section III, while section IV contains the
numerical and analytic results.

We may draw conclusions from this simple model about
real three-dimensional molecules composed of open-shell
fragments of general odd electron-number, but with a little
caution: we find quantitative differences resulting from the
lack of core electrons in our model and the much longer
effective range of the soft-Coulomb interaction in 1D
compared to the true 3D Coulomb interaction. The soft-
Coulomb interaction is used in many interesting investiga-
tions of strong-field dynamics27-32 and, recently, in the
context of TDDFT:33,34 these models capture the essence of
phenomena such as nonsequential double-ionization, and
laser-induced electron-recollision. The peak and step are
challenging features for approximations to capture and are
lacking in almost all functionals used today. Being in a low-
density region, the peak structure has negligible energetic
consequence; however it does play a role when response or
full dynamics is considered: for example, it reduces the
(hyper-)polarizability of long-chain systems.35 Because they
represent barriers to electron transport, the work here is also
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relevant to one-dimensional transport calculations in mo-
lecular wires,36 although this fact has not been discussed
before, so perhaps not yet been fully appreciated. The step
structure, essential to avoid the fractional charge problem,
has severe consequences for the structure of the TDDFT xc
kernel as we discuss in section V.

II. Decomposition of the xc Potential

The partitioning of the xc potential16-20 was motivated by
first decomposing the xc energy components into “potential”
and “kinetic” terms of the form:

implicitly define hole and correlation kinetic potentials, Vxc
hole

and Vc
kin. The total xc potential is then partitioned into three

components

Vxc
hole[F](r) is the Coulomb potential of the xc hole

where the xc hole Fxc(r1, r2) is defined through the pair
density P(r1, r2) (joint probability of finding an electron at
r1 while another is at r2), via P(r1, r2) ) F(r1)(F(r2) +
Fxc(r1, r2)). When added to the Hartree potential, Vxc

hole(r) +
VH(r) represents the average repulsion an electron at position
r experiences caused by the other (N-1) electrons in the
system. In terms of the conditional probability amplitude,
whose square gives the probability of finding the other (N-
1) electrons in the system with space-spin coordinates x2,
x3,..., xN when an electron is known to be at position r1

where Ψ(x1, x2,..., xN) is the interacting many-electron wave
function, we have

The second term in eq 4, Vc, kin[F](r), is the correlation
contribution to the kinetic component of the xc potential. It
is the difference of the kinetic components of the interacting
and noninteracting KS systems

where the kinetic components may be written in terms of
the conditional probability amplitude

and

In eq 9, F(r′1, r1) is the first-order spin-summed reduced
density-matrix, and in eq 10, Φs(s1, x2,..., xN|r1) is the
conditional probability amplitude of the KS system, which
is defined as in eq 6 but with the KS single Slater
determinant, whose orbitals are φi(r), replacing the full many-
electron wave function.

The final term in eq 4 is the so-called response potential.
It may be further partitioned into terms representing the
response of the xc hole and the response of the correlation
kinetic potential,18,19 but we will not pursue this further
decomposition here.

For two electrons in a spin-singlet, many of these
expressions simplify considerably, as the KS single-Slater
determinant consists of one doubly occupied spatial orbital,
φ0(r), which is equal to square root of half the density

Substituting into eq 1, we can solve explicitly for the KS
potential as a functional of the density

where I is the first ionization potential of the system. From
eq 10, Vs, kin(r) ) 0 and eq 8 reduces to

Also, for two electrons, Vx(r) ) Vx
hole(r) ) -(1/2)VH(r). The

exchange component to the response potential, Vresp is zero.
We may therefore write

As was found in refs 18 and 19, as a heteroatomic
molecule dissociates, a step structure in the low-density bond
midpoint region arises in the response component, Vresp,
accompanied by a peak structure in the kinetic component
Vc, kin of the xc potential (see also Figures 3 and 4).

Consider now a simplified description of the molecule that
has includes just one electron on each atom. As explained
in ref 16 and reflected in eq 9, Vkin(r) depends on the gradient
of the conditional probability amplitude, so describes how

Exc[F] ) Wxc[F] + Tc[F] where

Wxc[F] ) 1
2 ∫ F(r)Vxc

hole[F](r)d3r and

Tc[F] ) ∫ F(r)Vc
kin[F](r)

(3)

Vxc[F](r) ) Vxc
hole[F](r) + Vc,kin[F](r) + Vresp[F](r) (4)

Vxc
hole(r) ) ∫ Fxc(r, r2)

|r - r2|
d3r2 (5)

Φ(s1, x2, ..., xN|r1) )
Ψ(x1, x2, ..., xN)

�F(r1)

N

(6)

Vxc
hole(r) + VH(r) ) ∫Φ*(s1, x2, ..., xN|r) ×

[ ∑
i)2

N
1

|r - ri| ]Φ(s, x2, ..., xN|r)ds1dx2...dxN (7)

Vc,kin(r) ) Vkin(r) - Vs,kin(r) (8)

Vkin(r1) ) 1
2 ∫|∇ 1Φ(s1, x2, ..., xN|r1)|

2ds1dx2...dxN

)
∇ 1′∇ 1F(r1′ , r1)

2|
r1)r1′

F(r1)
-

[∇ F(r1)]
2

8F(r1)
2

(9)

Vs,kin(r1) ) 1
2 ∫|∇ 1Φs(s1, x2, ..., xN|r1)|

2ds1dx2...dxN

)
1
2 ∑

i)1

N |∇ 1

φi(r1)

F1/2(r1) |2
(10)

φ0(r) ) �F(r)
2

(11)

VS[F](r) ) ∇ 2√F(r)

2√F(r)
- I (12)

Vc,kin(r) ) Vkin(r) (13)

Vx(r) ) -VH(r)/2 ) Vx
hole(r) (14)

Vc(r) ) Vc
hole(r) + Vc,kin(r) + Vc,resp(r) (15)
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strongly the motion of an electron at reference position r is
correlated with the other electrons in the system. For r near
one of the nuclei, the reference electron moves in a potential
dominated by the nuclear potential, the conditional amplitude
Φ reduces to the atomic HOMO of the other atom, and does
not change for small changes around r; hence Vkin goes to
zero. But in the internuclear region, the motion of the two
electrons becomes correlated: as the reference position moves
from one nucleus to the other, the conditional probability of
finding the other switches from being toward one atom to
the other, and so Vkin peaks.

The origin of the step structure was also analyzed
extensively in ref 19 and shown to arise in the correlation
component of the response potential, Vc

resp. It was discovered
earlier,14,39 in relation to the derivative discontinuity,13,14,39,40

that the correlation potential for a long-range molecule
composed of two open-shell atoms must have a step in the
midpoint region, whose size is such that the atomic HOMO
orbital energies realign. From Koopman’s theorem, the
HOMO energy equals the ionization potential; therefore the
step has a size ∆I ) I2 - I1, where I2,1 is the larger(smaller)
ionization potential of the two atoms, raising the potential
of the more tightly bound atom. Far away from the molecule
the potential near this atom steps back down to zero. A
simple way to understand the origin of the step is to realize
that had the step not been there, then one could lower the
ground-state energy of the long-range molecule by transfer-
ring a fraction of charge from the atom with the higher
ionization potential to that with the lower, leading to the
molecule dissociating into fractionally charged species.
Because this cannot happen, the KS potential develops a step
in the bonding region, which realigns the atomic HOMOs,
so preventing any bias. Another way to put this is that the
chemical potential must be the same throughout the long-
range molecule and equal to the molecular HOMO orbital
energy. Since the chemical potential of the true system is
the smallest ionization potential in the system at infinite
separation, the KS potential near the atom with the larger
atomic ionization potential must be uniformly raised by ∆I
to bring it to the ionization potential of the other atom, while
asymptotically stepping back down to zero.

We shall now introduce our two-electron model to study
these features further and how they develop as a function of
bond-length.

III. A One-Dimensional Two-Electron Model
of LiH

A simple one-dimensional, two-electron model of lithium
hydride can be used to illustrate several important features
of heteroatomic dissociation. Much of the essential physics
of the dissociation process may be captured by focusing on
the chemically important valence electrons, while represent-
ing the effect of the core electrons by an average effective
potential, such as a pseudopotential or frozen-core ap-
proximation. In the case of LiH, the two core electrons are
localized in the Li 1s shell, while the two valence electrons
are delocalized across the molecule. Our goal is to analyze
the effect of bond breaking and formation on the various xc
components (eq 4), which in a real molecule will be partially

obscured by shell structure and other many-electron effects
from the electrons in the Li 1s core. Our two-electron model
enables us to circumvent this complication, by focusing
solely on the electrons involved in the bond, and their effect
on the Kohn-Sham characteristics. As further simplication,
it is reasonable to use a one-dimensional model, where the
coordinate is taken to be along the bond axis, for cylindrically
symmetric systems such as a diatomic molecule.

As is often done in one-dimensional models, the Coulomb
potential (1/|r - r′| is replaced by a soft-Coulomb potential,
(1/[a +(x - x′)2]1/2. For a model of LiH at interatomic
separation R, we write the electron-nuclear potential as

The “softening parameters” a and b are directly related to
the ionization potentials of the individual atoms (see shortly).
Similarly, the electron-electron repulsion is represented by
a soft-Coulomb form

We place Li at -R/2 and H at R/2, and choose the
parameters a ) 0.7, b ) 2.25, and c ) 0.6, for reasons
explained in the following. With a ) 0.7, the ionization
potential of hydrogen in our model comes out to be 0.776H
as compared with 0.5H for the real atom. Taking b ) 2.25
yields that of Li in our model as 0.476H as compared with
0.198H for the real lithium atom. The correct difference in
ionization potentials of the atoms ∆I ) IH - ILi ) 0.3H is
however exactly reproduced by our parameters; ∆I is a key
quantity in our analysis of the KS potential at large
interatomic separations. Because of the long-range nature
of the soft-Coulomb interaction, we choose the atomic
ionization potentials be larger than in the true 3D case to
prevent the atomic densities of the individual atoms from
being too diffuse. Other factors considered were the equi-
librium bond length (model 1.6 au, true 3.0 au), dissociation
energy (model 0.068H, true 0.092H) and molecular first
ionization potential (model 0.51H, true 0.29H), where the
nuclear-nuclear interaction is modeled by

In Figure 1, the dissociation curve for our model is plotted
for comparison with that of 3D LiH.41

IV. Numerical Solution and Results

We use a standard Runge-Kutta differential equation solver,
as implemented in the octopus code,42-44 to numerically
solve for the ground-state wave function Ψ(x, x′) of the
Hamiltonian:

Vext(x) ) - 1

√a + (x - R/2)2
- 1

√b + (x + R/2)2
(16)

Vee(x1, x2) )
1

√c + (x1 - x2)
2

(17)

Vnn(R) ) 1

√(a + b - c) + R2
(18)

H ) -1
2

d2

dx1
2
- 1

2
d2

dx2
2
+ Vext(x1) + Vext(x2) + Vee(x1 - x2)

(19)
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where Vext(x) and Vee(x1 - x2) are defined in eqs 16 and 17.
The above two particle Hamiltonian is mathematically
equivalent to that of one particle moving in the two-
dimensional potential42-44

We solve the equivalent one-particle Schrödinger equation
on a rectangular two-dimensional 25 by 25 au real space
grid. The grid points are separated by a distance of 0.04 au.

The density is obtained from the wave function through
F(x) ) 2∫dx′|Ψ(x, x′)|2 and then substituted into eq 12 to
yield the exact KS potential. The xc potential can be isolated
from subtracting the external potential eq 16 and the Hartree
potential, VH(x) ) ∫F(x)Vee(x - x′)dx′ (using Vee from eq 17).
Because VX(x) ) -VH(x)/2, we may also extract the correla-
tion potential alone Vc(x). From the conditional probability
amplitude 6, we construct Vxc

hole(x) according to eq 7.
The exact KS potential is plotted at several different

internuclear distances in Figure.(2) alongside the external
potential and the density. As the molecule dissociates,
steplike and peaklike features clearly develop in the KS
potential. There is a build-up in the KS potential around the
more electronegative atom that, at each R, eventually returns
to zero on the right-hand side of the atom (one sees the
beginning of the return to zero at the smaller separations
shown, but at separation R ) 10.0, this occurs beyond the
region plotted).

These features occur in the response and kinetic compo-
nents of the correlation potential, as is evident in Figure 3.
Here, we plot the xc potential (solid), which is the sum of
the xc-hole potential (dotted) and the response components
Vc, kin + Vresp (dashed). At equilibrium bond-length (R ) 1.6
au), the xc potential is dominated by the potential of the xc
hole. As the molecule dissociates the Vc, kin + Vresp components
become large giving rise to clear peak and step structures.
At large separation, the local variation of the total xc potential
around each atom is almost entirely caused by the xc hole:
at R ) 6.0 au and 10.0 au, Vxc and Vxc

hole exactly coincide
near Li, while near H they have the same shape, but the
well in Vxc is translated upward by exactly 3.0 au relative to
Vxc

hole, which is the magnitude of the step ∆I (see section II).
At R ) 6.0 au, the step has reached its asymptotic value of
IH - ILi ) 3.0 au. As the molecule is pulled apart further,
the step does not increase in size, but becomes flatter and
larger in spatial extent. In section IVA, we show that the
bond-length at which the step begins to develop is related
to the position of the avoided crossing between the ground-
state and the state that eventually becomes the lowest charge-
transfer state.

A sharp peak near the rise of the step is evident in the xc
potential (Figure 3); this occurs in the kinetic component to
the correlation potential, Vc,kin, as discussed in section II. We
return to an analysis of its magnitude and location in the widely
separated limit and an explanation of its role in achieving the
exact density of the interacting system in section IVB.

In Figure 4, we plot the potentials for the separation R )
10.0. This is the largest separation for which we could
converge our numerical method. In the limit of very large
separation, we expect that the KS potential reduces simply

to the external potential in the region of the nuclei because
it would be a one-electron system around each nucleus. There
may be a possible shift up or down relative to the external
potential because constants in potentials have no physical
relevance. That is, we expect the Hartree-plus-xc potential
becomes flat in the atomic regions. We notice in our model
at R ) 10.0, that this is approximately true: there is however
a gentle slope in VHxc, upward around the left nucleus, and
downward on the right, and this is largely the result of a
Hartree effect. Compared to the atomic densities in true
Coulomb-interacting systems, the soft-Coulomb densities in

Vext(x) + Vext(y) + Vee(x - y) (20)

Figure 1. Binding energy for (1) model 1D LiH and (2) true
3D LiH.

Figure 2. vS (solid curves), vext (dashed), and the density
(dotted curves) plotted at the internuclear separations indicated.

Figure 3. Total xc potential vxc (solid curves), vc,kin + vresp

(dashed curves), vxc
hole (dotted curves) at various internuclear

separations.
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one-dimension fall off much slower away from their nuclei,
resulting in a longer-ranged Hartree and xc potential than in
the true 3D counterpart. It is clear from the graph that the
Hartree potential is still significant in the interatomic region.
In addition to long-ranged correlation effects from the density
on the “other” atom (i.e., the peak and step), the xc potential
must cancel the local Hartree potential: the exchange
potential takes care of half of this cancelation (eq 14), but
the correlation potential must also contribute a well of half

the size of the Hartree, as is evident in the graph. Despite
the long-rangedness of the Hartree potential, R ) 10.0 can
still be viewed as “asymptotic” from the point of view of
the peak and step structures in the correlation potential: the
graph shows clearly that the potential on the hydrogen
nucleus on the right is raised by ∆I, and the peak has a height
of about 0.76 (see last section).

A. Onset of the Step: Relation to Potential Energy
Surface Crossings. We now show that the bond-length at
which the step begins to significantly develop is correlated

Figure 4. Components of the potentials for R ) 10.0.

Figure 5. Ground-state and first-excited state (charge-
transfer) potential energy surfaces for our model with c ) 0.6
(top left), c ) 1.0 (top right), c ) 2.8 (bottom left). The energy
differences between the surfaces are shown in the bottom
right figure; their minimum lies at the avoided crossing.

Figure 6. Hartree-exchange-correlation potential, vHxc(x) for
our LiH model (c ) 0.6); the values of interatomic separation
R are indicated.

Figure 7. Hartree-exchange-correlation potential, vHxc(x) for
our LiH model (c ) 2.8); the values of interatomic separation
R are indicated.

Figure 8. Kinetic and response components of the correlation
potential vc,kin + vc,resp for our model with c ) 0.6; the values
of interatomic separation R are indicated.

Figure 9. Kinetic and response components of the correlation
potential vc,kin + vc,resp for our model with c ) 2.8.
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with the position of the avoided crossing in the potential
energy surfaces associated with the ground-state and the
lowest excited charge transfer state. In a diabatic picture,
ionic and covalent curves cross at an internuclear distance,
RC, which is approximately equal to 1/(ID - AA), where ID

is the ionization energy of the donor and AA the electron

affinity of the acceptor, in the lowest charge-transfer state
of the long-range molecule.45 When one considers the
adiabatic potential energy surfaces, the crossing becomes an
avoided one, whose splitting exponentially decreases as a
function of RC.45

What has not been previously pointed out, however, is
that the step structure in the KS potential begins to develop
in the vicinity of the avoided crossing. Why this must be so
lies in the fact that the step is an asymptotic feature, that
arises once the two atoms are independent systems, and its
shift of the eigenvalues of the more tightly bound atom
ensures that the ground-state solution of the KS potential
has exactly half the density (i.e., one electron) on either side
of the midpoint (see section II). The development of the step
must therefore track the independence of the two atomic
systems (measured, for example, by their indifference to a
perturbation on the other atom). The avoided crossing marks
the point at which the molecule transitions (moving from
short bond distances to longer ones) from a single system to
two independent systems. The width of this transition tracks
the magnitude of the ground-excited energy gap at the
avoided crossing, that is, it should be wider when the avoided
crossing is at small bond distances and sharper when the
avoided crossing occurs at large distances.

Our model demonstrates this explicitly. Figure 5 presents
the ground- and first excited-state potential energy surfaces
for three different values of the electron-electron soft-
Coulomb parameter, c. As c increases, the avoided crossing
moves out and becomes sharper; the lowest-energy gap
therefore decreases, indicating that the transition from ionic
to covalent character occurs more abruptly.

In Figure 6, we plot the Hartree plus xc potential, VHxc(x)
) VH(x) + Vxc(x) for a range of internuclear separations R,
for c ) 0.6. Because this is the net potential that gets added
to the external potential, we expect that in the limit of wide
separation, it becomes flat around each nucleus because it
should describe essentially two one-electron systems. We
see this in the graph, where a definite step is visible from R
) 5.0 and higher. We see that it is indeed in the approach
to the avoided crossing, at about R ) 4.0, that a shoulder
first becomes clearly visible around the atom with the higher
IP; this develops fully into a step of size ∆I, as the molecule
dissociates.

Figure 10. Value of vc kin + vresp at the location of the H atom
in our model, as a function of the internuclear separation R,
and with c-values as indicated.

Figure 11. Asymptotic expression for vHxc (solid curve) in the
interatomic region compared to vHxc in our model (dashed
curve), and vkin + vresp (dotted line) in our model at separations
indicated.

Figure 12. Peak in vc kin(x) and that in the fractional density-
error of the KS orbital solution to the KS potential with the
peak taken out, �(FHFLi)/(FH + FLi), (see text) have the same
location.

Figure 13. LSD KS eigenvalues for LiH become near-
degenerate as a function of internuclear separation R.
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In Figure 7, we plot VHxc for c ) 2.8. The step begins to
develop at larger R, corresponding to the larger RC where
the avoided crossing occurs. Also, as the avoided crossing
becomes sharper, the onset of the step happens more rapidly.

The long-rangedness of the density in soft-Coulomb
systems means that the Hartree and exchange terms decay
slower than in the usual Coulomb case. To clarify the step
and peak structures, we plot just the kinetic plus response
term in Figure 8 for our LiH model of c ) 0.6 and in Figure
9 for c ) 2.8. The relation between the R at which the step
develops and the avoided crossing discussed above is seen
more clearly in these figures. Finally, in Figure 10, we plot
the value of Vc,kin + Vresp at the location of the atom with the
larger IP (the H atom in our model), as a function of
internuclear separation R, for various different c-values. This
graph shows quite clearly that the development of the step
tracks the location and sharpness of the avoided crossing:
the larger the separation at which the avoided crossing occurs
(i.e., larger c-value), the consequently larger R the step is
onset and that the step develops more sharply, corresponding
to the sharper avoided crossing at larger distances.

B. Asymptotic Separation Limit, and the Signi-
ficance of the Peak. Analytic expressions for the xc potential
and its components in our two-electron model can be found
in the separated-atom limit, by adopting the Heitler-London
form for the wave function

where SH,Li is the overlap integral

We will focus on the interatomic region, far from either
nuclei, in this limit. To lowest order in the separation R, the
orbitals φLi(x) and φH(x) in this region may be written

where R ) �(2I), with I being the first ionization potential
of the atom. Similar expressions hold for the three-
dimensional case, with Coulomb interaction; the only dif-
ferences being that instead the orbitals have asymptotic
dependence according to

(where the x-axis is taken to be the bond axis).
It is a simple exercise to construct the first-order density-

matrix and the density using these orbitals. Substituting into
eqs 12 and 9 yields the large-separation limit of the KS
potential and Vkin(r).

In the limit of large interatomic separation, the Hartree
potential vanishes as the inverse distance from the nuclei in
the interatomic region. Also, in this limit, the second-order
density matrix factorizes into a product of densities and it
follows from eq 5 that Vxc

hole(r) also falls off as the inverse

distance from the nuclei in the interatomic region. The KS
potential is then dominated by contributions from Vkin(r) and
Vresp(r). Explicitly, in one dimension, this is given by

In the above expression, φ′ and φ′′ denote the first and second
spatial derivatives of the orbital, and ε is the square of the
overlap integral at interatomic separation R

In Figure 11), the asymptotic expression for VHxc() VS -
Vext) using the orbitals of eq 23 is plotted for comparison
with the Vc,kin(r) + Vresp(r) component of the numerical
solution using the soft-Coulomb potentials. (As noted earlier,
the soft-Coulomb orbitals are longer-ranged than their 3D
Coulomb counterparts, so VHxc achieves its asymptotic form
only at larger distances.) We see that the step reaches its
asymptotic limit more quickly than the peak. For instance,
at R ) 10.0 au the peak for the numerical solution is
somewhat smaller than that of the analytic expression,
although the step has already reached its asymptotic value
of 3.0H.

We next derive asymptotic expressions for the location
and magnitude of the peak and step structures as functions
of the internuclear separation. Defining the location of the
peak from the condition (d/dx)Vc,kin|xpeak

) 0, we obtain

where ILi and IH are the ionization potentials of Li and H,
respectively. For the 3D case, the second term on the right
is modified to be

Defining the location of the step by its inflection point, that
is, from the condition (d2/dx2)Vresp ) 0, one obtains the same
result, that is,

Therefore, in the asymptotic limit, our two-electron model
shows that the location of the peak and step coincide. The
second term in eq 27 is negative, but in general small

ΦHL(x, x') )
φH(x)φLi(x') + φLi(x)φH(x')

√2(1 + SH,Li
2)

(21)

SH,Li ) ∫ φH(x)φLi(x)dx (22)

φH(x) ) √RHeRH(x-
R

2
)

φLi(x) ) √RLie
-RLi(x+

R

2
)

(23)

φ(x) ) R3/2e-R[(x((R / 2))2+y2+ z2]1/2

(24)

VS ) 1
2

|φH′ |2 + |φLi′ |2 + 2√ε(φH′ )(φLi′ )

|φH|2 + |φLi|
2 + 2√εφHφLi

+

1
2

φHφ″H + φLiφ″Li + √ε(φLiφ″H + φHφ″Li)

|φH|2 + |φLi|
2 + 2√εφHφLi

-

1
4

(φHφH′ + φLiφLi′ + √ε(φLiφH′ + φHφLi′ )2

(|φH|2 + |φLi|
2 + 2√εφHφLi)

2
- ILi (25)

ε )
RHRLi

(RH - RLi)
2
(e-RRLi - e-RRH)2 (26)

xpeak ) R
2

(1 - �ILi

IH
)

(1 + �ILi

IH
)
+ 1

√32

ln
ILi

IH

√ILi + √IH

(27)

3

√32

ln
ILi

IH

√ILi + √IH

(28)

xstep ) xpeak (29)
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compared to the first term for large interatomic separation
R. Therefore, the peak and step structures are located closer
to the hydrogen atom, more generally, closer to the more
electronegative atom of a diatomic molecule. On the other
hand, the minimum of the density

lies closer to Li than the peak/step location, but still on the
side of the bond midpoint closer to H: The first term of eq
30 is identical to eq 27, while the second term contains the
logarithm of the ratio ILi

2/IH
2 instead of the ratio ILi/IH, which

is smaller than one.
Our simple two-electron model thus explains the earlier

observations in real molecules:19 In the general many-
electron heteroatomic case, given that the peak and step
structures arise from the delocalized HOMO, our analysis
can predict their positions. The location of the step was seen
to coincide with the peak in the true LiH molecule, with
both lying closer to the H atom, at least for the largest
interatomic distances that those calculations were able to
perform. For the homoatomic case, our results (eqs 27 and
30) predict that xpeak ) xmin(n) ) 0, and so, the minimum of
the density and peak location coincide at the bond midpoint;
also borne out by the examples in the literature.

We next turn to the magnitudes of the structures. Using
the density matrix constructed from the orbitals in eq 23,
one can show that the magnitude of the peak structure in
Vkin(r), in the limit that the overlap integral vanishes, is given
by the expression

For our two-electron model of LiH, this gives a value of
0.616 au. Adding the value of the step in Vresp at its
inflection point (∆I/2 ) 0.15 au), gives 0.7672 au, which
is indeed the peak to which our numerical solution
asymptotes. For the homoatomic case, the above expres-
sion gives a value of Vpeak ) 0.5 au, agreeing with the
results of ref 19 and16 for the true homoatomic two
electron system H2. However, in ref 19, the magnitude of
the peak for true LiH, was significantly smaller than this
prediction. This discrepancy is due to the effect of the
localized core electrons in the Li 1s shell, which lead to
a dramatic decrease in the magnitude of the gradient of
the conditional probability amplitude eq 6 in the inter-
atomic region, and hence by eq 9, a decrease in the
magnitude of the peak.

As discussed in section II, the peak emerges out of
analyzing the change in the conditional probability. We now
give a different argument for why the peak must be there,
even though it has negligible effect on the ground-state
energetics. The peak occurs when one takes the “nonbond-
ing” orbital as the KS orbital

(Here FH is the atomic density of the H atom and FLi that of
the Li atom, that is, the squares of the orbitals in eq 23).
This is the exact doubly occupied KS orbital, since twice its
square yields the exact density in the limit of infinite
separation, F ) 2|φ|2 ) FH + FLi.

If one instead takes the “bonding orbital”

and finds the KS potential corresponding to this, there is no
peak structure (but there is still the step). That is, if one asks
what is the KS orbital for the KS potential with the peak
structure sliced out, the KS orbital would instead be φbond.
Now the density corresponding to φbond is

that is, is equal to the sum of the atomic densities plus a
term 2�(FHFLi). This term is indeed very small, but taken
as a fraction of the total density, (FHFLi)1/2/(FH + FLi), displays
a peak at the exact same location as the peak in the exact
KS potential, eq 27 (Figure 12). The shape of the peak is
different but its maximum coincides in the limit of infinite
separation. This suggests an interpretation of the peak in Vc,kin

(in the exact KS potential), as a barrier that pushes back to
the atomic regions the extraneous density 2�(FHFLi) that
would be in the bonding region if the peak was absent. Since
the KS system by definition must get the density correct the
peak must be there.

The interpretation here is closely related to the analysis
of ref 21 of homoatomic molecules, where it was shown that
the kinetic energy density for the exact KS orbital develops
a well in the bond midpoint region, that must be compensated
by a peak in the KS potential to keep the constant value of
the KS orbital energy. An LCAO approximation to the orbital
(analogous to φbond above) does not display the well.

V. Discussion and Implications

Using a simple one-dimensional model of a two-electron
heteroatomic molecule, we studied features of the exact KS
potential that arise for real 3D heteroatomic molecules. In
particular, we examined the characteristic step and peak
structure in the internuclear region, which develop as the
molecule dissociates. These unusual features are a peculiarity
of the noninteracting KS description: on the one hand, as a
molecule dissociates, the interaction between the electrons
on one atom and those on the other vanishes, so why,
fundamentally, do such stark structures appear in the KS
potential? The answer ultimately lies in the single-Slater-
determinant description in the KS system: although this is
indeed how the exact KS system describes the state, it is far
from the true wave function which needs, even qualitatively,
two Slater determinants. In the two-electron model, the KS
system consists of a doubly occupied spatial orbital, blatently
far from the true two-orbital interacting system. Mathemati-
cally, the structures can be understood by considering the
response and kinetic components of the correlation potential,

xmin(n) )
R
2

(1 - �ILi

IH
)

(1 + �ILi

IH
)
+ 1

√32

ln
ILi
2

IH
2

√ILi + √IH

(30)

Vc,kin
max ) 1

4
(√IH + √ILi )2 (31)

φ ) √(FH + FLi)/2 (32)

φbond ) (√FH/2 + √FLi/2) (33)

Fbond ) 2|φbond|2 ) FH + FLi + 2√FHFLi (34)
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as explained in earlier works and in Section II of the present
paper. Physically, a KS potential that lacks the step leads to
dissociation into fractional charges; a KS potential that lacks
the peak leads to a KS orbital that yields an incorrect (albeit
exponentially small) density in the internuclear region. The
former point is well-recognized in the literature, while the
latter point elaborates on an earlier interpretation21 (section
IVB).

Because of the simplicity of our two-electron model, we
are able to investigate in much more detail than in the earlier
literature, the development of these structures and their
asymptotic properties. Several of these features carry over
to the true many-electron 3D case, since they arise from the
HOMO orbital. We showed that the step begins to develop
at the internuclear separation, where the avoided crossing
in the ground and lowest charge-transfer state is approached,
and explained why. We gave an exact formula for the
location of the step and peak, in the limit of large separation,
finding that the two structures are located at the same place,
and closer to the atom with the larger IP, consistent with
the few calculations done on real molecules in the literature.

Because they are in a region of very low electron-density,
these features, in themselves, have little energetic conse-
quences for the ground states of these systems. However they
have dramatic consequences for time-dependent processes,
excitations, and response. For example, it has been shown
that the related peaks that appear in the interatomic regions
of a hydrogen chain significantly (and correctly) reduce the
polarizability of the chain and that local and semilocal
approximations which lack the peak, consequently signifi-
cantly underestimate the (hyper-)polarizability.35 As TDDFT
begins to be utilized in molecular transport calculations, we
anticipate the peaks will act as barriers decreasing the current.

The step in the KS potential ultimately imposes a rather
complicated structure on the exact xc kernel of TDDFT.37,38

Because of the realignment of the atomic HOMOs, the
molecular HOMO and LUMO are symmetric and antisym-
metric combinations of the atomic HOMO’s, separated in
energy merely by the tunnelling factor, that vanishes as exp
(- const R) as the molecule dissociates. Therefore three KS
determinants become near-degenerate: the doubly occupied
HOMO, a single-excitation to the LUMO, and a double-
excitation to the LUMO. That is, the step introduces static
correlation in the KS system that is not present in the true
interacting system. It is the job of the TDDFT xc kernel to
“undo” this static correlation, in order to yield good excitation
energies in the true system. This has a dramatic effect on
the structure of the xc kernel for charge-transfer excitations
in molecules composed of open-shell fragments;37,38 in
particular, the double-excitation induces a strong-frequency-
dependence on the kernel.

Almost all the approximations in use today do not capture
the step and peak structure in the potential. Carefully
constructed orbital functionals for the correlation potential
may display these structures, as has been explicitly shown
in ref 46. Interestingly, static correlation in the KS system
is nonetheless not escaped in the usual (semi)local ap-
proximations. Delocalized orbitals underlie the fractional
charge problem, and the HOMO and LUMO become near-

degenerate as the molecule dissociates. Figure 13 demon-
strates this for the LiH molecule within LSD; a similar
merging of the HOMO and LUMO is also seen in GGA.
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Abstract: Time-dependent density-functional theory in the response regime is shown to yield
qualitatively correct charge-transfer excitation energies in the system HeH+ if the exact
Kohn-Sham exchange potential is employed to determine the Kohn-Sham orbitals and
eigenvalues entering the time-dependent density-functional calculation. The employed exact-
exchange kernel is frequency-independent and, like conventional kernels in the local density
approximation or in generalized gradient approximations, does not contribute to the charge-
transfer excitation energy. This shows that it can be that not the exchange-correlation kernel,
as generally believed, but the exchange-correlation potential plays the crucial role in the
description of charge-transfer excitations.

One of the presently most widely used approaches to
calculate electronic excitation energies of molecules or
clusters is time-dependent density-functional theory
(TDDFT) in the response regime.1-8 Besides excitation
energies, oscillator strengths and thus UV/vis spectra are also
accessible. Furthermore, circular dichroism spectra can be
calculated.

While current density-functional response methods,9-17

that is, methods based on TDDFT in the response regime,
are often very successful, they also exhibit a number of
serious shortcomings due to the necessary approximations
in the required exchange-correlation functionals. Excitations
into states with Rydberg character are poorly described.18

This problem can be solved by determining the Kohn-Sham
(KS) orbitals and eigenvalues that enter a density-functional
response calculation with asymptotically corrected exchange-
correlation potentials19-26 or more fundamentally27 with an
exact-exchange (EXX) KS method,28-31 that is, a KS method
that employs the exact local KS exchange potential. For other
failures of current density-functional response methods, no
convincing, generally applicable remedies are available at
present. Excitation energies of molecules with long conju-

gated systems of π electrons32-36 are systematically under-
estimated, and the description of two-electron excitations is
problematic.37

The perhaps most important deficiency of density-
functional response methods employing presently available
approximations for the exchange-correlation functionals is
their incapability to correctly describe charge-transfer (CT)
excitations.16,40-44 Excitations with significant CT can be
underestimated by several electron volts, and the behavior
of CT excitations between two separated units with the
distance of the units is described qualitatively wrong. CT
excitation energies between neutral fragments, in particular,
excitations from the highest occupied molecular orbital
(HOMO) of one fragment to the lowest unoccupied molecu-
lar orbital (LUMO) of the other, should approach (I - A) -
1/R, with I denoting the ionization energy of the donor, A
denoting the electron affinity of the acceptor, and R standing
for the distance of the units. Present density-functional
response methods do not yield this -1/R behavior. Instead,
the CT excitation energies, at relatively small distances R
approach a constant given by the difference between the KS
eigenvalues of the LUMO of the acceptor and those of the
HOMO of the donor. HOMO-LUMO CT excitations from
a neutral to a cationic unit, on the other hand, approach
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(I - A) at small distances R, while current density-functional
response methods exhibit an erroneous 1/R behavior. In the
limit of an infinite distance R, the current density-functional
response methods yield CT excitation energies that equal
the eigenvalue difference between the LUMO and the
HOMO. This eigenvalue difference, however, in general,
does not equal the CT excitation energy given by (I - A) in
this limit. While the negative of the HOMO eigenvalue
equals the ionization energy I45,46 in the exact formalism
and represents a well-defined approximation for I in practice,
the negative of the LUMO eigenvalue differs from the
electron affinity A by the derivative discontinuity of the
exchange-correlation energy at integer electron numbers47,48,51

and therefore cannot serve as an approximation for A.

The failure of current density-functional response methods
to describe CT excitations usually is attributed to shortcom-
ings in the employed approximations for the exchange-
correlation kernel, the frequency-dependent functional de-
rivative of the exchange-correlation potential with respect
to the electron density. In particular, the neglect of the
frequency dependency of the kernel, the adiabatic ap-
proximation, is made responsible for the failure to describe
CT excitations. Here, we show that in certain cases problems
in describing CT exitations are caused by shortcomings of
the approximations of the exchange-correlation potential, not
the kernel.

For the simple test system HeH+,49,50 we here show that
a density-functional response method that employs the EXX
KS potential and kernel and neglects correlation yields a
qualitative correct behavior with the HeH+ distance R for
the energy of the CT excitation from the He 1s orbital to
the H+ 1s orbital. To our knowlewdge, this is the first time
that a density-functional response method has correctly
described the distance behavior of a CT excitation without
the introduction of special correction terms to enforce the
correct behavior.41,51 Even more important is the finding that
the EXX kernel employed in the density-functional response
calculation turns out to be not responsible for the correct
distance behavior of the CT excitation. Indeed, in the system
HeH+, the exchange kernel does not contribute at all to the
excitation energy at large distances R. The CT excitation
energy like in conventional TDDFT methods using func-
tionals within the local density-approximation (LDA) or
generalized gradient approximations (GGA) equals the
difference between the KS eigenvalue of the LUMO of the
acceptor, the H+ 1s orbital, and the HOMO of the donor,
the He 1s orbital. However, in contrast to LDA or GGA
eigenvalue differences, the EXX eigenvalue difference does
not exhibit an unphysical 1/R behavior but correctly ap-
proaches a constant already at small distances, R. This means
that, for HeH+, the adiabatic approximation or, generally,
approximations to the exchange-correlation kernel, in contrast
to what is generally believed, are not responsible for the
failure of conventional TDDFT methods, that is, density-
functional response methods employing the LDA or GGAs,
to describe CT excitations.

Most density-functional response methods for excitation
energies are based on the nonlinear eigenvalue equation

introduced by Casida.5,13,52 The dimension of eq 1 is given
by the product of the number of occupied KS orbitals times
the number of unoccupied KS orbitals. In eq 1, the eigenvalue
ω2 equals the square of the excitation frequency or energy
ω. The eigenvector z(ω) determines the transition density
F(ω,r) of the excitation via

in terms of products of occupied KS orbitals times unoc-
cupied KS orbitals, �i and �a, respectively, with εia ) εa -
εi denoting the difference of the corresponding KS eigen-
values εa and εi. The elements Kia,jb(ω) of the matrix K(ω)
are given by

and the elements εia,jb of the diagonal matrix ε are given by
εia,jb ) δia,jb(εa - εi). The indices ia and jb are superindices
labeling the products of occupied times unoccupied KS
orbitals. The sum of the Coulomb kernel 1/|r - r′| and the
exchange-correlation kernel is denoted by fuxc. In practice,
almost always the frequency dependence of the matrix K is
neglected. That is, the adiabatic approximation is made, and
the nonlinear eigenvalue, eq 1, turns into a linear one.

We now consider an intermolecular CT excitation that can
be described as an excitation from an occupied orbital, �i,
of one molecule into an unoccupied orbital, �a, of another
molecule. At large intermolecular distances R, the spatial
overlap of the two orbitals vanishes, and the product �i�a

approaches zero everywhere. As a result, one row and one
column of K approach zero, and one eigenvector of eq 1 is
a unit vector with an entry of one at the position ia. The
corresponding eigenvalue is given by εia

2. This means that
the CT excitation energy obtained with a conventional
density-functional response method equals the corresponding
KS eigenvalue difference εa - εi. The only way to obtain a
CT excitation energy that differs from the corresponding KS
eigenvalue difference seems to be seen when the kernel fuxc

approaches infinity in such a way that the matrix elements
Kia,jb(ω), eq 3, containing the vanishing product �i�a

approach finite values. This represents a complicated demand
on the kernel that is believed to be intimately related to the
frequency dependence of the kernel. Adiabatic LDA or GGA
kernels are finite and clearly cannot exhibit the required
behavior. Therefore, all density-functional response methods
employing LDA or GGA kernels yield CT excitation energies
that equal the corresponding KS eigenvalue differences.

For the special case of a nonspin-polarized two-electron
system, the exact local KS exchange potential is known. It
equals simply the negative of half of the Coulomb potential.
For a nonspin-polarized two-electron system, the exchange
kernel is also known exactly.54 It equals the negative of half
of the Coulomb kernel; that is, it is given by -1/(2|r - r′|).
Thus, in this special case, the exchange kernel is frequency-
independent, does not approach infinity except at r ) r′,

[ε2 - 4ε1/2K(ω)ε1/2] z(ω) ) ω2 z(ω) (1)

F(ω, r) ) ∑
i

occ

∑
a

unocc

zia(ω) εia
(-1/2)

φi(r) φa(r) (2)

Kia,jb(ω) ) ∫ dr dr′ φi(r) φa(r) fuxc(ω, r, r′) φj(r′) φb(r′)
(3)
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and thus does lead to vanishing matrix elements Kia,jb(ω) in
eqs 1 and 3 for indices ia or jb referring to a CT excitation.
Therefore, time-dependent exact-exchange (TDEXX) calcu-
lations have to yield CT excitation energies that equal the
corresponding KS eigenvalue difference for nonspin-polar-
ized two-electron systems.

For a nonspin-polarized two-electron system, it is straight-
forward to turn any Hartree-Fock (HF) and any time-
dependent Hartree-Fock (TDHF) method into an EXX KS
and a TDEXX density-functional response method, respec-
tively. It is merely necessary to multiply the terms originating
from exchange in the HF and TDHF method by zero, that
is, to neglect them, and to multiply the terms originating
from the Coulomb potential and Coulomb kernel by one-
half. We carried out such a modification in the program
package TURBOMOLE55 and then performed HF/TDHF,
EXX/TDEXX, LDA/TDLDA (LDA and time-dependent
LDA), and PBE/TDPBE (GGA and time-dependent GGA
with the exchange-correlation potential and kernel attributable
to Perdew, Burke, and Ernzerhof)53 calculations for HeH+

and the CT excitation from the He 1s orbital to the H+ 1s
orbital.

Five different basis sets, the aug-cc-pVXZ basis sets of
Dunning56,57 with X ) D, T, Q, 5, and 6, were employed in
the calculations. In Figure 1, results for the aug-cc-pV6Z
basis set are shown, which are fully converged with respect
to the basis set size. The TDHF energy for the considered
CT excitation differs strongly from the corresponding HF
eigenvalue difference. As expected, the TDHF CT energy
exhibits a qualitative correct behavior with the HeH+ distance
R. TDHF considers the response of the first-order density
matrix not the response of the density, like TDDFT. A
representation of the response of the first-order density matrix
in terms of products �i(r) �a(r′) of occupied times unoc-
cupied orbitals does not vanish in CT cases due to the
occurrence of the two different variables, r and r′, in the
products. Therefore, TDHF describes charge-transfer excita-
tions qualitatively correctly.

Figure 1 shows that the TDPBE as well as the TDEXX
energies for the considered CT excitation equal the cor-
responding KS eigenvalue differences, as could be expected
from the discussion above. However, while the TDPBE CT
excitation energies exhibit a qualitatively wrong 1/R behavior
with the HeH+ distance R, TDEXX CT excitation energies
exhibit the qualitative correct behavior. Indeed, the TDEXX
results are identical to the TDHF ones. LDA/TDLDA results,
which are not displayed here, show the same behavior as
the PBE and TDPBE results.

The differences between LDA and PBE eigenvalue dif-
ferences, on the one hand, and the TDEXX eigenvalues, on
the other, can be explained as follows. For a HeH+ distance
R that is large compared to the spatial extent of the 1s orbitals
of He and H+, the effective KS potential around the He atom
equals that of an isolated He atom plus the constant -1/R,
the constant being the term originating to leading order in the
HeH+ distance R from the electrostatic potential of the H+,
that is, of a proton. The He 1s orbital eigenvalue therefore,
to leading order in R, equals the eigenvalue of the 1s orbital
of an isolated He atom minus 1/R. This holds true for the
LDA and the PBE as well as the EXX eigenvalues of the He
1s orbital. The eigenvalue of the H+ 1s orbital in the LDA
and the PBE cases, to leading order in R, equals that of an
isolated proton, that is, that of atomic hydrogen, for large R
values. The reason is that the effective KS potential of He
is short-range because the LDA and PBE exchange-correla-
tion potentials erroneously are short-range and because the
Hartree potential and the electrostatic potential of the He
nucleus cancel each other asymptotically. This means that
the eigenvalue of the H+ 1s orbital in the LDA and the PBE
cases is constant for large distances R. The difference
between the H+ 1s eigenvalue and the He 1s eigenvalue
therefore exhibits the erroneous 1/R behavior for large
distances R.

In the EXX case, the effective KS potential of He, on the
other hand, is long-range and correctly approaches -1/r for
large distances r, from the He nucleus because the exact-
exchange KS potential exhibits such a -1/r behavior. As a
result, the He atom contributes, to leading order in R, a
constant -1/R to the effective KS potential around the H+.
Therefore, the H+ 1s eigenvalue like the He 1s eigenvalue
equals the eigenvalue of an isolated H+ minus 1/R. In
the difference between the H+ 1s and the He 1s eigenvalue,
the 1/R terms cancel, and the eigenvalue difference at large
distances R is constant, as it should be. The wrong behavior
of the LDA and PBE eigenvalue difference thus has its origin
in the qualitatively wrong asymptotic behavior of LDA and
PBE exchange potentials that are caused by unphysical
Coulomb self-interations of each electron that are not
canceled completely by the approximate LDA and PBE
exchange functionals. The fact that the LDA and PBE
exchange-correlation potential and not the kernel causes the
qualitatively wrong CT excitation energies is confirmed by
carrying out density-functional response calculations em-
ploying the LDA or GGA kernel but EXX orbitals and
eigenvalues. Such calculations yield de facto identical results
as the EXX/TDEXX calculations.

Figure 1. Charge-transfer excitation energies in HeH+ (He
1s f H+ 1s) for varying HeH+ distances as obtained by
TDPBE, TDHF, and TDEXX and corresponding eigenvalue
differences (PBE, HF, and EXX). The EXX and TDEXX curves
as well as the PBE and TDPBE curves in most regions cannot
be distinguished from each other.
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Of course, other GGA functionals than the PBE lead to
the same qualitatively wrong results for the considered CT
excitation in HeH+. Moreover, CT excitation energies from
neutral to positively charged units in other systems than
HeH+, including systems with more than two electrons, are
also described in the same way wrongly with LDA and GGA
functionals in density-functional response methods.

The simple two-electron example of HeH+ certainly is a
special case. Not only are the exchange potential and kernel
exactly known in terms of the electron density in this case,
but, moreover, in this special case, the negative of the
eigenvalue of the LUMO, the 1s orbital of H+, exactly equals
the electron affinity for large He H+ distances. This is not
the case in general, and therefore EXX eigenvalue differences
in general are not sufficient to describe CT excitations
qualitativly correctly. Nevertheless, this special case does
point to a new aspect of the CT problem of TDDFT, namely,
that the KS eigenvalue differences at least in special cases
may be essential for the behavior of excitation energies with
the distance R. Indeed, in the special case of HeH+, the KS
eigenvalue differences exclusively determine this behavior,
while the exchange-correlation kernel does not contribute
to it at all. This means for the CT problem that not only the
exchange-correlation kernel is of importance but also the
exchange-correlation potential in the KS calculation deter-
mining the KS eigenvalues, and their differences may be
crucial.
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Abstract: In this work the behavior of MP2 for fractional occupations is investigated. The
consideration of fractional charge behavior gives a simple derivation of an expression for the
chemical potential (or the derivative of energy with respect to the number of electrons) of MP2.
A generalized optimized effective potential formalism (OEP) has been developed in which the
OEP is a nonlocal potential, which can be applied to explicit functionals of the orbitals and
eigenvalues and also facilitates the evaluation of the chemical potential. The MP2 derivative
improves upon the corresponding Koopmans’ theorem in Hartree-Fock theory for the ionization
energy and also gives a good estimate of the electron affinity. In strongly correlated systems
with degeneracies and fractional spins, MP2 diverges, and another corrected second-order
perturbative method ameliorates this failure for the energy but still does not recapture the correct
behavior for the energy derivatives that yield the gap. Overall we present a view of wave function
based methods and their behavior for fractional charges and spins that offers insight into the
application of these methods to challenging chemical problems.

Introduction

Recent work1-3 has highlighted exact conditions for the
energy of systems with fractional charges and fractional
spins. These conditions are massively violated by currently
used approximations in density functional theory (DFT). The
exact energy for fractional charges is a straight line inter-
polation between the integer points.4 Density functional
approximations for the exchange-correlation energy (DFAs)
such as LDA, GGA,5-7 and conventional hybrid functionals8

violate this exact condition and have a convex error for the
energy of fractional systems. This led to the concept of many-
electron self-interaction9-11 and a delocalization error1 that
affects the calculation of many differing types of species and
properties. Many of the well-known problems of DFAs can
be related to this error for fractional charges such as
overestimation of molecular polarizabilities, overestimation
of molecular conductance, underestimation of charge-transfer
excitation energies, underestimation of hydrogen transfer
reaction barriers, and underestimation of the band gap in
solids. Hartree-Fock (HF) shows the opposite concave
behavior11,12 for fractional charges and hence an error toward

localization in larger systems. It has also been shown that
the exact energy for fractional spins should be constant and
at the same energy as the corresponding integer spin pure
states. For example the dissociation limit of the H2 molecule
gives two separated atoms each with half an R electron and
half a � electron that should be degenerate in energy with
the normal H atom. Again HF and DFAs violate this
constancy condition and display massive errors for these
fractional spin systems that give rise to a large static
correlation error. Furthermore, the combination and extension
of both fractional charges and fraction spin conditions to
consider any general fractional occupations has recently
revealed13 a much more stringent condition for the energy
functional: it has a flat plane behavior, linear along the
fractional charge coordinate and constant along the fractional
spin coordinate, with a clear line of discontinuity at integer
numbers of electrons. Violation of this condition by ap-
proximate functionals is important because it leads to
qualitative failures to describe, for example, the gap of
strongly correlated systems.

With these perspectives we would like to investigate some
wave function methods beyond DFT to see if they violate
the same exact conditions, by examining simple systems with* Corresponding author e-mail: weitao.yang@duke.edu.
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fractional occupations. This may give insight into the relative
performance of DFAs and wave function-based methods in
challenging situations that are related to delocalization error
and static correlation error.

In this work we focus on second-order Møller-Plesset
perturbation theory (MP2). MP2 has developed a long
standing reputation in the quantum chemistry community and
is still a very widely used method with many applications
and active development. It reliably alleviates the lack of
correlation in HF to give much improved results for many
energetic and geometric properties.

Systems with Fractional Charges and
Fractional Spins

We explain here how to carry out DFT calculations with
fractional charge and fractional spins. The key feature of
DFT calculations is the use of a noninteracting reference
system to represent the physical electron density and the
noninteracting kinetic energy. The noninteracting refer-
ence system can have a local one-electron potential, as in
the common Kohn-Sham approach (KS), or a nonlocal one-
electron potential, as in the generalized Kohn-Sham approach.

In a usual DFT calculation the specification of the charge
and the multiplicity of the system are sufficient to give the
number of electrons of each spin and hence the set of
occupation numbers for the orbitals, {ni}. The lowest set of
orbitals of each spin (as determined by the energy of
the orbital, {εi}) are occupied (ni ) 1), and the higher energy
orbitals are unoccupied na ) 0

Systems with fractional charge or fractional spins are not
themselves physical systems, but they come from the
dissociation limits of physical systems,13,14 making these
fractional systems critical for analyzing the performance of
DFAs.

Fractional charge systems can also come from the grand
canonical ensemble at zero temperature,4 and so do fractional
spin systems.3 However, an ensemble calculation with any
DFA would clearly give the total energies satisfying the
linearity condition for fractional charge and also the con-
stancy condition for fractional spins, making error only at
the integer points, even though the DFAs can have massive
delocalization and static correlation errors. Therefore such
ensemble calculations are not useful for investigating the
origins of errors in DFAs. As a system dissociates, such as
H2

+, the bonding highest occupied molecular orbital (HOMO)
becomes delocalized over two centers, and each center sees
only part of the HOMO. In other words, the HOMO of each
center appears as half-occupied. This is why calculations with
fractional orbital occupations in KS or generalized KS are
the relevant and important approach for studying DFAs.

Fractional charges and fractional spins are given in
practical calculations by a simple change of the occupation
numbers, that not all these occupations have to be either one
or zero even at zero temperature. For example if we consider

a hypothetical system with fractional charges, then the only
way this can appear is with fractional occupation of one
orbital, the frontier orbital. For a J + δ system with J integer
and 0 < δ < 1 then

In a system with degeneracy it is also possible to get
fractional occupations of orbitals, this time even with integer
number of electrons, for example a g-fold degeneracy can
give

the nf
g do not have to be integer. A simple example of this

is a hydrogen atom where the R and � orbitals are degenerate
leading to the scenario of fractional spins.

To make this point clear, let us consider a simple fractional
charge system, for example a hydrogen atom with half an
electron, H1/2+. There are two possible ways to view this
system: (1) An ensemble average perspective, that requires
two calculations on the hydrogen atom, with zero electrons
and with one electron, and then taking the appropriate linear
combination of the two; and (2) the fractional occupation
perspective, where a hydrogen atom with half an electron is
explicitly calculated. For the exact energy functional these
two views give identical results. However for DFAs the
difference between the two is striking: (1) always gives a
reasonable answer, as all methods perform well for H and
H+, and it is only (2) which reveals the failures of the
approximate methods, e.g. a too low energy for H1/2+ with
LDA, for example. And even more importantly, it is only
(2) which corresponds to the energy of stretched H2

+, a real
integer system.

Thus, for this fractional hydrogen with half an electron,
LDA gives a very bad energy, and a better LDA energy could
be obtained by the linear combination of the energies of H
and H+. However, we are not really interested in the best
energy of H1/2+ but only in the one that would be obtained
if H1/2+ was found in a real system, such as stretched H2

+.
Thus, we focus on dissociating real systems and understand-
ing the methods, and here is where the fractional occupation
approach is very insightful. The power of the fractional
occupation perspective relies on the fact that fractional
charges and fractional spins do arise naturally in the limit
of dissociation of systems with integer occupations and reveal
spectacular failures of many currently used methods. Also,
as the exact conditions for the energy functional are known
for fractional charges and spins, these failures can be
understood and better methods developed.

MP2 with Fractional Occupations

We now extend the MP2 expression for fractional occupa-
tions, involving unoccupied orbitals, beyond the previous

εi e εf :ni ) 1 (1)

εa > εf :na ) 0 (2)

εi < εf :ni ) 1 (3)

εf ) εf :nf ) δ (4)

εa > εf :na ) 0 (5)

εi < εf :ni ) 1 (6)

εf ) εf : ∑
g

nf
g ) 1 (7)

εa > εf :na ) 0 (8)
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results of HF and other DFAs containing only occupied
orbitals.11 In canonical MP2 from a HF reference Hamilto-
nian, the correlation energy is given by

where standard notation is used for the two electron integrals,
〈ij||ab〉 ) 〈ij|ab〉 - 〈ij|ba〉 and 〈ij|ab〉 ) ∫ ∫ �i(x)�a(x)(1)/
(|r - r ′ |)�j(x′)�b(x′)dxdx′, where x and x′ are combined
spatial and spin coordinates. In this equation i and j denote
occupied orbitals and a and b denote virtual orbitals. All
orbitals are canonical HF orbitals, and εp represents HF single
particle energies (eigenvalues).

This expression can be generalized to include occupation
numbers, np, by considering the finite temperature grand-
canonical ensemble,15 also see Casida26

Note that with the inclusion of occupation numbers the
summations now run over all orbitals, and there is no
separation into occupied and virtual orbitals.

It is now possible to investigate the behavior of the total
MP2 energy expression with fractional occupation of the
orbitals in an external potential V(r)

where the occupation numbers, 0 e ni e 1, sum up to give
the total number of electrons, Σi

allni ) N, and give the electron
density, F(r) ) Σi

allni�i
2(r). In this case the number of

electrons, N, does not have to be an integer.
The original finite temperature grand-canonical ensemble4

and in the specific case of MP215 would give for fractional
charge a linear interpolation of energies between the two
nearby integers. This is not very interesting, because it does
not tell us how the approximate energy functional will behave
in physical systems with integer number of electrons but with
fractional charge character.1 Instead, we extend the functional
to fractional charges following what has been done for
normal KS or HF functionals.11,12 Thus, at fractional charges,
we carry out the fractional-charge self-consistent HF calcula-
tion, and we add the MP2 correlation energy as a perturbation
using the HF orbitals obtained for the same fractional charge.
We could also carry out the fully self-consistent optimization
including the MP2 correlation energy,16,17 but we do not do
that.

As in previous studies we consider the behavior of the
energy expression as we fractionally add or subtract an
electron from a zero-temperature ground-state system, ni )
1 for i < f, nf ) δ, na ) 0 for a > f, where f denotes a frontier

orbital, either the highest occupied molecular orbital (HOMO)
or the lowest unoccupied molecular orbital (LUMO).

Figure 1 shows MP2 calculations with fractional numbers
of electrons (E Vs N curve) for the carbon atom with five to
seven electrons. HF and LDA results are also included for
comparison. Calculations have been carried out with a cc-
pVQZ basis set in a modified version of NWChem.18 LDA
and HF calculations are self-consistent with fixed occupation
numbers, and the MP2 energy is given by eq (11) with these
fractionally occupied self-consistent HF orbitals. The exact
energy for fractional numbers of electrons is a set of straight
lines connecting integer points.4 For the carbon atom (N )
6), the straight line to the left is the ionization energy
(experimental value of I ) 11.27 eV), and the straight line
to the right is the negative of the electron affinity (experi-
mental value of A ) 1.27 eV) as shown in Figure 1. Also
shown in the inset is the deviation from the straight line.
Another E Vs N curve is shown in Figure 2 for the OH
molecule which has experimental values of I ) 13.2 eV and
A ) 1.8 eV.

Previous work1 has related many important errors of DFAs
to the nature of their E Vs N curves: concavity giving
localization error and convexity giving delocalization error.
HF has a large localization error in this respect, and fur-

Ec
MP2 ) 1

4 ∑
ij

occ

∑
ab

Virt 〈ij| |ab〉2

εi + εj - εa - εb
(9)

Ec
MP2 ) 1

4 ∑
ij

all

∑
ab

all

ninj
〈ij| |ab〉2

εi + εj - εa - εb
(1 - na)(1 - nb)

(10)

EV
MP2 ) ∑

i

all

ni〈�i|-
1
2

∇ 2|�i〉 + ∫ V(r)F(r)dr +

∑
igj

all

ninj〈ij|ij〉 +
1
4 ∑

ijab

all

ninj
〈ij|ab〉2

εi + εj - εa - εb
(1 - na)(1 - nb)

(11)

Figure 1. Behavior of the energy of the carbon atom with
fractional numbers of electron electrons for HF, MP2, LDA,
and exact. The inset shows the deviation of HF and MP2 from
their corresponding linear interpolations. All calculations are
unrestricted, and no symmetry constraints have been applied.

Figure 2. The same as Figure 1 for the OH molecule.
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thermore the integer points are a long way from the exact
values of I and A, due to the lack of correlation in HF. MP2
corrects both of these errors of HF for the carbon atom, with
a much better prediction of I and A and also importantly a
much straighter interpolation between the integers. For OH
the MP2 curve is not as straight, and in general the behavior
could be checked for any system of interest.

It is clear that HF does not have the correct straight line
behavior between the integers, and the concave behavior is
best understood as being due to the lack of electron
correlation. This is quite different in essence to the behavior
of DFAs, as seen for LDA, which have a convex interpola-
tion and delocalization error. For these DFAs as the system
size increases to the bulk limit, many-electron self-interaction
error decreases causing the E Vs N lines to get straighter,
however there is a corresponding increase in the delocal-
ization error because the orbitals spread out too much. For
HF as the system size increases there is just a growing lack
of correlation. Overall, the fact that MP2 and HF do not have
this systematic convex behavior means that they will perform
differently to DFAs in situations where the delocalization
error is important. As MP2 can be closer to the correct
straight line behavior and does not in general seem to have
an inherent energetic bias for fractional charges, it should
have the possibility to have an improved performance in
problems related to self-interaction.

Derivatives of the Energy with Respect to N

We now explore the partial derivative of the energy with
respect to the total number of electrons, keeping the external
potential fixed. This is the chemical potential, and its
discontinuity is directly related to the energy gap (band gap
in solids). We have recently developed the expressions for
evaluating the derivative for calculations with an explicit
functional of the electron density or the KS orbitals and
eigenvalues.19 The latter functional can be calculated through
the optimized effective potential or through the generalized
KS method. Specifically, for a variational method such as
LDA, the derivative of the energy with respect to the number
of electrons is given by the derivative with respect to the
frontier orbital occupation number, dEV /dN ) (∂E/∂nf)Vs

)
εf, where Vs is the minimizing local KS potential and εf is
the KS frontier eigenvalue; this result has been obtained
from the derivation of ref 19 in combination with the Janak
theorem.20 Variational methods that include HF can be
treated within a generalized KS equation (where the energy
is minimized with respect to the orbitals), and the derivatives
of the energy are again given by the frontier eigenvalues as
discussed in ref 19.

We now extend the formalism of ref 19 to consider a
generalized OEP framework where the energy is minimized
with respect to a generalized KS potential Vs

NL(r,r′). In this
case the minimizing potential Vs

NL,gs(r,r′) is a nonlocal
potential and hence differs from the usual OEP minimizing
potential, which is local. This is a simple extension of the
potential functional formalism to nonlocal reference poten-
tials for the noninteracting systems.21

We consider the potential as the basic variable such that the
ground-state energy as a functional of Vs

NL and N is given by

The derivatives with respect to N can be obtained using the
chain rule and are simply given by

At the minimizing Vs
NL ) Vs

NL,gs, the second term disappears
because the functional is stationary, and we have

Furthermore, at a constant Vs
NL, the total number of electron

change can only vary the frontier orbital occupation number
nf, and we have

which is analogous to what we obtained for the usual OEP when
the reference potential is local.19

An example of EV[Vs
NL,N] is the HF energy functional, and

its minimizer is just the one-electron nonlocal potential
consisting of the Coulomb and exchange operators. The
chemical potential for a HF calculation is just given by eq
16. More generally, the generalized OEP formulation of eq
12 allows one to perform DFT calculations for any explicit
functional of the orbitals and eigenvalues, such as MP2. This
offers an approach to self-consistent DFT, alternative to the
local potential OEP.16,17

MP2 is not carried out in a variational fashion but utilizes
the minimizing HF potential, Vs

NL,HF, namely

An approximate derivative can be obtained using eq (16)

Applying this expression (eq 18) to the MP2 energy of eq
11 gives an equation for the derivative of the energy with
respect to any orbital occupation number

When evaluated for a zero temperate ground state, with
integer occupations, it gives expressions for the derivatives

EV
gs ) min

Vs
NL

EV[Vs
NL, N] ) EV[Vs

NL,gs, N] (12)

∂EV
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)

∂EV[Vs
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.
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)
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MP2 ) EV

MP2[Vs
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∂EV
MP2
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≈ (∂E[Vs

NL,HF, N]
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)
Vs

NL,HF
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(∂EV
MP2

∂np
)
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) 〈�p| - 1
2
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i
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2[ ∑

jab
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Second-Order Perturbation Theory J. Chem. Theory Comput., Vol. 5, No. 4, 2009 789



with respect to frontier occupations and, using eq 18,
approximate derivatives of the energy with respect to the
number of electrons

For MP2 the single-particle energy of eq 20 does not
exactly agree with the full derivative. However the difference
is relatively small as can be seen from the comparison with
the finite difference calculation of the derivative. For
example, for the carbon atom, the finite difference derivative
with ∆n ) 0.001 gives ∆E/∆nhomo ) -11.103 eV and ∆E/
∆nlumo ) -0.881 eV, and eq 20 gives ∂E/∂nhomo ) -11.334
eV and ∂E/∂nlumo )-0.824 eV. The slight difference between
the two results is due to the fact that the potential has been
fixed, and therefore the second term in eq 14 has been
ignored. Fixing the potential at Vs

NL,HF is equivalent to freezing
the orbitals and the eigenvalues upon varying the occupation
numbers, which is different than just fixing the orbitals. The
orbital relaxation can be evaluated using coupled-perturbed
HF, but this correction would not be needed if the energy is
minimized with respect to the orbitals, as previously done
within DFT.16,17 Furthermore, the eigenvalues on the bottom
of eq 10 can also vary with the occupation number and hence
they also contribute. If an expression for the full derivatives
of eq 11 with respect to the number of electrons is needed,
then these orbital and eigenvalue contributions must be
included as dictated by eq 14.

The results in Table 1 compare the HOMO and LUMO
single-particle energies from HF and MP2 with the cor-
responding I and A experimental values of a set of small
atoms and molecules. Koopmans’ theorem, which equates
the HF frontier single-particle energies with -I and -A, is
improved upon by the second-order MP2 frontier single-
particle energies. The MP2 LUMO energy gives a reasonable

approximation to -A, whereas the HF LUMO energy seems
almost meaningless. The difference between the derivative
to the left, I, and the derivative to the right, A, gives the gap
which is much improved with MP2 for these small systems.
Also the overall mean absolute error calculated with finite
difference, which is obviously the same for HF due to its
variational nature, shows that the neglected parts of the
derivative for MP2 do not lead to any qualitative differences
for this set of molecules. The MP2 approximation to I and
A and the gap can be obtained at almost no extra cost while
doing a normal MP2 calculation.

The expression for the MP2 single-particle energy eq 20
can also be obtained from the second-order self-energy in
propagator theory22 and has been used to calculate the
quasiparticle band gap of solids.23,24 In the present work it
is derived in a very simple manner and with a clear
connection to the behavior for fractional numbers of elec-
trons. This idea can also be easily extended to other wave
function based methods (e.g., coupled cluster) if the method
can be generalized to finite temperature to include occupation
numbers. Then the behavior for fractional numbers of
electrons could be investigated, and the straightness of the
E Vs N curve will give an indication of the quality of the
frontier orbital eigenvalues and more generally on perfor-
mance of problems related to the delocalization error.

MP2 for Fractional Spins

Next we would like to investigate MP2 for fractional spins
to understand its performance on static correlation problems.
However, there is very little to explore as the energy for
any system with more than one fractional occupation within
a degenerate set in eq 10 diverges. This is clearest for the
stretched H2 molecule where the restricted MP2 energy goes
to -∞ as shown in Figure 3. Another example is a calculation
on the spherical boron atom (with occupation of 1/3 for each
of the R p orbitals) where the MP2 energy also diverges. In
other words, MP2 fails for systems with strong correlations
which is well-known in chemistry as exemplified by the poor
performance on transition metal compounds. This failure in
degenerate situations can be attempted to be corrected by
different techniques, and one of the simplest such methods

Table 1. Comparison, in eV, of εhomo with -I, εlumo with -A, and the εlumo - εhomo with I - A for HF and MP2a

mol εHF ∂Ev
MP2/∂nf I-A εHF ∂Ev

MP2/∂nf I εHF ∂Ev
MP2/∂nf A

Li 5.63 5.14 4.8 5.34 5.37 5.4 -0.29 0.23 0.6
Be 9.60 9.69 9.0 8.41 8.98 9.4 -1.19 -0.71 0.4
B 9.76 8.58 8.0 8.67 8.45 8.3 -1.09 -0.13 0.3
C 12.72 10.51 10.00 11.94 11.33 11.27 -0.78 0.82 1.27
N 18.89 15.81 14.46 15.52 14.44 14.53 -3.37 -1.37 0.07
O 16.83 12.77 12.16 14.19 13.17 13.62 -2.64 0.40 1.46
F 20.01 13.71 14.02 18.47 16.41 17.42 -1.54 2.70 3.40
F2 20.50 13.39 14.4 18.13 13.70 15.7 -2.37 0.31 1.3
OH 16.56 10.95 11.4 13.95 12.12 13.2 -2.61 1.17 1.8
NH2 15.49 11.32 10.6 12.60 11.46 11.4 -2.89 0.14 0.8
CH3 13.30 10.42 9.8 10.47 9.64 9.9 -2.83 -0.78 0.1
CN 13.29 10.80 10.2 14.14 14.54 14.0 0.85 3.74 3.8
O2 17.98 11.57 11.8 15.18 11.06 12.2 -2.80 -0.51 0.4
MAE 3.84 0.66 0.98 0.56 3.02 0.78

From finite difference using ∆n ) 0.001
MAE 3.84 0.79 0.98 0.75 3.02 0.70

a Calculations are unrestricted with a cc-pVQZ basis set and with no symmetry constraints. MAE the mean absolute error and the MAE
for finite difference derivatives of HF and MP2, with a change of the occupation number of 0.001, are also shown.
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in the literature is the degenerate corrected perturbation
theory (DCPT2) of Assfeld et al.25

The DCPT2 correlation energy is given by

where Dabij ) εa + εb - εi - εj. The inclusion of fractional
occupations in a analogous way to MP2 gives

The total energy of DCPT2 is given by eq 11 replacing the
MP2 part with eq 22.

Figure 4 shows the behavior for fractional charge and spin
combined for the H atom from zero to two electrons with
spin-up occupation 0 e nR e 1 and spin-down occupation 0
e n� e 1, as studied previously.13 The consideration of this
figure and the energy at [nR,n�] has been critical for
understanding the performance of DFT methods and goes
beyond the separate consideration of fractional charges,
which can be seen along the edges (connecting [0,0] to [1,0]
to [1,1] and conversely [0,0] to [0,1] to [1,1]), and the pure
fractional spins, which can be seen across the middle
(connecting 1,0] with [0,1]). The problem of a Mott insulator
is highlighted by the point at [1/2,1/2] and its gap from the
line [0,0] to [1/2,1/2] to [1,1].

The exact energy of H [nR,n�] is plotted in Figure 4a and
shows a flat plane behavior with a discontinuous derivative
at all points along the constancy line at N ) nR + n� )1.
Figure 4b illustrates the behavior of the MP2 energy, which
diverges to -∞ except along the pure fractional charge line,
seen along the edges of the plot and corresponding to Figure
1. Figure 4c shows the DCPT2 energy of eq 22, which has
a very similar behavior to MP2 along the fractional charge
line but corrects for the divergence of the MP2 energy
expression for fractional spins. There is some slight strange
behavior due to the nonanalyticity of the square-root function,

but it only affects points next to the fractional charge line.
For the middle point of the plot, an H atom with nR ) n� )
1/2 which is the prototype of a strongly correlated system,
DCPT2 gives a reasonable energy that exactly corresponds
to the dissociation limit of H2 presented in Figure 3.

It is extremely interesting to see that at the key middle
point with nR ) n� ) 1/2, the slope to the left and the right,
∂EV

DCPT2/∂N|(, are the same, and therefore there is no
discontinuous behavior and a zero gap. This illustrates the
possibility for a method to give the energy of a strongly
correlated system correctly but still fail to even qualitatively
give its gap.

Conclusion

In conclusion, in the spirit of DFT, we have investigated
the MP2 method for fractional charges and fractional spins.
We find that it gives a reasonable straight line behavior for
fractional charges between the integers. A generalized OEP
formalism has been developed for nonlocal KS potentials,
which can be used to perform DFT calculations for any
explicit functional of the orbitals and eigenvalues. It also
facilitates the calculation of the chemical potential. Thus,
the MP2 single-particle energies can be obtained by dif-
ferentiating the MP2 energy expression with respect to the
frontier occupation numbers at fixed KS potential and give
HOMO and LUMO single-particle energies that are in good
agreement with experimental -I and -A. For fractional spin
systems with exact degeneracies MP2 unphysically diverges
to give an energy of -∞. Degenerate-corrected perturbation
theory alleviates this divergence but still qualitatively fails

Figure 3. The energy of the H2 molecule as it is stretched,
calculated with a cc-pVQZ basis set with HF, MP2, DCPT2,
and exact. It should be noted that the DCPT2 energy goes
slightly below -1.0 au at larger distances, e.g. at 10000
Angstrom it is -1.0125 au.
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Figure 4. The energy of the hydrogen atom with fractional
charges and fractional spins combined for exact, MP2, and
DCPT2. All calculations use a cc-pVQZ basis set.

Second-Order Perturbation Theory J. Chem. Theory Comput., Vol. 5, No. 4, 2009 791



for the scenario of combined fractional charge and fractional
spins, as it misses the key derivative discontinuity necessary
to give the gap.

Overall the understanding of a wave function based
method such as MP2 can be enlightened by considering its
performance for exact conditions of the energy that can be
explored in extremely simple tests.
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Abstract: The generalized Koopmans’ theorem (EKT) yields an estimate of ionization potentials
(IPs) of an N-electron system. This estimate (IPEKT) is obtained as an eigenvalue of a generalized
eigenvalue problem. Katriel and Davidson provided a proof [Katriel, J.; Davidson, E. R. Proc.
Natl. Acad. Sci. U.S.A., 1980, 77, 1403.] that the EKT predicts the exact lowest IP for ground
states of Coulomb systems. However, subsequently, several articles have been published
challenging the exactness of the EKT and providing disproofs. This apparent contradiction is
resolved by demonstrating that the lowest eigenvalue of the generalized Koopmans’ procedure
does, in general, not exist. This explains why contradictory results are obtained about the lowest
IPEKT since its existence has implicitly been assumed. Nonetheless, it will also be shown here
that the generalized Koopmans’ approach gives IPs that are arbitrarily close to the exact lowest
ionization energy. The eigenvalues obtained according to the EKT have an accumulation point
given by the exact lowest IP.

1. Introduction

Koopmans’ theorem1 is widely used to estimate ionization
energies on the basis of Hartree-Fock calculations. In view
of the usefulness of this theorem, considerable efforts have
been made to generalize Koopmans’ theorem by broadening
its Hartree-Fock framework. An extended Koopmans’
theorem (EKT), based on correlated wave functions, has been
developed by Day, Smith, and Garrod2,3 and Morrell, Parr,
and Levy.4 The EKT is presently employed on a regular basis
as witnessed by several recent publications including.5-8 The
EKT makes use of an extended Fock operator F(1,1′)
constructed from the one- and two-particle density matrix
of a correlated wave function. i (e.g., 1 or 1′) stands for the
spatial and spin coordinates (ri, σi) indexed with i. An
approximation (IPEKT) to the lowest ionization potential (IP)
of the N-particle ground state (ψ) is then obtained as the
lowest eigenvalue of the generalized eigenvalue problem2,4

(implicitly assuming that the lowest eigenvalue does exist)

where

h(1) ) -1/2∆r1
+ V(1) is the one-particle Hamiltonian. V

denotes a local external potential. γ(1,1′) and Γ(1,2;1′,2′)
are given by

and

respectively. Ψ̂(1) stands for a field operator,9 which
annihilates an electron in the state corresponding to the
argument of the operator. The fact that only the one- and
two- particle density matrices are needed to construct F(1,1′)
has contributed to the popularity of the extended Koopmans’
procedure because these quantities are available in many
quantum chemistry program codes.

Morrell, Parr, and Levy4 have shown that the “lowest”
eigenvalue (implicitly assuming it exists) of the generalized
eigenvalue problem eq 1 is given by the asymptotic,
exponential decay length of the electron density, that is,
limrf∞F(r) ∝ exp(-2(2IPEKT)1/2r). They also conjectured that
the decay length of the density is equal to the exact lowest* E-mail: Matthias.Ernzerhof@UMontreal.ca.

∫ d1′F(1, 1′)�(1′) ) IPEKT ∫ d1′γ(1, 1′)�(1′), (1)

F(1, 1′) ) h(1)γ(1, 1′) + ∫ d2
Γ(1, 2;1′, 2)

|r1 - r2|
(2)

γ(1, 1′) ) 〈ψ|Ψ̂†(1′)Ψ̂(1)|ψ〉 (3)

Γ(1, 2;1′, 2′) ) 〈ψ|Ψ̂†(1′)Ψ̂†(2′)Ψ̂(2)Ψ̂(1)|ψ〉 (4)
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ionization energy. This conjecture was supported by Ahl-
richs,10 Levy and Parr,11 and Katriel and Davidson.12 The
question whether the lowest ionization energy obtained from
the EK procedure is exact has been discussed extensively in
the literature. Up to, now no completely satisfying answer
has been found. Katriel and Davidson12 argued that IPEKT is
equal to the exact ionization energy. Their argument is based
on the asymptotic behavior of the wave function as one
electron wanders away from the finite system. Doubts about
the exactness of the EK procedure have been raised by Smith
and Öhrn.13 Pickup14 and Pickup and Snijders15 analyzed
the EK procedure using the perturbation expansion of the
ionization energy. They showed that in general certain
second-order contributions of the expansion of the exact IP
are missing in the perturbation expansion of IPEKT. Andersen
and Simons arrived at the same conclusion.16 Olsen and
Sundholm17 presented a numerical investigation of the
perturbation expansion and concluded that the missing terms
in the EKT perturbation expansion are zero and that the IPEKT

is exact. More recently, a sufficient condition for the validity
of the EKT has been derived18 that is difficult to verify in
practical calculations, however. Despite these attempts to
resolve the paradox concerning the exactness of IPEKT, a
satisfying solution has not been found in the sense that the
shortcomings of either the proof, the disproof, or of both
have not been discovered.

Numerical studies have been undertaken19-28 to obtain a
better understanding of the accuracy of the EK procedure.
Without going into details, we state the main results of these
investigations. Comparison of the lowest ionization energy,
as obtained from Full-CI calculations,22,24-28 with IPEKT

obtained employing the Full-CI density matrices shows that
there is strong numerical evidence that these two quantities
converge toward the same number upon increasing the size
of the one-particle basis set. We want to stress that it is of
course not possible to resolve the paradox, apparent in the
formal investigations of the EKT, via numerical calculations.
However, the accuracy of the numerical results underlines
the usefulness of the EK procedure.

In the present work, we will shown that a careful
interpretation of the results of Katriel and Davidson and the
findings of Pickup and Snijders,14,15 and Andersen and
Simons16 removes the incompatibilities. We argue that the
question whether the lowest eigenvalue of the EK procedure
gives the exact lowest IP or not is not the right question to
ask since the lowest eigenvalue of the EKT eigenvalue
problem does, in general, not exist. However, all proofs and
disproofs given previously implicitly assume that a lowest
eigenvalue does exist.

To close the introduction we provide an outline of the
article. In section 2, the working equations of the EKT for
the lowest IP are derived. In section 3, the argument by
Katriel and Davidson is examined, it is shown that their
findings do not support the conclusion that IPEKT is exact.
The asymptotic behavior of the wave function in then used
in section 4 to show that no eigenvalue of the EK procedure
can yield the exact lowest IP. In the last section (section 5),
we show that it is however possible to find eigenvalues of
eq 1, which are arbitrarily close (but not equal) to the exact,

lowest ionization energy, that is, the eigenvalues of the EKT
eigenvalue problem have an accumulation point at the exact,
lowest IP.

2. Working Equations of the Extended
Koopmans’ Theorem

Following,2,3 we summarize the extended Koopmans’ pro-
cedure as far as it is relevant for the present work. We start
from the ansatz

for the (N - 1)-particle wave function. N denotes an
appropriate normalization constant. The linear combination
of Ψ̂(1) operators in eq 5 annihilates an electron in the orbital
�(1) in |ψ〉 . The amplitude �(1) constitutes the actual
variational parameter in eq 5. Using this trial function in
the Raleigh-Ritz quotient and varying the energy with
respect to the amplitude �(1) leads to an eigenvalue equation
for �(1)

where we assume, as throughout the paper, that all wave
functions and orbitals are real. Since we are interested in
the difference between the energy EN-1 of the approximate
(N - 1)-particle wave function and the energy E of the
N-particle system, we add 0 ) d1′{-〈ψ|Ψ̂†(1)Ψ̂(1′)Ĥ|ψ〉 +
E〈ψ|Ψ̂†(1)Ψ̂(1′)|ψ〉}�(1′) to eq 6. Furthermore, we make use
of the definition of the one-particle density matrix, γ(1,1′)
)〈ψ|Ψ̂†(1)Ψ̂(1′)|ψ〉 , to obtain

The eigenvalues of the this generalized eigenvalue problem
are obviously bound from below by the exact, lowest
ionization energy of the N-particle system. We define the
extended Fock operator F(1,1′) by

and recast eq 7 to yield extended Hartree-Fock equation

Analogous to Hartree-Fock orbitals, the eigenfunctions �i

of this generalized eigenvalue problem do not only have a
well defined energy but also a well defined occupation
number since the �i are orthogonal in the metric given by
the one-particle density matrix

The eigenvalues of the metric γ(1,1′) vary in the interval
[0,1]. Note that orbitals with a vanishing norm in the metric

|ψN-1〉 ) N -1/2 ∫ d1�(1)Ψ̂(1)|ψ〉 (5)

∫ d1′{〈ψ|Ψ̂†(1)ĤΨ̂(1′)|ψ〉 -

E(N-1)〈ψ|Ψ̂†(1)Ψ̂(1′)|ψ〉}�(1′) ) 0 (6)

∫ d1′{〈ψ|Ψ̂†(1)ĤΨ̂(1′)|ψ〉 - 〈ψ|Ψ̂†(1)Ψ̂(1′)Ĥ|ψ〉 +

(E - E(N-1))〈ψ|Ψ̂†(1)Ψ̂(1′)|ψ〉}�(1′) ) 0 S

∫ d1′{-〈ψ|Ψ̂†(1)[Ψ̂(1′), Ĥ]|ψ〉 - IPEKTγ(1, 1′)}�(1′) ) 0

(7)

F(1, 1′) ) -〈ψ|Ψ̂†(1)[Ψ̂(1′), Ĥ]|ψ〉 (8)

∫ d1′F(1, 1′)�(1′) ) IPEKT ∫ d1′γ(1, 1′)�(1′) (9)

∫ d1d1′�i(1)γ(1, 1′)�i(1
′) ) 0 for i * j (10)
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γ(1,1′) do not represent eigenfunctions of the EKT eigen-
value problem. We do not expect to find the smallest,
nonzero eigenvalue of γ(1,1′) in a Coulomb system, and we
will also show that it is not possible to find a �i with the
lowest energy eigenvalue (i.e., lowest IPEKT).

An explicit expression for F(1,1′) is obtained by evaluating
the commutator in eq 7. This leads to the representation of
F(1,1′) given in the introduction. Replacing the exact one-
particle density matrix and two-particle density matrix of
the N-particle system in eq 9 by the corresponding quantities
in the Hartree-Fock approximation leads back to the well-
known Hartree-Fock equations.

3. Revisiting the Proof of the Exactness of
IPEKT

The proof of the exactness of the EK procedure12 is based
on the behavior12,29,30 of the ground-state wave function of
a Coulomb system as the Nth electron wanders away from
the others (rN . r1,..., rN-1, where ri ) |ri|). The earlier
literature12,29 does not completely describe the asymptotic
behavior in the case where the (N - 1)-electron system is
degenerate (for a detailed discussion see ref 30). However,
the basic idea presented here does not depend on whether
the (N - 1)-particle ground-state is degenerate or not, and
for the sake of simplicity we focus on the case where the (N
- 1)-particle state is nondegenerate and where the results
of Katriel and Davidson12 and others29 concerning the
asymptotic behavior of the ground-state wave function are
complete. To summarize these results, we focus on the
coordinate of the Nth electron and take the limit rN f ∞.
The N-particle wave function as a function of the coordinates
of the remaining (N - 1)-electrons collapses toward the
energetically lowest accessible29 (N - 1)-particle state
ψN-1(1,..., N - 1). Accessible (N - 1)-particle states are
states which can be reached from the N-particle state by
removing one electron, without violating symmetry restric-
tions.29 The detailed derivation shows that12,29,30

F(N) denotes the spin density. The wave function of the (N
- 1)-particle system is entirely contained in the wave
function of the N-particle system in the sense of the limiting
procedure of eq 11. In general, however, we do not expect
that the N-electron system collapses toward the exact (N -
1)-particle system for any finite distance between the Nth-
electron and the (N - 1)-particle system.

To make the relation of eq 11 to the ansatz eq 5 for the
(N - 1)-particle wave function more explicit we note that
eq 11 is equivalent to

In their argument in favor of the exactness of the EKT,
Katriel and Davidson discussed a slightly different repre-
sentation of eq 12, which we now introduce. To express eq
12 in terms of the natural spin orbitals (NSO’s) ni(l) of ψ,

we expand Ψ̂(N) in terms of the NSO’s (including the NSO’s
with zero occupation number)

so that

âni
denotes the destruction operator corresponding to the

orbital ni. Equation 14 appears to indicate12 that the lowest
ionization energy, obtained according to the EK procedure,
is exact since the (N - 1)-particle wave function can be
obtained from ψ by annihilation of an electron. This would
imply that there exists an orbital, say �(N), such that

However, all eq 14 (or equivalently eq 12) is saying is that
there exists a sequence of orbitals

such that we obtain the lowest accessible (N - 1)-electron
state if �rN

(r)σN is annihilated in ψ and if we take the
limit rNf ∞. This does not mean that taking the limit rNf
∞, before annihilating the orbital �rN

(r)σN, defines an orbital
� with the property â�|ψ〉 ∝ |ψN-1〉 . Taking rN f ∞ before
applying â�rNσN

to ψ would (according to eq 12) mean that
we destroy a particle at infinite separation from the finite
system and multiply the result by ∞ ) limrNf∞F-1/2(rN), an
operation which is meaningless.

4. Disproof of the Exactness of IPEKT

In the preceding section we have shown that the argument
given by Katriel and Davidson does not imply that the lowest
ionization energy can be obtained as the lowest eigenvalue
of the EK procedure. Now we provide a proof that no
eigenvalue of the generalized EKT eigenvalue equation (eq
9) can be equal to the lowest IP of the N-particle system.
This result is intuitively clear since the eigenfunction of the
extended Fock operator will be nonzero for finite distances
to the (N - 1)-particle system so that the (N - 1)-particle
system gets polarized by the Nth-electron and this in turn
raises the energy compared to the exact (N - 1)-particle
ground state.

The asymptotic collapse of the wave function of a finite
system (i.e., limrNf∞ψ(1,..., N) ) N-1/2F1/2(N)ψN-1(1,..., N
- 1)) leads to conditions on the two-particle density matrix
of a finite system. We get for instance

lim
rNf∞

ψ(1, ..., N) ) N-1/2F1/2(N)ψN-1(1, ..., N - 1) (11)

lim
rNf∞

Ψ̂(N)|ψ〉 ) F1/2(N)|ψN-1〉 ⇒

|ψN-1〉 ) lim
rNf∞

F-1/2(N)Ψ̂(N)|ψ〉 (12)

Ψ̂(N) ) ∑
I

ni(N)∫ dN′ni(N′)Ψ̂(N′)

) ∑
i

ni(N)âni

(13)

|ψN-1〉 ) lim
rNf∞

F-1/2(N) ∑
i

ni(N)âni
|ψ〉 (14)

∫ dN�(N)Ψ̂(N)|ψ〉 ) â�|ψ〉

∝ |ψN-1〉
(15)

�rN
(r)σN ) F-1/2(rN)√δ(r - rN)σN (16)
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Now we assume that the EK procedure predicts the exact,
lowest ionization energy, that is, that there exist a � such
that

The normalization factor γ�� is given by γ�� ) 〈ψ|a�
† a�|ψ〉 .

We use eq 18 to evaluate a certain two-particle density matrix
element, namely

In the limit r1f ∞, eq 19 is incompatible with eq 17 because
the density matrix element falls off like FN-1(1) instead of
showing the correct F(1) behavior. The exponential decay
of the electron density of a system is given by exp (-2
(2I)1/2r), and since in all examples of interacting Coulomb
systems known to us IN < IN-1, we see that FN-1 becomes
exponentially small compared to F as r1 f ∞. These
considerations show that the asymptotic behavior of the wave
function as rN f ∞ leads to the conclusion that the EK
procedure does not have an eigenvalue which is equal to
the exact ionization energy.

5. Discussion and Conclusion

We have shown that no eigenvalue of the extended
Hartree-Fock equation (eq 1) yields the exact, lowest IP.
On the other hand, it can readily be verified that the EK
procedure has the potential to give an arbitrarily good
approximation to the lowest IP. It is always possible to find
an orbital φ, with the corresponding energy ε ) 〈ψ|aφ

†aφ|ψ〉-1 ·
∫d1d1′φ(1)F(1,1′)φ(1′), satisfying the inequality

for any given r1. For the spatial part of φ, we could for
instance choose φ(r) ) �[δ(r - R)], with |R| . r1. This
shows that the lowest IP can be approximated by the EK
procedure with any desired accuracy, since Ψ̂(1)|ψ〉 asymp-
totically collapses toward |ψN-1〉 as r1 increases.

Our discussion implies that the eigenfunctions of the
extended Hartree-Fock equation, which are close in
energy to the lowest ionization energy, have a rather
counterintuitive character; they minimize the interaction
with the (N - 1)-particle system, and not much can be
learned from them about the N-particle system. This has
important implications for the choice of basis sets for the
EK approach. It is necessary to add basis functions which
make it possible for an electron to travel far away from

the remaining electrons. On the other hand, the cor-
responding eigenfunctions will have a very small occupa-
tion number so that the generalized eigenvalue problem
eq 1 might become ill-conditioned.27

Our findings are compatible with the perturbation
theoreticaldisproofsof theexactnessof theEKprocedure.14-16

In these disproofs, EKT eigenvalues are shown to be
different from the exact, lowest ionization energy. How-
ever, it is not shown that it is impossible to find EK
eigenvalues which are arbitrarily close to the exact, lowest
ionization energy.
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Abstract: The Lieb-Oxford bound is a constraint upon approximate exchange-correlation
functionals. We explore a nonempirical tightening of that bound in both universal and electron
number-dependent form. The test functional is PBE. Regarding both atomization energies (slightly
worsened) and bond lengths (slightly improved), we find the PBE functional to be remarkably
insensitive to the value of the Lieb-Oxford bound. This both rationalizes the use of the original
Lieb-Oxford constant in PBE and suggests that enhancement factors more sensitive to
sharpened constraints await discovery.

I. Background

Construction of approximate exchange-correlation (XC)
functionals in DFT without reliance on empirical data is an
important task, both conceptually and practically. Perhaps
the most widely used constraint-based approximate XC
functional today is the extremely popular Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation
(GGA).3 One of the constraints on which the PBE GGA X
functional (and some others also) is based is the Lieb-Oxford
bound.5 In the DFT literature, this bound commonly is
expressed as

where

The LO value for the constant is

The possibility of tightening this bound has been the subject
of recurrent interest in DFT. A slightly tighter value λCH )
2.215 was found by Chan and Handy.6 Vela7 later reported
that using a spatially varying implementation of the LO
bound, which always is tighter than λLO, improved the results
for a test set of light inorganic and organic molecules
calculated using constraint-based GGAs.

Shortly thereafter and independently, two of us (OC
hereafter)8,9 gave numerical evidence from exact and near-
exact calculations on atoms, small molecules, and model
systems that the true bound is much tighter. That analysis
proceeded by defining the functional λ[n]

with both numerator and denominator evaluated on the actual
density of each system. In general, this functional cannot be
evaluated exactly, because neither Exc nor the density is
known exactly. However, it can be evaluated to high
accuracy for systems for which near-exact XC energies and
system densities are known from configuration interaction
or quantum Monte Carlo calculations. The result8,9 is that* Corresponding author e-mail: trickey@qtp.ufl.edu.

Exc[n]

Ex
LDA[n]

e λLO (1)

Ex
LDA[n] ) -3

4( 3
π)1/3 ∫ d3rn4/3(r) (2)

λLO ) 2.273 (3)

λ[n] )
Exc[n]

Ex
LDA[n]

(4)

J. Chem. Theory Comput. 2009, 5, 798–807798

10.1021/ct8005634 CCC: $40.75  2009 American Chemical Society
Published on Web 03/10/2009



real systems typically have λ[n] ∈ (1.1 ... 1.3). The higher
end of the interval typically corresponds to more rarefied,
diffuse density distributions, while the lower end cor-
responds to more compact densities. Values above 1.3
were only found for extreme low-density limits of model
Hamiltonians: the k f 0 limit of Hooke’s atom has λ[k
f 0] ) 1.489, and the rs f ∞ limit of the homogeneous
electron gas has λ[rs f ∞] ) 1.9555 :) λHEG.

On the basis of these results, OC conjectured8,9 that further
tightening of the LO bound, beyond that obtained by Chan
and Handy, can be achieved and suggested that for real
systems (excluding unphysical limits of model Hamiltonians)
λOC1 ) 1.35 may provide the tightest upper limit, whereas
for arbitrary systems λOC2 ) 2.00 ≈ λHEG is the upper limit.

OC also speculated that system-specific upper limits could
be found, thereby providing upper limits for all systems
sharing some common properties. Earlier, there was other
evidence for system-specific limits. Novikov et al.10 used a
reduced κ parameter (defined below) in the PBE XC
functional to some benefit. This reduction (see our discussion
below) is equivalent to a reduced LO bound. The numerical
rationalization for this was published somewhat later by
Peltzer y Blanca et al.11 Translating to effective values of λ,
broadly they found that 3d metals do better with λ ≈ λLO,
4d metals benefit from λ ≈ 1.81 f 1.94, and 5d metals
benefit from λ ≈ 1.69 f 1.84. The notable exception was
Fe, where the effective λ was 2.8, an illustration of the fact
that all the limitations of a specified XC form cannot be
corrected by a single parameter fix. (Recently, there has also
been a study of reduced κ in the PBE functional but the
reduction is done in such a way as to respect the original
Lieb-Oxford bound,12 and is not directly related to the issue
at hand.)

Other than this one empirical example, the available data
did not allow any general characterization of λ-value classes.
Here, we propose and explore a generally applicable, entirely
nonempirical way to characterize classes of systems with a
common maximum value of λ[n]. This characterization is
based on a rarely mentioned part of the original Lieb-Oxford
article, in which they show that tighter estimates of the upper
limit on λ[n] can be achieved by restricting the λ functional
to densities that integrate to a specified particle number N.
We therefore introduce the function λ(N), which for a given
value of N provides a universal upper limit upon λ[n] valid
for all systems such that ∫ d3rn(r) ) N. The maximum value
of λ(N), attained for Nf ∞, is the value λLO used in common
density functionals. The function λ(N) assigns to each class
of systems of common particle number an upper limit λ(N)
e λLO.

In construction of constraint-based functionals, the fact
that the upper limit can be tightened universally (from λLO

to λCH and perhaps on to λOC2) or in a system-specific way
(e.g., using λ(N)) has not been taken into account, and the
consequences of a replacement of λLO by one of the lower
values in currently popular functionals are unknown. We
study some of those consequences here.

II. Construction of a
Particle-Number-Dependent Bound

To explore the system-specific bound provided by the function
λ(N) requires facing the problem that, while Lieb and Oxford
proved the existence of this function and deduced some of its
properties, they did not obtain a closed analytical expression
for all N. We thus propose a simple approximation to λ(N),
compatible with all known information on the universal LO
bound. The following facts are known about λ(N):5,8,9

(i) Its value at N ) 1 is λ(N ) 1) ) 1.48 :) λ1.
(ii) Its value at N ) 2 is not known, but is above

λmin(N ) 2) ) 1.67.
(iii) The function λ(N) is monotonic, that is, λ(N + 1) g

λ(N).
(iv) Its value at N ) ∞ is not known, but must be less

than or equal to λmax(Nf ∞) :) λ∞. Different
proposals for the value of λ∞ are λLO ) 2.273, λCH )
2.215, and λOC2 ) 2.00 ≈ λHEG.

(v) The largest value of λ[n] found for any system studied
specifically is that for the extreme low-density limit
of the homogeneous electron gas λHEG(rs f ∞) )
1.9555. For real physical systems, λ[n] typicallye1.3.
These values provide empirical lower bounds on the
function λ(N).

Note that standard density functionals either do not make
use of the Lieb-Oxford bound at all (and some can violate
it)13–16 or exploit only property (iv), normally with the
weakest value for λ∞, namely λLO. To construct a model for
the function λ(N), we exploit properties (i) (value at N )
1), (iii) (monotonicity), and (iv) (value at N f ∞). We use
properties (ii) (theoretical lower limit at N ) 2) and (v) (λ[n]
for model and real systems) as consistency tests for the
construction. With all this in mind, we propose the simple
interpolation:

where λ∞ is λLO, λCH, or λOC2. By construction this interpola-
tion obeys properties (i), (iii), and (iv). Direct inspection
shows that it also respects properties (ii) and (v).

Figure 1 illustrates this function for the three different
choices of λ∞ and compares it to the known value at N ) 1,
the lower limit at N ) 2, and some representative data for
atoms, molecules, and the homogeneous electron gas.

We note that the function λ(N) is a global multiplicative
factor and as such can be applied in the context of both the
global and the local LO bound. As PBE makes use of the
local form,16 we here explore consequences of the N-
dependence of λ in this context, but as a matter of principle,
the issue of tightening the bound and/or making it N-
dependent applies to the global bound as well.

III. Implementation and Computational
Protocols

A. Modification of PBE GGA. To explore these ideas,
we implemented the various possible replacements of λLO

in the PBE GGA. At the outset, we remark that, on the basis

λ(N) ) (1 - 1
N)λ∞ +

λ1

N
(5)
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of previous experience with the revPBE functional,16 we
expect that lowering λ in PBE will have a detrimental effect
on atomic total energies. (In revPBE, an increase of λ was
shown to improve atomic total energies and molecular
atomization energies, at the expense of worsened bond
lengths.)

Since the actual values of λ[n] for physical systems are
known to fall far below λLO, and the theoretical information
available from the CH numerical tightening and from the
function λ(N) both indicate that lower values of λ are
appropriate, this detrimental effect must be considered a
severe shortcoming of the GGA. An important issue of
energetics, therefore, is whether the atomization energies are
improved when tightened LO bounds are used in a GGA.
Further investigation is needed to see if meta-GGA func-
tionals4 suffer from the same problem, but that is beyond
the scope of this study. Because the quality of predicted
equilibrium energies and system geometries is the first
prerequisite for any generally useful approximate XC
functional, the effects of tightening the LO bound upon
Kohn-Sham orbitals (e.g., their utility as frontier orbitals)
and eigenvalues also will be considered separately.

In any event, there are five possibilities for tightening,
pertaining to two categories. Category I is a simple replace-
ment of the constant value λLO by the alternative lower
constants λCH or λOC2. Category II replaces the constant by
the function λ(N), with the three possible choices for λ∞.
The resulting five choices are to be compared to the original
choice λLO, made in the construction of PBE.

In the original PBE GGA, the LO bound is enforced
locally (but not pointwise) through the choice of the
parameter κ in the exchange enhancement factor:

with the dimensionless reduced gradient given by:

Taking spin-polarization into account, satisfaction of eq 2
by the enhancement factor in eq 6 for all densities (a
sufficient condition) is equivalent to

Since lim sf∞Fx[n, s] ) 1 + κ, the result is

Of course, the simple choice of a different universal bound
leads to

The equivalent modification to include the N-dependent LO
bound (eq 5) is

The result of considering such altered LO bounds is five
variants of the PBE exchange functional:

PBE(λCH): PBE96 exchange but with λ∞ ) λCH ) 2.215.
PBE(λOC2): PBE96 exchange but with λ∞ ) λOC2 ) 2.00.
PBE(λLO(N)): PBE96 exchange but with λ(N, λ∞) and λ∞

) λLO ) 2.273.
PBE(λCH(N)): PBE96 exchange but with λ(N, λ∞) and λ∞

) λCH ) 2.215.
PBE(λOC2(N)): PBE96 exchange but with λ(N, λ∞) and λ∞

) λOC2 ) 2.00.
The first two, along with the original PBE ) PBE(λLO),
comprise category I, the latter three, category II. We denote
the six variants collectively as PBE(λ) in what follows.

It is important for clarity of interpretation of our results
to note that the five new variants alter only the value of the
LO bound that is enforced and not the way in which the
bound is enforced. In both original PBE and our variations,
the bound is enforced locally as a sufficient condition.
Whether global enforcement is better is a distinct question
not considered here. Note also that, just as with original PBE,
while the enforcement is local it is not pointwise (we do not
have λ(r)).

B. Protocols. All five variants were introduced in the code
deMon2k, development version 2.4.2,17 by systematic modi-
fication of the exchange-correlation modules. Subsequently,
the implementation was validated by comparison of atomic
calculations done with hard-coded modifications of the code
soatom.f.18 Throughout, we used the full PBE correlation
functional, not the deMon cutoff version (i.e., we used the
deMon2k “PBESSF” option), for all PBE(λ). Because
deMon2k uses variational Coulombic fitting, there is a choice
of density fitting (auxiliary) basis sets and of the method for
evaluating XC matrix elements. Initially, we used the so-
called A2 density fitting basis (deMon2k option “AUXIS(2)”)
and the option to do the numerical integrals for the XC

Figure 1. Interpolation function λ(N) for three different choices
of λ∞, compared to known theoretical results and empirical
data. Black crosses represent the exact value at N ) 1 and
the lower bound at N ) 2. Values at N f ∞ are indicated on
the right vertical axis. The three continuous curves are our
interpolation (eq 5) using the three alternative choices for λ∞.
All other data represent ranges or values for selected real
systems, providing empirical lower bounds.

Fx
PBE :) 1 + κ - κ

1 + µs2/κ
(6)

s(r) ) 1

2(3π2)1/3

|∇ n(r)|

n(r)4/3
(7)

Fx[n, s] e
λLO

21/3
) 1.804 (8)

κPBE ) 0.804 (9)

κ(λ∞) )
λ∞

21/3
- 1 (10)

κ(N, λ∞) )
λ(N, λ∞)

21/3
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quantities using the fitted (auxiliary) density (deMon2k
“AUXIS” option). We return to these options below.

For development of a suitable protocol (Kohn-Sham
basis, fitting basis) we first studied the Li2 molecule in a
triple-�-plus-polarization (TZVP) KS basis. The results are
in Table 1. Note that ∆E is the total atomization energy,
2ELi,atom - ELi2 (not the cohesive energy per atom). Regarding
the quality of the calculation, observe that for the unmodified
PBE functional, our results are almost identical with those
given by Ernzerhof and Scuseria,19 ∆E ) 20 kcal/mol, Re

) 2.727 Å. (For reference, they quote experimental values
as 26 kcal/mol and 2.673 Å.)

As would be expected from naı̈ve use of a particle-number-
dependent model, the results in Table 1 show a clear size-
inconsistency problem, signaled by the big shift in ∆E
between the N-independent models, PBE(λ), and the N-
dependent models, PBE(λ(N)). The fact that there is no such

shift in the Re values is a clear sign that the problem is in
the comparison with the isolated atom. Equation 11 illustrates
the point. In a naı̈ve application of the N-dependent models,
the Li atom has λ(3, λ∞) while the Li2 molecule has λ(6, λ∞)
(with the three choices of λ∞). The result is a separated atom
limit of the diatomic molecule which is not the same as the
isolated atom. Table 2 shows the very substantial difference
in the PBE parameter κ for these two situations.

Table 3 shows how a size-consistent set of parameters,
here for N ) 6, resolves the problem. (For clarity, note that
we made the common choice throughout all these calcula-
tions and ignored the DFT spin-symmetry problem. Thus,
the separated atoms are spin-polarized even though the
molecule has multiplicity of one.) Throughout this study,
we used this same size-consistent procedure, namely applying
to the separated atoms the modified LO constants proper for
the value of N of the aggregated system (molecule) in
question. For heteronuclear molecules, especially hydrides,
this protocol results in a rather disparate enforcement of the
LO bound for atoms of substantially different N, a matter
for later study and refinement. (We note that the use of the
original PBE functional implies the most disparate enforce-
ment of all, as it amounts to using the largest Nf ∞ value
of λ for all finite N.)

Table 3 also compares the effect of the two different
options in deMon2k for evaluation of the XC matrix
elements. First is the deMon A2 density fitting basis
(deMon2k option “AUXIS(2)”) and the aforementioned
deMon2k option (“AUXIS”) for evaluation of XC quantities

Table 1. Comparison of Effects of Various Lieb-Oxford
Bounds in the PBE Exchange Functional for the Li2
Moleculea

functional Eatom ELi2 ∆E Re

PBE(λLO) -7.460992748 -14.953949056 20.06 2.7236
PBE(λCH) -7.457436406 -14.946932892 20.01 2.7218
PBE(λOC2) -7.441633876 -14.915640294 20.31 2.7155
PBE(λLO(N)) -7.442385785 -14.937217688 32.91 2.7196
PBE(λCH(N)) -7.439006265 -14.930264047 32.79 2.7181
PBE(λOC2(N)) -7.424518016 -14.899876726 31.90 2.7131

a See text for notation about functionals. Eatom and ELi2 are total
energies in hartrees. ∆E is the total atomization energy in
kilocalories per mole, and Re is the equilibrium bond length in
angstroms.

Table 2. Values of the PBE Exchange Functional
Parameter κ(N, λ∞) for the PBE(λ) Functionals for N ) 3 (Li
Atom) and N ) 6 (Li2 Molecule)

functional κ(3, λ∞) κ(6, λ∞)

PBE(λLO) 0.804319 0.804319
PBE(λCH) 0.757967 0.757967
PBE(λOC2) 0.587401 0.587401
PBE(λLO(N)) 0.594439 0.699379
PBE(λCH(N)) 0.563537 0.660752
PBE(λOC2(N)) 0.449826 0.518614

Table 3. Comparison of Effects of Various Lieb-Oxford Bounds in the PBE Exchange Functional for the Li2 Moleculea

functional Eatom ELi2 ∆E Re

PBE(λLO) -7.460992748 -14.953949056 20.06 2.7236
PBE(λCH) -7.457436406 -14.946932892 20.01 2.7218
PBE(λOC2) -7.441633876 -14.915640294 20.31 2.7155
PBE(λLO(N)) -7.452520577 -14.937217688 20.19 2.7196
PBE(λCH(N)) -7.449007723 -14.930264047 20.24 2.7181
PBE(λOC2(N)) -7.433703689 -14.899876726 20.37 2.7131

PBE(λLO) -7.460613173 -14.953310471 20.13 2.7304
PBE(λCH) -7.457076546 -14.946319641 20.18 2.7277
PBE(λOC2) -7.441303732 -14.915029100 20.34 2.7181
PBE(λLO(N)) -7.452179554 -14.936623118 20.25 2.7244
PBE(λCH(N)) -7.448674591 -14.929672255 20.28 2.7222
PBE(λOC2(N)) -7.433359029 -14.899212818 20.39 2.7143
reference values20–23 -7.47806 -14.9938 26 2.673

a N-dependent functionals done with N ) 6 size-consistent parameters. TZVP KS basis. Upper set is the A2 fitting basis with AUXIS XC
evaluation option, lower set is GEN-A2 and BASIS option. See text for details as well as notation for functionals. Eatom and ELi2 are total
energies in hartrees. ∆E is the total atomization energy in kilocalories per mole. Re is the equilibrium bond length in angstroms.

Table 4. O and O2 (Triplet) Total Energies (EH), Molecular
Atomization Energy (kcal/mol), and Equilibrium Bond
Length (Å) for the Ordinary PBE XC Functional As
Calculated in deMon2k, TZVP Basis (“deMon-TZVP”);
Gaussian 03, 6311+G(3df,2p) Basis (Ref 19 “ES”);
ACES-II, aug-cc-PVTZ (Ref 25 “AP”); and deMon2k,
aug-cc-PVTZ Basis (“deMon-aug”)

calcd Etot,O Etot,O2 ∆E Re

deMon-TZVP -75.00612438 -150.23282532 138.4 1.23491
ES 143 1.217
AP -75.00773627 -150.24372619 143.2 1.21996
deMon-aug -75.00781596 -150.24387554 143.2 1.22008
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using the fitted (auxiliary) density on a numerical grid.
Second is the richer GEN-A2 fitting basis and evaluation of
the XC quantities from the density formed straightforwardly
from the KS orbitals also on the numerical grid (“BASIS”
option). In principle, the latter procedure is the more accurate
and is the one we adopted. Nevertheless, the trends in the
PBE(λ) series are essentially the same in the less-accurate
procedure.

Our other exploratory test was the O2 molecule, a triplet
ground-state system. The TZVP PBE atomization energy (see
the first two lines of Table 4) is about 3% off from the
published result of Ernzerhof and Scuseria,19 who used the
substantially richer basis 6311+G(3df,2p). An ACES-II24

calculation using another rich basis (aug-cc-PVTZ) matched
the deMon2k results with that same KS basis and the richer
density-fitting basis (“GEN-A2*” option). These results, in
the third and fourth lines of Table 4, calibrate the effects of
basis set differences. Results for the PBE(λ) series in the
aug-cc-PVTZ/GEN-A2* basis sets also are in Table 5.
The relative shifts among the six PBE variants are the same
irrespective of basis sets, but the richer basis sets make the
atomization energies larger and bond lengths slightly shorter.
Ernzerhof and Scuseria19 quote the experimental data as ∆E
) 118 kcal/mol and Re ) 1.208 Å. Thus, all six PBE variants

(original plus five new) give too deep a binding energy at
slightly elongated bond lengths.

The preceding discussion makes clear that systematic
comparison of the six PBE variants generally does not require
a fully saturated basis set. Rare gas dimers, discussed below,
are an exception. Therefore, except for rare gas dimers, we
adopted the following protocol: (i) use TZVP for the KS
basis, (ii) use GEN-A2 or GEN-A3 algorithms to generate
the fitting-function basis (and thereby minimize the effect
of the variational Coulombic fitting, which gives a lower
bound to the Coulombic repulsion that can be deceptive with
a poorly chosen fitting basis), and (iii) use the deMon2k
BASIS option for evaluation of the XC matrix elements. This
protocol combines a reasonably rich KS basis with an
abundance of caution in treating the XC quantities.

For the rare gas dimers, test calculations on Ar2 with both
a DZVP and a 6-311++G(3df,3pd) KS basis set demon-
strated that these do not reproduce known, large-basis PBE
results for this dimer.26,27 Since those two calculations were
completely independent and gave essentially identical values,
∆E ) 0.138 kcal/mol, Re ) 4.00 Å, it is essential to
reproduce them. Therefore, we shifted to the aug-cc-pVTZ
KS basis,28 as used by Zhao and Truhlar, and the deMon2k
GEN-A3 fitting function basis. This combination gives the

Table 5. As in Table 3 but for Triplet O2 and for Two Different Basis Sets TZVP/GEN-A2 (Upper Set), aug-cc-PVTZ/
GEN-A2* (Lower Set)

functional Eatom EO2 ∆E Re

PBE(λLO) -75.00612438 -150.23282532 138.4 1.2349
PBE(λCH) -74.99689680 -150.21624772 139.6 1.2343
PBE(λOC2) -74.95432779 -150.13915494 144.6 1.2315
PBE(λLO(N)) -74.99835094 -150.21886346 139.4 1.2344
PBE(λCH(N)) -74.98900193 -150.20202494 140.6 1.2338
PBE(λOC2(N)) -74.94639261 -150.12467907 145.5 1.2310

PBE(λLO) -75.00781596 -150.24387554 143.2 1.2201
PBE(λCH) -74.99853463 -150.22722985 144.4 1.2195
PBE(λOC2) -74.95571887 -150.14986185 149.6 1.2167
PBE(λLO(N)) -74.99998015 -150.22985618 144.3 1.2196
PBE(λCH(N)) -74.99059055 -150.21295118 145.4 1.2189
PBE(λOC2(N)) -74.94774275 -150.13534295 150.5 1.2162
reference values20–23 -75.0674 -150.2770 118 1.208

Table 6. Comparison of Effects of Various Lieb-Oxford Bounds in the PBE Exchange Functional upon the Atomization
Energies (kcal/mol) of Various Small Molecules

species 2S + 1 PBE(λLO) PBE(λCH) PBE(λOC2) PBE(λLO(N)) PBE(λCH(N)) PBE(λOC2(N)) expt22

Li2 1 20.13 20.18 20.34 20.25 20.28 20.39 26
Be2 1 9.71 9.95 10.94 10.12 10.35 11.28 2.3
B2 3 76.7 77.3 80.1 77.6 78.2 80.8 71.3
C2 1 142.3 143.4 147.9 143.6 144.6 148.9 146
N2 1 235.5 236.7 241.7 236.7 237.9 242.6 227
O2 3 138.4 139.6 144.6 139.4 140.6 145.5 118
F2 1 51.56 52.46 56.30 52.23 53.12 56.90 38
Ne2 1 0.1279 0.1438 0.2236 0.1385 0.1549 0.2369 0.0839
Ar2 1 0.1377 0.1631 0.2998 0.1462 0.1732 0.3122 0.2846
HF 1 142.645 143.161 145.401 143.356 143.864 146.037 142
LiH 1 54.53 54.54 54.57 54.57 54.57 54.54 58
OH 2 110.361 110.762 112.458 110.976 111.365 112.981 107
NH 3 88.95 89.18 90.07 89.34 89.55 90.36 88
NiH 2 74.05 75.05 76.63 74.86 75.21 76.79 58.8
H2O 1 235.9 236.8 240.5 237.1 237.9 241.5 235
NH3 1 305.686 306.664 310.761 307.029 307.976 311.882 297
CH4 1 427.184 428.245 432.736 428.641 429.673 433.983 420
C6H6 1 1423.74 1430.39 1458.48 1425.84 1432.45 1460.30 1362
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same PBE results as the foregoing two references. We treated
Ne2 with the corresponding aug-cc-pVTZ KS basis and GEN-
A3 fitting function basis.

IV. Results and Discussion

For PBE(λ), Table 6 gives the atomization energies for 18
light molecules, while Table 7 gives bond lengths and bond
angles for those same systems. (As a technical aside, note
that NiH is a difficult system to treat.) Absolute relative errors
in the atomization energy are shown in Figure 2, and the
corresponding bond length data are in Figure 3.

Several features stand out from these results. With a few
exceptions, the general pattern is that both atomization
energies and bond lengths are remarkably insensitive to
changes in the enforcement of the LO bound. This outcome
is consistent with what one might have inferred from Figure
1. The λ(N) that we are justified in using (in the sense that
our interpolation respects the known constraints) is substan-
tially larger than the λ values imputed for actual molecules.
Thus, one might conclude that a more refined way of
implementing the LO bound in a GGA is needed.

However, two systems, Ne2 and Ar2, are notably sensitive
to the value of λ in the atomization energies. Be2 is somewhat
similar in sensitivity. A coherent interpretation by classes
of molecules is possible: unlike the other atoms, Ne and Ar
are closed-shell atoms and the Be atom is similar in having
l ) 0 symmetry. Thus, we may suspect that the well-known
peculiarities of closed-shell interactions are the source of the
distinct behavior. (We do not venture any remarks on the
validity and limitations of GGA XC functionals for such
molecules.) For the equilibrium bond lengths, Ne2 and Ar2

still stand out from all other systems by being most sensitive
to changes in λ (Figure 3). However, the classification of
Be2 with Ne2 and Ar2 is at least consistent in that the Be2

bond-length variation is at odds with all the other open-shell
systems. The behavior of Be2 does not seem to be traceable
to being from the rapidly varying part of the λ(N) function,

since Li2 is in that region also and it is insensitive in both
bond length and atomization energy.

To display the effects of imposition of the size-consistent
molecular N values on the LO bounds in atoms, we also
calculated some isolated atom total energies at their intrinsic
N ) Z values. For H, C, N, O, and F, Table 8 displays the
results for the intrinsic value versus the results for the highest
N molecule in which each element was used in the present
study. As would be expected from the interpolation in eq 5
and the constraints on which it is based, the total energy of
the H atom exhibits the largest percentage variation between
intrinsic and molecular values for the three N-dependent
variants PBE(λ(N)).

V. Concluding Remarks

Our results show that PBE is rather insensitive to changes
in λ for covalently and ionically bound small molecules when
measured by atomization energies and bond lengths. The total
energies are notably more sensitive, presumably because of
the large s contributions from the density tails. Overall, a
reduced, and thus, in principle, better, value of λ produces
slightly worsened energies and slightly improved bond
lengths. This insensitivity explains why PBE can be suc-
cessful even though it uses the λ∞ value even for small N.
In this sense, the present study provides additional insight
into the success of PBE for small systems. On the other hand,
a suitably designed, constraint-based functional should give
improved results when the constraints it incorporates are
sharpened. The failure of PBE to meet this expectation must
be considered a limitation of the PBE functional form.

In the case of the closed-shell systems, we find a more
pronounced λ dependence than in the covalent and ionic
systems. Because of the delicate nature of binding in these
systems, more detailed investigation would be needed to
make conclusive statements. In the spirit of the preceding
paragraph, it would appear to be more productive to focus

Table 7. Comparison of Effects of Various Lieb-Oxford Bounds in the PBE Exchange Functional upon the Bond Lengths
(Å) and Bond Angles (deg) of Various Small Moleculesa

species PBE(λLO) PBE(λCH) PBE(λOC2) PBE(λLO(N)) PBE(λCH(N)) PBE(λOC2(N)) expt23

Li2 2.7304 2.7277 2.7181 2.7244 2.7222 2.7143 2.673
Be2 2.4409 2.4379 2.4259 2.4355 2.4328 2.4218 2.45
B2 1.6208 1.6198 1.6159 1.6194 1.6185 1.6148 1.590
C2 1.2595 1.2590 1.2567 1.2590 1.2584 1.2562 1.243
N2 1.1112 1.1108 1.1091 1.1108 1.1104 1.1087 1.098
O2 1.2349 1.2343 1.2315 1.2344 1.2338 1.2310 1.208
F2 1.4301 1.4290 1.4242 1.4293 1.4282 1.4235 1.412
Ne2 3.0808 3.0418 2.8709 3.0546 3.0162 2.8550 3.091
Ar2 3.99907 3.9124 3.6964 3.9469 3.8929 3.6841 3.7565
HF 0.9385 0.9385 0.9385 0.9385 0.9385 0.9385 0.917
LiH 1.6065 1.6058 1.6029 1.6039 1.6033 1.6012 1.595
OH 0.9899 0.9899 0.9898 0.9899 0.9899 0.9897 0.971
NH 1.0549 1.0549 1.0548 1.0549 1.0549 1.0548 1.036
NiH 1.4580 1.4594 1.4553 1.4599 1.4590 1.4549 1.477
H2O, R 0.9750 0.9749 0.9747 0.9749 0.9749 0.9746 0.959
H2O, θ 104.21 104.24 104.39 104.25 104.29 104.43 103.9
NH3, R 1.0252 1.0252 1.0245 1.0250 1.0249 1.0244 1.012
NH3, θ 106.40 106.44 106.62 106.45 106.49 106.67 106.7
CH4 1.0990 1.0989 1.0984 1.0988 1.0987 1.0982 1.086
C6H6, RCC 1.3995 1.3990 1.3965 1.3994 1.3988 1.3963 1.397
C6H6, RCH 1.0947 1.0946 1.0943 1.0947 1.0946 1.0943 1.084

a The NH3 bond angle is θHNH. See text for notation about functionals. CH4 was done with Td symmetry enforced.
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on developing enhancement factors that are more sensitive
to sharpening of constraints.

An appealing thought is that the insensitivity found here
may also have to do with the way that the LO bound is

Figure 2. Top panel: Absolute relative errors in atomization energies for all 18 molecules for original PBE and the five variants.
Middle panel: As in the upper panel but with the worst two cases (Be2, Ne2) removed to allow a finer scale. Bottom panel: As
in the middle panel but with the worst six cases of that panel (F2, Ar2, NiH, Li2, O2, B2) removed to allow a finer scale.
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implemented in DFT in general. The original LO bound is
for the Coulombic exchange and correlation energy Wxc and

does not include the correlation kinetic energy, Tc ) T - Ts

g 0, which contributes to Exc. As a result, Exc g Wxc and

Figure 3. Upper panel: Absolute relative errors in bond lengths for all 18 molecules for the original PBE and the five variants.
Lower panel: As in the upper panel but with the two most sensitive cases (Ar2, Ne2) removed to allow a finer scale.

Table 8. Total Energies (Hartree au) for Five Chemically Important Atoms from Various Lieb-Oxford Bounds in the PBE
Exchange Functionala

XC H C N O F

PBE(λLO) -0.498147969 -37.794851185 -54.530389203 -75.006124382 -99.664580137
PBE(λCH) -0.497515476 -37.787528107 -54.522145702 -74.996896796 -99.654626939
PBE(λOC2) -0.494726517 -37.754129975 -54.484419695 -74.954327792 -99.608420218
PBE(λLO(N)) -0.481206885 -37.777286824 -54.513676785 -74.989918352 -99.649171204
(intrinsic N)
PBE(λLO(N)) -0.497950959 -37.792580522 -54.52240237 -74.99835094 -99.65716700
(highest N)
PBE(λCH(N)) -0.481206885 -37.769885027 -54.505322010 -74.980521867 -99.639010126
(intrinsic N)
PBE(λCH(N)) -0.497316032 -37.785199634 -54.51406717 -74.98900193 -99.64707222
(highest N)
PBE(λOC2(N)) -0.481206885 -37.736869483 -54.467831152 -74.937949507 -99.592621018
(intrinsic N)
PBE(λOC2(N)) -0.494539297 -37.751826019 -54.47640949 -74.94639261 -99.60074422
(highest N)
exact20 -0.5 -37.8450 -54.5893 -75.0674 -99.7341

a Results for the N-dependent functionals are given both for the values of N intrinsic to the specific atom and for the highest molecular N
used: 42 for H, 42 for C, 14 for N, 16 for O, 18 for F.
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the functional λ[n] ) Exc[n]/Ex
LDA[n] which was evaluated

in refs 8 and 9 is smaller than the functional

If the effect of Tc were large enough, it might explain at
least part of the large difference between the values of λ[n]
and λ(N) in Figure 1. What limited numerical evidence we
have, however, suggests that λW[n] is only about 10% larger
than λ[n], a very modest shift compared to the difference in
Figure 1.

The more general point, however, that the LO bound is a
constraint on exchange and correlation together, seems to
be sustained by our findings, in that the PBE form enforces
the bound purely on exchange. One speculation is that the
insensitivity found here is in part a consequence of that
restricted use of the LO bound.

Finally, we consider aspects of N-dependence and chemi-
cal classification for enforcement of the LO bound. The first
insight is that, in retrospect, N-dependent satisfaction of the
LO bound actually arose very early in DFT, before the LO
proof. In Slater’s XR model, Exc is modeled by scaling Ex

LDA.
(From a modern perspective, XR is a one-parameter XC
model that gains simplicity at the cost of violating correct
scaling for C.) The R-parameter is N-dependent29 and
exhibits very clear shell structure.30,31 For XR, the LO
functional λ[n] of eq 4 is just 3R/2. With typical values of
R,30,31 this gives λ[n] ) 1.0745 for H (N ) 1) to 1.0387 for
Rn (N ) 86). Comparison with Figure 1 shows that these
values are slightly smaller than the highly accurate empirical
values found in refs 8 and 9.

The importance of shell-dependent classification was
evident in the modern work of refs 8 and 9. The numerical
results of this study also leave a strong suggestion that such
classification would be helpful. An advantage of the present
classification of λ with respect to N alone is that it can be
done in an entirely nonempirical way, as it relies only upon
exact properties of the function λ(N). (This is a clear
distinction from all parametrized approaches.) Of course, the
choice of interpolating function is not unique, but the fact
that the upper limit on λ depends on N is completely general,
as are the properties of λ(N) used in the construction of our
interpolation. What this means is that whatever shell-
dependent classification might be invented, it must somehow
be an addition to (or incorporate) classification by particle
number, not supplant it. Because that classification will have
to avoid size inconsistency, we suspect that the formulation
will require additional insight, including additional constraints.

Dedication. John Perdew has contributed major insights
to both fundamental and computational aspects of density
functional theory. A consistent feature of his work is to prove
relationships and apply them as rigorous constraints in the
construction of approximate functionals. For those general
reasons as well as a particular one, we are pleased to present
this article in celebration of John’s work and his contributions
as part of this birthday festschrift. The particular reason is
that the constraint we consider here was introduced to DFT

by John,1 further analyzed by him in collaboration with Mel
Levy,2 and incorporated in John’s GGA3 and meta-GGA4

functionals.
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Abstract: The diverse barrier height database DBH24 is updated by using W4 and W3.2 data
(Karton, A.; Tarnopolsky, A.; Lamère, J.-F.; Schatz, G. C.; Martin, J. M. L. J. Phys. Chem. A
2008, 112, 12868) to replace previous W1 values; we call the new database DBH24/08. We
used the new database to assess 348 model chemistries, each consisting of a combination of
a wave function theory level or a density functional approximation with a one-electron basis
set. All assessments are made by simultaneous consideration of accuracy and cost. The
assessment includes several electronic structure methods and basis sets that have not previously
been systematically tested for barrier heights. Some conclusions drawn in our previous work
(Zheng, J.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 569) are still valid when
using this improved database and including more model chemistries. For example, BMC-CCSD
is again found to be the best method whose cost scales as N6, and its cost is an order of
magnitude smaller than the N7 method with best performance-to-cost ratio, G3SX(MP3), although
the mean unsigned error is only marginally higher, namely 0.70 kcal/mol vs 0.57 kcal/mol. Other
conclusions are now broader in scope. For example, among single-reference N5 methods (that
is, excluding MRMP2), we now conclude not only that doubly hybrid density functionals and
multicoefficient extrapolated density functional methods perform better than second-order
Møller-Plesset-type perturbation theory (MP2) but also that they perform better than any
correlation-energy-scaled MP2 method. The most recommended hybrid density functionals, if
functionals are judged only on the basis of barrier heights, are M08-SO, M06-2X, M08-HX, BB1K,
BMK, PWB6K, MPW1K, BHandHLYP, and TPSS25B95. MOHLYP and HCTH are found to
be the best performing local density functionals for barrier heights. The basis set cc-pVTZ+ is
more efficient than aug-cc-pVTZ with similar accuracy, especially for density functional theory.
The basis sets cc-pVDZ+, 6-31+G(d,p), 6-31B(d,p), 6-31B(d), MIDIY+, MIDIX+, and MIDI!
are recommended for double-�-quality density functional calculations on large systems for their
good balance between accuracy and cost, and the basis sets cc-pVTZ+, MG3S, MG3SXP,
and aug-cc-pVDZ are recommended for density functional calculations when larger basis sets
are affordable. The best performance of any methods tested is attained by CCSD(T)(full)/aug-
cc-pCV(T+d)Z with a mean unsigned error of 0.46 kcal/mol; however, this is several orders of
magnitude more expensive than M08-SO/cc-pVTZ+, which has a mean unsigned error of only
0.90 kcal/mol.

1. Introduction
We recently developed a representative database for ther-
mochemical kinetics, called DBH24,1,2 based on the full

database NHTBH38/043 and 44 hydrogen transfer reactions
in Database/3.4 The databases, NHTBH38/04 and Database/
3, have 38 barrier heights for non-hydrogen-transfer reactions
and 44 barrier heights for hydrogen-transfer reactions. The
DBH24 database is a statistically representative subset of* Corresponding author e-mail: truhlar@umn.edu.
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NHTBH38/04 and the hydrogen-transfer reactions in Database/
3. It contains 6 barrier heights each for heavy-atom transfer,
nucleophilic substitution, unimolecular and association reac-
tions, and hydrogen-transfer reactions, respectively. This
representative database can adequately reproduce the mean
signed errors (MSEs), mean unsigned errors (MUEs), and
root-mean-square errors (RMSEs) of the entire database.
Because the representative database is much smaller than
the entire databases, it significantly reduces the computational
costs and makes testing of high-level model chemistries more
affordable.

A single-level model chemistry is a combination of a level
of electronic structure wave function theory or density
functional approximation and a basis set; a multilevel model
chemistry is a way to combine such combinations to
extrapolate to a more accurate result. A model chemistry is
also called a “method”. In our previous work,1 we assessed
205 model chemistries for chemical reaction barrier heights
using the entire database or the representative DBH24
database. The model chemistries tested included various
levels of single-level wave function theory, multicoefficient
correlation methods, local and hybrid density functional
approximations, and semiempirical molecular orbital meth-
ods. In the present article we retest these methods against
an improved database, and we add 143 additional methods
to the comparison.

The best estimates of barrier heights in the DBH24
database are from either high-level theoretical calculations,
e.g., the Weizmann-15 (W1) or the multireference configura-
tion interaction method6 (MRCI), or they are values derived
from experimental data. Recently, Karton et al.7 carried out
calculations with the Weizmann-4 (W4) and Weizmann-3.2
(W3.2) model chemistries8 for these 24 barrier heights. These
W4 and W3.2 calculations are more reliable than the W1
values3 used in the original DBH24 database. This motivated
us to update the DBH24 database, and in the present article
we present the updated database called DBH24/08.

After the publication of our first comprehensive assessment
of model chemistries for barrier heights in 2007,1 a number
of new density functionals, wave function methods, and basis
sets became available, and it also became apparent that more
of the previously available methods needed testing. Here we
make our assessment more complete by adding additional
model chemistries not covered in our previous papers1,9 to
our benchmark data set.

2. DBH24/08 Database

Table 1 lists the new best estimates of barrier height that
constitute the DBH24/08 database. We updated 14 barrier
heights calculated at W1 values in the original DBH24
database by the new7 W4 or W3.2 values. Those values of
barrier heights based on other theoretical calculations than
W1 and values derived from experimental rate constants are
still considered to be the best estimates for those cases. Below
is a brief review of the methods used for the best estimates
of barrier height in the DBH24/08 database that are not taken
as W4 or W3.2 values.

Barrier heights for the reactions H + ClH T HCl + H
and H + OH T O + H2 were calculated using the
CAS+1+2+QC method at the complete basis set limit
including core-valence correlation by Peterson and Dun-
ning.10 Here CAS+1+2 denotes MRCI with single and
double excitations from a complete active space self-
consistent field (CASSCF) reference, and +QC denotes a
Davidson correction for higher excitations. The active space
used in the CASSCF and MRCI calculations is the full
valence space plus two additional orbitals of πx and πy

symmetry. The best estimates of barrier heights of H + C2H4

T CH3CH2 are based on the variable scaled external
correlation (VSEC) method.11 The VSEC method12 adjusts
the dynamical correlation energy along the reaction path to
reproduce the high-pressure limit experimental rate constants
for the addition and the unimolecular corrections13 (VTST/
MT). Therefore, this barrier height based on the VSEC
method can be considered to have the quality of experimental
data. The best estimated barrier heights for the OH + CH4

T CH3 + H2O and H + H2S T H2 + HS reactions were
made by comparing the best available theoretical calculation
and best experiment for the reaction rate constants at 600
K.14 For OH + CH4 the theoretical rate constant15 was
calculated by using VTST/MT, and the experimental data
were taken from ref 16. Peng et al. performed experiments
and calculations using conventional TST and an Eckart
correction for quantum mechanical tunneling for the rate
constant of the H + H2S reaction.17 Since we used rate
constants at 600 K at which the tunneling contribution is
moderate, the one-dimensional Eckart correction for tunnel-
ing is considered to be acceptable for this case. For these
reactions, the best estimate of forward barrier height is
determined by V‡(best estimate) ) V‡(theory) + ∆V‡. The
adjustment to the barrier height is calculated using the
equation ∆V‡ ) RTln (ktheory(T)/kexperiment(T)), where ktheory and
kexperiment are respectively the theoretical and experimental
reaction rate constants at 600 K, and R is the molar gas
constant. The reverse barrier height is calculated by adding

Table 1. Best Estimates of Barrier Height (in kcal/mol) in
the DBH24/08 Database

reactions forward/reverse BH method

Heavy-Atom Transfer
H + N2O T OH + N2 17.13/82.47 W4
H + ClH T HCl + H 18.00/18.00 CAS+1+

2+QC/CBS plus
core-valence
correlation

CH3 + FCl T CH3F + Cl 6.75/60.00 W3.2

Nucleophilic Substitution
Cl- · · ·CH3Cl T ClCH3 · · ·Cl- 13.41/13.41 W3.2
F- · · ·CH3Cl T FCH3 · · ·Cl- 3.44/29.42 W3.2
OH- + CH3F T HOCH3 + F- -2.44/17.66 W3.2

Unimolecular and Association
H + N2 T HN2 14.36/10.61 W4
H + C2H4 T CH3CH2 1.72/41.75 VSEC
HCN T HNC 48.07/32.82 W4

Hydrogen Transfer
OH + CH4 T CH3 + H2O 6.7/19.6 experiment
H + OH T O + H2 10.7/13.1 CAS+1+

2+QC/CBS plus
core-valence
correlation

H + H2S T H2 + HS 3.6/17.3 experiment
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the reaction exoergicity to the best estimate of the forward
barrier height. The exoergicity is calculated from experi-
mental total atomization energies.18

3. Computational Details

Details for the calculations not mentioned here can be found
in the previous papers.1,9,19

3.1. Electronic Structure Levels. We carried out calcula-
tions employing a diverse array of density functionals,
electronic structure wave function levels, basis sets, and
multilevel methods for the 24 barrier heights, and we
assessed their accuracy statistically against the DBH24/08
database. Some of the calculations were available from
previous studies,1,9,19 and others are new. The added
multilevel methods are BMC-CCSD-C,20 BMC-QCISD,20

G2,21 G3,22 G3/3,4 G3S,23 G3S/3,4 G3SX(MP2),24 G4,25

G4(MP2),26 SCS-MP2,27 and SOS-MP2.28,29 We also added
one single-level model chemistry based on the CEPA30

version 1 approximation. We also added calculations with
multireference perturbation theory, in particular MRMP2/
nom-CPO/MG3S from ref 19. The added density functionals
are B2-PLYP,31 B2GP-PLYP,7 B2K-PLYP,32 B2T-PLYP,32

mPW2-PLYP,33mPW2K-PLYP,32B3PW91,34-36B3P86,34,35,37

M06,38 M06-2X,38 M08-HX,39 M08-SO,39 MOHLYP,40

mPW1KK,41 mPW25B95,42 PBEsol,43 SOGGA,44 TPSS-
20B95,42 and TPSS25B95.42 Note that some of the multilevel
methods may also be considered to be single-level methods
with adjusted coefficients, and other multilevel methods
involving both wave function correlation and density func-
tional correlation may be considered to be fifth rung density
functional approximations. Calculations involving both
Hartree-Fock exchange and density functional exchange
(generalized Kohn-sham theory) are, as usual, considered to
be a hybrid-type of density functional approximation. In
single-level wave function methods, core electrons are
uncorrelated except where indicated “(full)”. In density
functional calculations all electrons are explicit, and all are
correlated.

3.2. Basis Sets. The additional basis sets used in this work
are 3-21G,45 6-31B(d,p),20 cc-pVDZ+,46 cc-pVTZ+,46 cc-
pV(T+d)Z+,46 G3LargeXP,25 G3MP2LargeXP,25 G45Z,25

G4QZ,25 G4MP2QZ,26 G4MP2TZ,26 MG3SXP,39 MID-
IX+,47 MIDIY+,47 STO-2G,48 STO-3G,48 and STO-3G+.48,49

The MG3SXP (where XP denotes “extra polarization”) basis
differs from the MG3S4 one in the same way that
G3LargeXP25 differs from G3Large,22 in particular, the 2df
polarization functions of G3Large on Li-Ne are replaced
by a 3df set, and the 3d2f polarization functions on Al-Ar
are replaced by 4d2f, where the polarization functions are
those recommended by Curtiss et al.25 The basis set
cc-pVTZ+46 is cc-pVTZ50 for H and cc-pVTZ plus the
Pople-style diffuse s and p functions49 for non-hydrogenic
atoms, while cc-pV(T+d)Z+ is the cc-pV(T+d)Z51 basis set
plus the same diffuse functions as in the cc-pVTZ+. The
cc-pVDZ+ basis is constructed in the same way as the cc-
pVTZ+ basis. The basis 6-31B(d,p) is 6-31+B(d,p)20

without diffuse functions. MIDIX+ and MIDIY+ basis sets
are obtained by adding diffuse function on all elements with
nuclear charges of 3 or larger to MIDIX52 (also called MIDI!)

and MIDIY47 basis sets. The MIDIY basis set is the same
as MIDIX (or MIDI!) but with a polarization function added
to hydrogen. STO-3G+ is STO-3G plus the Pople-style
diffuse s and p functions49 for non-hydrogenic atoms.

3.3. Software. The additional calculations mentioned
above were carried out using the Gaussian 03 package53 and
MN-GFM 4.1 module54 except that CCSD(T)55 and CEPA
calculations were done by the Molpro program.56

3.4. Relativistic Effects. The effect of spin-orbit cou-
pling was added to the energies of the Cl, O, OH, and HS
radicals, which lower their energies by 0.84, 0.22, 0.20, and
0.54 kcal/mol, respectively.57 Scalar relativistic effects58 were
neglected, which is not a serious approximation since the
heaviest element involved in DBH24/08 is Cl.

3.5. Geometries. Most calculations in this work used
structures optimized using the QCISD/MG3 method with the
spin-restricted formalism for closed-shell and the spin-
unrestricted formalism for open-shell systems. Note that we
also use the QCISD/MG3 geometries for those multilevel
methods, e.g., Gn (n ) 2, 3, 4) and CBS, which were
originally defined to use a lower-level geometry. The only
exception is MRMP2, for which calculations were carried
out at consistently optimized geometries. We also tested a
few methods for fully optimized calculations.

3.6. Vibrational Contributions. The barrier heights
calculated in this work are all zero-point exclusive. No
vibrational, rotational, or translational contributions are
included in DBH24/08 or in any of the calculations in this
paper.

3.6. Timings. The computational “cost” of a given method
is assessed as the single-processor CPU time for calculating
an energy gradient of the molecule phosphinomethanol
divided by the time for an MP2/6-31+G(d,p) energy
gradient calculation with the same computer program on the
same computer. We use gradient calculations to illustrate
computational cost because gradients are important for
geometry optimization and dynamics calculations. Analytic
gradients were always used unless they are not available in
the computer program that we used, in which case we used
numerical gradients. In Gaussian 03 a numerical gradient
of phophinomethanol uses 49 single-point energies, whereas
in Molpro it uses 19 single-point energies for phophi-
nomethanol. For local DFT methods, we calculated two costs
corresponding to carrying out the calculation with and
without density fitting,59 and the table gives the smaller of
the two. The timings for CR-CC(2,3) were not run directly
but were estimated as 1.5 times the cost of CCSD(T) with
the same basis set.

In a few cases the timings were run more than once under
different computer load conditions, and the results were
averaged. The SOS-MP2 timings were run with the Q-Chem
program, and all other timings were run using the software
specified in Section 3.3 or refs 1, 9, and 19. Although some
multilevel wave function methods, e.g., Gn (n ) 2, 3, 4)
and CBS, are usually defined to use a lower-level geometry
and are not normally employed in gradient calculations, we
include gradient timing for them here so that the reader can
judge their approximate cost on the same grounds as the other
methods.
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4. Results and Discussion

In the present article, we employed 348 model chemistries
to calculate the 24 barrier heights in the DBH24/08 database.
We selected the electronic structure methods that are often
used in the literature or that are new but tend to give
promising results. When we run a calculation with a
multilevel method, we also can get the results for each single-
level method in the multilevel components simultaneously.
Therefore we also listed these single-level methods’ results
in Table 2, so that one can see how much the multilevel
method improves the accuracy over each of its components.
Most density functionals are run with MG3S basis sets at
first. If a density functional gives good results, we also run
this density functional with more basis sets so that we can
assess the methods with a greater variety of performance-
to-cost ratios.

All electronic structure methods will be assessed based
on a combination of accuracy against DBH24/08, the scaling
power σ, and the “cost”. The scaling power is defined such
that the number of arithmetic operations in the calculation
increases as Nσ in the limit of large N, where N is the number
of atoms, and the scaling refers to increasing N with a given
number of basis functions on each atom. The scaling would
be different if one increased the number of basis functions
with N fixed.60 Furthermore, one does not reach the large-N
limit with respect to system size until very large systems
(much larger than those considered here) are considered. So
one must be cautious in using σ to categorize methods. One
must be even more cautious in using the cost values. One
cannot stress too much the somewhat arbitrary character of
the timings. We tried to minimize this by computing every
cost as the relative cost of two calculations with the same
software on the same computer where the denominator is a
method (MP2/6-31+G(d,p)) that is available in almost all
software packages. Nevertheless the timings do depend on
the software. Timing differences less than a factor of 2 are
not meaningful except when one is comparing similar
methods, and timings of inexpensive methods are inevitably
contaminated by overhead. Thus all timings greater than 1.0
are rounded to two significant figures, and those less than
1.0 are rounded to one significant figure. Another disadvan-
tage of using timings as costs is that the true cost also
involves components of memory and disk usage, software
cost, and human time.

An example showing the vagaries of timings is a com-
parison the timings for SOS-MP2/MG3S and SOS-MP2/cc-
pVTZ. Our standard method of assessing cost gives 17 and
15, respectively (see Table 2). If the former calculation had
the same number of iterations as the latter, the timing would
be only 11. Such an effect is partly noise, but it may also be
due in part to the fact that calculations involving diffuse
functions often require more iterations. Furthermore, unlike
cc-VTZ, the MG3S basis set has the same exponents for s
and p functions; this gives a cost savings in Gaussian but
not in most other computer programs.

Despite all these complex considerations, no evaluation
of methods that does not consider cost can serve as a guide
to practical work, so we must consider cost. Therefore, after
consideration of various cost estimates, we selected the

simple relative timings explained above, which has the
advantage of being systematic, easy to understand, and easy
for a reader to apply to new methods when he or she has a
new method to assess in comparison to those considered here.
To avoid tediousness, we will not repeat the cautionary notes
about timings, but the reader should keep them in mind as
we proceed with discussion.

4.1. Calculations at Standard Geometries. Table 2 lists,
for calculations at geometries optimized with the QCISD/
MG3 method (and for consistently optimized MRMP2/
MG3S), the mean signed errors and mean unsigned errors
for the DBH24/08 database as well as the errors for its
components: heavy-atom transfer (HATBH6), nucleophilic
substitution (NSBH6), unimolecular and association (UABH6),
and hydrogen-transfer (HTBH6) reactions. All methods are
listed in order of increasing MUE for the DBH24/08 database
and are listed in separation sections for each scaling order
σ. Table 2 also gives references3,4,7,14,19,21-44,55,61-111 for
the electronic structure methods, which should be useful since
some of the acronyms are more familiar than others.

To systematically create a list of recommended methods,
we started with the best N7 method, (where “best” is defined
as lowest MUE), then added the best N7 method that has a
lower cost, and then added the best N7 method that has a
lower cost than both of these, etc., until we got to the bottom
of the N7 list. Then we did the same for the N6, N5, N4, and
N3 methods. When adding methods to the recommended list,
we also checked the scaling. For example, if there is an N4

method that has both lower cost and lower MUE than an N5

method on the list, then that N5 method is removed from the
list. This created a list based on the performance for the
overall DBH24/08 database. MUEs that remain on the list
when the process is complete are in bold in Table 2. This
process was then repeated for each of the four smaller
databases. The MUEs of the five resulting lists are all in
bold in Table 2. When searching for an affordable method
for a specific application, the bold entries in Table 2 provide
a short list of methods that should be considered. Any method
that earned at least one bold MUE is also in bold with its
timing in bold, in order to make the table easier to read.

The most accurate method overall is CCSD(T) with all
electrons correlated and a triple-� core-valence correlated
basis set, which can achieve accuracy better than 0.5 kcal/
mol. But the cost of this accuracy is that this method is 2
orders of magnitude higher than for any other method listed
in Table 2. G3SX(MP3) has the best cost-adjusted perfor-
mance; it has the same accuracy as the CCSD(T)/aug-cc-
pV(T+d)Z method, but it is about 18 times more efficient.

CCSD(T)-KS denotes a CCSD(T) calculation based on
reference orbitals from a density functional calculation (using
a spin-restricted calculation with the BLYP functional here);
otherwiseoribtalswereobtainedfromarestrictedHartree-Fock
calculation. Comparison of the results for CCSD(T)-KS/aug-
cc-pVTZ and CCSD(T)/aug-cc-pVTZ calculations shows that
the choice of orbitals makes only a very small difference in
the MUE for the representative barrier height calculations
and using Kohn-Sham orbitals actually raises the MUE by
0.03 kcal/mol.
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Table 2. Mean Signed Errors (MSEs) and Mean Unsigned Errors (MUEs) (in kcal/mol) for the DBH24/08 Database
Calculated at QCISD/MG3 Geometriesa

HATBH6 NSBH6 UABH6 HTBH6 DBH24

methods type theory ref MSE MUE MSE MUE MSE MUE MSE MUE MUE cost

N 7 Methods
CCSD(T)(full)/aug-cc-pCV(T+d)Z WFT 55 0.52 0.63 -0.34 0.36 0.14 0.28 0.08 0.58 0.46 25000
CCSD(T)(full)/aug-cc-pCVTZ WFT 55 0.54 0.67 -0.37 0.38 0.14 0.28 0.08 0.58 0.47 32000
CCSD(T)(full)/aug-cc-pVTZ WFT 55 -0.14 0.59 -0.63 0.63 0.31 0.33 -0.60 0.60 0.54 14000
CCSD(T)/aug-cc-pV(T+d)Z WFT 55 0.45 0.63 -0.63 0.63 0.07 0.33 0.06 0.67 0.57 2200
G3SX(MP3) ML 24 -0.34 0.76 -0.11 0.43 -0.02 0.41 0.57 0.68 0.57 120
G3SX ML 24 -0.38 0.74 -0.64 0.64 0.08 0.31 0.39 0.60 0.57 890
G4 ML 25 0.34 0.81 -0.34 0.56 0.07 0.24 0.72 0.72 0.58 7700
G4(MP2) ML 26 0.25 0.33 0.50 0.57 -0.26 0.44 1.04 1.04 0.59 3100
CR-CC(2,3)(full)A/aug-cc-pCVTZ WFT 65 1.13 1.13 -0.06 0.17 0.37 0.45 0.27 0.66 0.60 48000
CR-CC(2,3)A/aug-cc-pV(T+d)Z WFT 65 1.02 1.03 -0.34 0.34 0.30 0.45 0.26 0.73 0.64 3300
CR-CC(2,3)(full)D/aug-cc-pCVTZ WFT 65 1.00 1.00 -0.32 0.42 0.36 0.48 0.24 0.68 0.64 48000
CR-CC(2,3)(full)C/aug-cc-pCVTZ WFT 65 0.99 0.99 -0.32 0.43 0.36 0.48 0.24 0.68 0.64 48000
CR-CC(2,3)B/aug-cc-pV(T+d)Z WFT 65 1.24 1.24 -0.16 0.16 0.33 0.49 0.33 0.76 0.66 3300
CR-CC(2,3)(full)B/aug-cc-pCVTZ WFT 65 1.35 1.35 0.13 0.17 0.40 0.48 0.34 0.69 0.67 48000
CR-CC(2,3)C/aug-cc-pV(T+d)Z WFT 65 0.87 0.87 -0.64 0.64 0.29 0.49 0.21 0.74 0.69 3300
MCG3-MPW ML 64 -0.67 1.09 -0.61 0.61 -0.13 0.61 -0.07 0.44 0.69 100
CR-CC(2,3)D/aug-cc-pV(T+d)Z WFT 65 0.88 0.88 -0.64 0.64 0.29 0.49 0.21 0.74 0.69 3300
CCSD(T)/aug-cc-pVTZ WFT 55 0.59 0.95 -0.78 0.78 0.07 0.33 0.09 0.70 0.69 4700
CCSD(T)-KS/aug-cc-pVTZ WFT 55 0.47 0.91 -0.92 0.92 0.06 0.31 0.03 0.76 0.72 3900
MCG3-MPWB ML 64 -0.67 1.05 -0.36 0.62 -0.15 0.62 -0.31 0.59 0.72 100
G3 ML 22 0.62 0.75 -1.10 1.10 0.22 0.39 0.68 0.68 0.73 1500
G3S/3 ML 4 -0.86 1.08 -0.85 0.85 -0.09 0.42 0.25 0.58 0.73 1500
G3S ML 23 -0.38 1.00 -0.93 0.93 0.09 0.35 0.42 0.69 0.74 1500
MCG3-TS ML 64 -0.50 0.86 -1.09 1.09 0.11 0.53 -0.22 0.55 0.76 100
CR-CC(2,3)A/aug-cc-pVTZ WFT 65 1.16 1.35 -0.49 0.49 0.30 0.45 0.28 0.75 0.76 7100
CR-CC(2,3)B/aug-cc-pVTZ WFT 65 1.37 1.49 -0.31 0.31 0.33 0.49 0.35 0.78 0.77 7100
CR-CC(2,3)C/aug-cc-pVTZ WFT 65 1.03 1.14 -0.81 0.81 0.29 0.49 0.23 0.77 0.80 7100
CR-CC(2,3)D/aug-cc-pVTZ WFT 65 1.04 1.15 -0.81 0.81 0.29 0.49 0.23 0.76 0.80 7100
G3/3 ML 4 0.91 1.04 -0.98 0.98 0.26 0.40 0.87 0.87 0.82 1500
MCG3/3 ML 4 -0.52 1.25 -0.53 0.69 -0.30 0.58 -0.33 0.86 0.84 90
CCSD(T)/cc-pV(T+d)Z+ WFT 55 1.51 1.51 -0.18 0.75 0.34 0.55 0.72 0.97 0.94 540
CCSD(T)/cc-pVTZ+ WFT 55 1.65 1.65 -0.33 0.81 0.34 0.55 0.75 0.99 1.00 870
G2 ML 21 1.18 1.43 -0.48 0.75 0.41 0.53 1.33 1.33 1.01 2300
CCSD(T)(full)/MG3S WFT 55 1.50 1.57 -0.11 0.91 0.83 0.83 1.06 1.16 1.12 1000
CR-CC(2,3)(full)C/MG3S WFT 65 1.73 1.73 0.00 0.79 0.96 0.96 1.11 1.16 1.16 1500
CR-CC(2,3)(full)D/MG3S WFT 65 1.74 1.74 0.00 0.80 0.95 0.95 1.11 1.16 1.16 1500
CCSD(T)/MG3S WFT 55 1.63 1.71 -0.35 1.12 0.67 0.67 1.16 1.22 1.18 300
QCISD(T)/MG3S WFT 66 1.58 1.65 -0.69 1.31 0.65 0.65 1.10 1.20 1.20 5100
CR-CC(2,3)C/MG3S WFT 65 1.85 1.85 -0.28 1.00 0.79 0.79 1.21 1.22 1.22 450
CR-CC(2,3)D/MG3S WFT 65 1.86 1.86 -0.28 1.00 0.79 0.79 1.21 1.22 1.22 450
CR-CC(2,3)(full)A/MG3S WFT 65 2.07 2.07 0.17 0.82 1.06 1.06 1.25 1.27 1.31 1500
CR-CC(2,3)A/MG3S WFT 65 2.20 2.20 -0.08 0.92 0.90 0.90 1.36 1.36 1.34 450
G3SX(MP2) ML 24 0.44 1.69 -0.20 0.69 -0.52 1.06 1.87 1.90 1.34 150
CR-CC(2,3)(full)B/MG3S WFT 65 2.29 2.29 0.36 0.82 1.10 1.10 1.32 1.32 1.38 1500
CR-CC(2,3)B/MG3S WFT 65 2.42 2.42 0.12 0.85 0.93 0.93 1.42 1.42 1.41 450
CCSD(T)/aug-cc-pVDZ WFT 55 1.00 2.27 -1.99 1.99 -0.33 0.68 0.03 0.76 1.42 140
CBS-QB3 ML 67,68 -0.62 1.68 -0.96 1.07 -2.07 2.42 -1.22 1.32 1.62 360
CBS-Q ML 69 -1.88 1.91 -1.60 1.63 -2.47 2.53 -0.68 0.86 1.73 370
CEPA(1)/MG3S WFT 30 -2.05 4.19 0.53 0.86 0.94 1.10 1.78 1.81 1.99 90
CCSD(T)/MG3SXP WFT 55 3.09 4.13 1.03 2.01 0.31 0.86 1.12 1.18 2.04 280
CBS-Lq ML 70 -1.31 2.31 0.06 1.52 -3.12 3.55 -0.80 1.20 2.14 180
CCSD(T)/cc-pV(T+d)Z WFT 55 1.76 1.76 -3.01 5.10 0.32 0.47 0.87 1.38 2.18 670
CCSD(T)/cc-pVTZ WFT 55 1.90 1.90 -3.15 5.27 0.32 0.47 0.89 1.41 2.26 630
CBS-4M ML 68,69 1.14 3.51 2.50 2.98 -2.24 2.71 -0.20 0.55 2.44 170
CCSD(T)/6-311G(2df,2p) WFT 55 1.88 2.20 -3.92 8.15 0.57 0.76 1.35 1.85 3.24 380
QCISD(T)/6-311G(2df,2p) WFT 66 1.77 2.28 -4.23 8.37 0.56 0.75 1.16 1.62 3.25 2300
MP4/MG3S WFT 62 7.81 7.81 -1.34 1.42 3.23 3.62 2.40 2.40 3.81 2900
QCISD(T)/6-31G(d) WFT 66 4.25 4.93 -2.73 8.19 1.45 3.04 4.76 5.61 5.44 63
CCSD(T)/6-31G(d) WFT 55 4.56 5.18 -2.53 8.15 1.53 3.09 4.80 5.62 5.51 8.1
MP4/6-311G(2df,2p) WFT 62 8.00 8.00 -4.58 8.64 3.20 3.82 2.35 2.35 5.70 1600
MP4/6-31+G(d) WFT 62 10.07 10.07 -0.47 2.28 3.97 4.88 5.64 5.64 5.72 82
MP4/6-311G(2d,p) WFT 62 9.13 9.13 -5.00 8.88 3.08 4.02 2.98 3.36 6.35 460
MP4/6-31G(2df,p) WFT 62 8.22 8.22 -4.34 9.31 4.22 4.48 4.09 4.26 6.57 610
MP4/6-31G(d) WFT 62 10.73 10.73 -2.88 8.58 4.22 5.40 6.02 6.45 7.79 37

N 6 Methods
BMC-CCSD ML 20 0.52 1.28 -0.02 0.54 -0.24 0.37 0.19 0.63 0.70 17
BMC-CCSD-C ML 20 0.50 1.37 0.07 0.53 -0.37 0.37 0.26 0.64 0.73 17
BMC-QCISD ML 20 1.35 1.50 0.08 0.56 0.10 0.30 0.55 0.77 0.78 16
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Table 2. Continued

HATBH6 NSBH6 UABH6 HTBH6 DBH24

methods type theory ref MSE MUE MSE MUE MSE MUE MSE MUE MUE cost

MCQCISD-MPWB ML 64 -0.49 0.94 -0.08 0.65 -0.09 0.89 -0.53 0.63 0.78 29
MCQCISD-MPW ML 64 -0.72 1.19 -0.34 0.55 -0.14 0.94 -0.42 0.52 0.80 27
MC-QCISD/3 ML 4 1.48 1.53 -0.20 0.21 0.49 0.66 0.89 0.98 0.84 16
MCQCISD-TS ML 64 -0.80 1.00 -1.12 1.12 0.06 0.69 -0.65 0.79 0.90 29
MCUT-MPWB ML 64 1.53 1.53 -0.22 0.59 1.09 1.52 -0.52 0.56 1.05 28
MCUT-MPW ML 64 1.38 1.81 -0.90 0.90 1.17 1.54 -0.54 0.54 1.20 26
MCUT-TS ML 64 1.18 1.61 -1.56 1.56 1.27 1.32 -0.59 0.68 1.29 28
CCSD(full)/aug-cc-pVTZ WFT 71 3.43 3.43 1.72 1.72 1.42 1.42 1.18 1.18 1.94 3200
CCSD/aug-cc-pVTZ WFT 71 4.11 4.11 1.56 1.56 1.17 1.22 1.84 1.84 2.18 2400
CCSD/aug-cc-pV(T+d)Z WFT 71 3.98 3.98 1.72 1.72 1.17 1.22 1.82 1.82 2.18 2500
CCSD(full)/aug-cc-pCVTZ WFT 71 4.19 4.19 2.01 2.01 1.26 1.26 1.88 1.88 2.34 6800
QCISD/MG3S WFT 66 4.41 4.41 1.18 1.28 1.30 1.30 2.37 2.37 2.34 150
CCSD(full)/aug-cc-pV(T+d)Z WFT 71 4.18 4.18 2.04 2.04 1.26 1.26 1.89 1.89 2.34 3500
CCSD/cc-pVTZ+ WFT 71 5.00 5.00 1.95 1.95 1.42 1.47 2.39 2.39 2.70 320
CCSD/MG3S WFT 71 5.00 5.00 1.92 1.92 1.72 1.72 2.75 2.75 2.85 240
CCSD(full)/MG3S WFT 71 4.93 4.93 2.18 2.18 1.90 1.90 2.68 2.68 2.92 380
MC-UT/3 ML 4 7.02 7.02 0.25 0.35 3.12 3.12 2.33 2.33 3.21 15
CCSD/MG3SXP WFT 71 6.09 6.31 2.96 3.04 1.41 1.60 2.63 2.63 3.40 350
CCSD/cc-pV(T+d)Z+ WFT 71 4.87 4.87 2.11 2.11 1.42 1.47 6.35 6.35 3.70 350
MP4SDQ/MG3S WFT 62 8.95 8.95 1.40 1.42 3.38 3.38 3.56 3.56 4.33 95
QCISD/6-31B(d) WFT 66 6.40 9.04 -0.72 5.20 2.26 2.41 4.86 5.06 5.43 1.5
CCSD/6-31B(d) WFT 71 6.74 9.17 0.32 5.45 2.57 2.68 4.99 5.08 5.59 2.3
MP3/MG3S WFT 62 10.70 10.70 3.33 3.33 4.44 4.44 4.29 4.29 5.69 71
QCISD/6-31G(d) WFT 66 6.18 6.26 -1.75 8.09 1.98 2.71 5.44 5.89 5.74 19
CCSD/6-31G(d) WFT 71 6.44 6.50 -1.04 7.95 2.19 2.83 5.56 5.91 5.80 2.4
MP4SDQ/6-31+G(d) WFT 62 10.69 10.69 1.53 2.38 4.15 4.57 6.30 6.30 5.98 1.6
MP4SDQ/6-31G(2df,p) WFT 62 9.05 9.05 -2.12 8.23 4.32 4.32 4.96 4.96 6.64 14
MP3/6-31+G(d) WFT 62 12.36 12.36 3.65 3.65 5.22 5.22 7.13 7.13 7.09 1.4
MP3/6-31G(2df,p) WFT 62 10.77 10.77 -0.39 7.57 5.38 5.38 5.54 5.54 7.32 2.8
MP4SDQ/6-31G(d) WFT 62 11.17 11.17 -1.29 8.21 4.38 5.06 6.02 6.45 7.72 0.9
MP4DQ/6-31B(d) WFT 62 12.84 12.84 1.85 6.18 5.62 5.62 6.90 6.90 7.89 0.8
MP3/6-31G(d) WFT 62 12.85 12.85 0.51 7.60 5.43 5.64 7.34 7.34 8.36 0.7

N 5 Methods
MRMP2/nom-CPO/MG3S WFT 19, 72 -1.38 1.88 0.84 0.89 -0.40 1.06 1.28 1.58 0.90 540
B2GP-PLYP/MG3S DFT 7 0.42 1.37 -1.28 1.28 1.26 1.26 -0.34 0.55 1.12 21
mPW2K-PLYP/MG3S DFT 32 1.80 1.80 -0.77 1.02 1.79 1.79 0.22 0.32 1.23 21
B2T-PLYP/MG3S DFT 32 -0.58 1.27 -1.67 1.67 0.89 0.98 -0.87 1.04 1.24 21
MC3BB ML 63 1.69 2.31 0.42 0.60 1.60 1.60 -0.43 0.63 1.28 13
B2K-PLYP/MG3S DFT 32 2.12 2.12 -0.58 0.87 1.85 1.85 0.52 0.52 1.34 21
MC3MPWB ML 64 1.78 2.46 0.14 0.59 1.71 1.71 -0.53 0.75 1.38 14
MCCO-MPWB ML 64 1.10 1.65 0.98 1.38 1.11 1.27 -1.27 1.27 1.39 26
MC3MPW ML 63 1.91 2.49 0.06 0.72 2.19 2.19 -0.46 0.61 1.50 12
MC3TS ML 64 2.02 2.31 -0.90 0.90 2.28 2.28 -0.22 0.52 1.50 14
MCCO-TS ML 64 1.16 2.10 -1.15 1.45 1.63 1.63 -0.92 0.92 1.53 27
mPW2-PLYP/MG3S DFT 33 -1.81 1.87 -2.17 2.17 0.49 0.98 -1.75 1.75 1.69 21
MCCO-MPW ML 64 2.16 2.64 0.28 1.54 1.90 1.90 -0.65 1.09 1.79 24
B2-PLYP/MG3S DFT 31 -2.29 2.40 -2.52 2.52 0.33 0.78 -1.79 1.84 1.88 21
MC-CO/3 ML 4 9.44 9.44 -0.11 1.19 4.80 4.80 2.66 2.66 4.52 13
MP2/aug-cc-pVTZ WFT 73 10.69 10.69 0.34 0.67 4.70 5.53 3.06 3.20 5.02 120
MP2/G3MP2LargeXP WFT 73 11.18 11.18 0.99 0.99 4.99 5.84 3.94 3.94 5.49 31
MP2(full)/G3LargeXP WFT 73 11.04 11.04 1.25 1.25 5.07 5.92 3.81 3.81 5.50 56
MP2/MG3 WFT 73 11.38 11.38 0.62 0.93 5.16 6.06 3.96 3.96 5.58 14
MP2/MG3S WFT 73 10.70 10.70 3.33 3.33 4.44 4.44 3.99 3.99 5.62 14
SAC-MP2/6-31+G(d,2p) ML 4 11.17 11.17 0.52 3.04 5.49 6.25 2.81 2.81 5.82 1.5
MP2/6-31+G(d,2p) WFT 73 12.08 12.08 1.17 2.46 5.28 5.66 4.06 4.06 6.07 1.5
MP2/cc-pVTZ WFT 73 11.74 11.74 -2.22 4.83 4.91 5.87 3.51 3.51 6.49 18
SAC-MP2/6-31+G(d,p) ML 4 11.99 11.99 0.65 3.04 6.27 7.09 4.32 4.32 6.61 1.0
MP2/6-31++G(d,p) WFT 73 12.51 12.51 1.36 2.48 5.67 6.32 5.50 5.50 6.70 1.1
MP2/6-31+G(d,p) WFT 73 12.93 12.93 1.39 2.48 5.94 6.40 5.57 5.57 6.85 1.0
SCS-MP2/MG3S ML 27 14.23 14.23 1.46 1.46 6.01 6.47 5.57 5.57 6.93 14
MP2/aug-cc-pV(D+d)Z WFT 73 12.09 12.09 -2.42 7.64 4.57 6.01 3.76 3.76 7.37 4.3
SCS-MP2/cc-pVTZ ML 27 14.36 14.36 -1.48 4.68 5.70 6.24 5.06 5.06 7.58 18
MP2/6-31+G(d) WFT 73 13.34 13.34 1.38 2.67 6.01 7.45 6.71 6.71 7.54 0.6
MP2(full)/6-31G(2df,p) WFT 73 11.30 11.30 -2.61 8.68 6.23 7.08 4.82 4.82 7.97 3.6
MP2/6-31B(d) WFT 73 13.11 13.11 -1.04 5.22 6.33 7.50 6.22 6.22 8.01 0.4
MP2/6-31G(2df,p) WFT 73 11.51 11.51 -2.88 8.60 6.04 6.90 5.06 5.06 8.02 3.0
MP2/6-31G(d) WFT 73 13.86 13.86 -1.59 8.62 6.19 7.93 6.89 6.89 9.33 0.4

N 4 Methods
M08-SO/cc-pVTZ+ DFT 39 -0.42 0.95 0.41 0.45 0.14 1.32 -0.82 0.89 0.90 21
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Table 2. Continued

HATBH6 NSBH6 UABH6 HTBH6 DBH24

methods type theory ref MSE MUE MSE MUE MSE MUE MSE MUE MUE cost

M06-2X/aug-cc-pVTZ DFT 38 -0.27 0.67 0.54 0.66 0.06 1.10 -0.58 1.30 0.93 60
M06-2X/MG3S DFT 38 -0.06 0.73 0.60 0.85 0.36 1.09 -0.50 1.25 0.98 16
M06-2X/cc-pVTZ+ DFT 38 -0.06 0.77 0.38 0.76 0.18 1.13 -0.50 1.30 0.99 22
M08-SO/MG3SXP DFT 39 -0.43 1.06 0.41 0.64 0.09 1.39 -0.87 1.09 1.04 15
M06-2X/MG3SXP DFT 38 -0.02 0.85 0.73 0.99 0.23 1.12 -0.49 1.28 1.06 20
M08-SO/MG3S DFT 39 -0.53 1.09 0.19 0.67 0.23 1.43 -0.86 1.05 1.06 14
M08-HX/cc-pVTZ+ DFT 39 0.20 1.27 0.69 1.28 0.49 1.29 -0.48 0.65 1.12 21
M08-HX/MG3SXP DFT 39 0.12 1.09 0.88 1.43 0.51 1.26 -0.45 0.71 1.12 15
M08-HX/MG3S DFT 39 0.02 1.18 0.73 1.35 0.72 1.29 -0.50 0.71 1.14 14
BB1K/MG3S DFT 34, 74, 75 0.04 1.07 0.96 1.10 0.55 1.56 -0.95 1.06 1.20 11
M06-2X/MG3 DFT 38 -0.52 0.81 0.57 0.88 0.66 1.93 -0.51 1.27 1.22 18
BMK/MG3S DFT 76 -0.94 0.94 0.62 0.77 0.98 2.06 -1.12 1.12 1.22 13
MPWB1K//MG3S DFT 75, 77, 78 -0.05 1.08 0.91 1.01 0.60 1.63 -1.24 1.24 1.24 12
BB1K/cc-pVTZ+ DFT 34, 74, 75 0.10 1.00 1.03 1.35 0.37 1.57 -0.98 1.08 1.25 19
BB1K/MG3SXP DFT 34, 74, 75 0.06 1.15 1.09 1.23 0.43 1.57 -0.94 1.04 1.25 13
MPWB1K/cc-pVTZ+ DFT 75, 77, 78 0.03 1.00 0.99 1.18 0.41 1.64 -1.26 1.26 1.27 20
PWB6K/MG3S DFT 79 0.58 1.33 0.85 0.94 0.85 1.59 -0.91 1.23 1.27 12
MPWB1K/MG3SXP DFT 75, 77, 78 -0.02 1.16 1.03 1.13 0.47 1.63 -1.17 1.20 1.28 14
PWB6K/cc-pVTZ+ DFT 79 0.65 1.33 0.92 1.10 0.67 1.60 -0.93 1.08 1.28 20
M06-2X/aug-cc-pVDZ DFT 38 -0.75 1.46 -0.01 1.25 -0.37 1.35 -1.27 1.27 1.33 4.0
MPWB1K/aug-pc2 DFT 75, 77, 78 -0.29 0.95 1.47 1.51 0.42 1.61 -1.29 1.40 1.37 58
M06-2X/6-31+G(d,p) DFT 38 -0.86 1.38 0.51 1.36 0.44 1.52 -0.83 1.64 1.48 3.0
MPW1K/MG3S DFT 14 -0.15 1.07 0.81 1.10 0.95 2.42 -1.06 1.34 1.48 11
M06-2X/cc-pVDZ+ DFT 38 -0.71 1.90 0.48 1.34 -0.31 1.24 -1.44 1.53 1.50 2.6
MPWB1K/MG3 DFT 75, 77, 78 -0.51 1.26 0.86 0.95 0.92 2.45 -1.26 1.37 1.51 13
MPW1K/MG3SXP DFT 14 -0.13 1.21 0.93 1.14 0.82 2.46 -0.98 1.29 1.53 11
MPW1K/cc-pVTZ+ DFT 14 -0.06 1.07 0.89 1.42 0.76 2.47 -1.07 1.35 1.58 16
M08-SO/aug-cc-pVDZ DFT 39 -1.69 1.69 -0.49 0.96 -0.35 1.99 -1.94 1.94 1.64 5.2
BB1K/6-31+G(d, p) DFT 34, 74, 75 -0.31 1.62 0.81 1.32 0.84 2.19 -0.95 1.53 1.66 2.0
M08-SO/6-31+G(d,p) DFT 39 -1.37 1.71 -0.01 0.83 0.57 2.51 -1.03 1.62 1.67 2.1
M08-HX/6-31+G(d,p) DFT 39 -0.76 1.84 0.60 1.62 0.92 2.21 -0.79 1.05 1.68 2.1
MPWB1K/6-31+G(d,p) DFT 75, 77, 78 -0.41 1.69 0.75 1.33 0.88 2.36 -1.25 1.45 1.71 2.0
M08-SO/cc-pVDZ+ DFT 39 -1.64 1.78 -0.03 1.13 -0.32 1.92 -2.11 2.11 1.74 2.2
M05-2X/MG3S DFT 80 1.36 2.31 -1.05 1.65 1.38 1.76 -0.28 1.29 1.75 14
M05-2X/MG3 DFT 80 0.98 1.93 -1.07 1.67 1.64 2.24 -0.28 1.31 1.79 13
BB1K/cc-pVDZ+ DFT 34, 74, 75 -0.44 2.09 0.71 1.36 0.02 1.73 -2.01 2.01 1.79 23
PWB6K/6-31+G(d,p) DFT 79 0.19 2.12 0.69 1.38 1.13 2.29 -0.94 1.40 1.80 1.9
B97-3/MG3S DFT 81 -2.29 2.50 -0.49 0.98 0.71 1.63 -2.14 2.19 1.82 11
MPWB1K/aug-pc1 DFT 75, 77, 78 -0.63 2.30 0.26 1.37 -0.18 1.82 -2.09 2.09 1.90 4.0
MPW1K/6-31+G(d,p) DFT 14 -0.50 1.40 0.50 1.56 1.29 3.21 -0.97 1.42 1.90 1.4
M05-2X/6-31+G(d,p) DFT 80 0.72 2.56 -0.90 1.87 1.46 1.90 -0.56 1.49 1.95 2.1
MPW1K/cc-pVDZ+ DFT 14 -0.66 1.62 0.42 1.63 0.50 2.55 -1.96 2.04 1.96 1.4
BB1K/6-31+B(d,p) DFT 34, 74, 75 -1.49 3.42 0.03 1.68 1.04 2.22 -1.21 1.21 2.13 2.3
MPWKCIS1K/MG3S DFT 3, 75, 82 -1.29 1.90 1.38 1.38 0.95 3.35 -1.89 2.01 2.16 13
BHandHLYP/MG3S DFT 34, 83, 84 1.70 2.87 0.71 1.45 1.02 2.37 0.18 2.09 2.19 10
M08-SO/MIDIY+ DFT 39 -1.57 3.07 -2.94 2.94 1.05 1.43 -1.41 1.41 2.21 1.7
BB1K/MIDIY+ DFT 34, 74, 75 -2.03 2.19 -2.55 2.55 1.69 2.35 -1.80 1.84 2.23 1.7
B1B95/MG3S DFT 34, 75 -3.81 3.81 -1.23 1.23 -0.55 1.09 -3.06 3.06 2.30 11
M06/MG3S DFT 38 -3.61 4.05 -1.62 1.65 0.54 1.91 -1.57 1.68 2.32 16
M06-2X/MIDIY+ DFT 38 -2.06 2.67 -2.91 2.91 1.30 1.70 -1.35 2.06 2.34 1.9
MPW1B95/MG3S DFT 75, 77, 78 -3.73 3.73 -0.67 1.18 -0.44 1.23 -3.30 3.30 2.36 12
M05/MG3S DFT 80 -3.25 4.79 0.02 0.94 1.00 2.48 -0.68 1.54 2.43 14
BHandHLYP/cc-pVDZ+ DFT 34, 83, 84 1.04 3.62 0.26 1.82 0.43 2.44 -0.92 2.09 2.49 1.2
M06-HF/MG3S DFT 85 4.33 4.41 -0.89 1.86 1.11 1.80 1.49 2.03 2.53 16
M06-HF/6-31+G(d,p) DFT 85 3.57 4.79 -0.20 1.54 1.39 1.66 0.90 2.42 2.60 3.0
MPW1K/MIDIY+ DFT 14 -2.32 2.32 -2.68 2.68 2.09 3.58 -1.85 2.03 2.65 1.2
M08-SO/MIDIX+ DFT 39 -2.66 3.60 -2.51 2.51 0.75 2.06 -2.39 2.48 2.66 1.6
BB1K/MIDIX+ DFT 34, 74, 75 -3.01 3.31 -2.30 2.30 1.41 2.20 -2.68 2.93 2.69 1.6
B97-2/MG3S DFT 86 -3.04 4.16 -1.74 1.74 0.92 1.81 -2.80 3.11 2.71 11
PW6B95/MG3S DFT 79 -4.28 4.28 -2.19 2.19 -0.54 1.17 -3.38 3.38 2.76 12
M05/6-31+G(d,p) DFT 80 -3.73 4.95 -0.58 1.00 0.88 3.23 -0.82 1.98 2.79 2.1
M06-2X/MIDIX+ DFT 38 -2.88 3.40 -2.69 2.69 1.06 2.03 -2.21 3.08 2.80 1.9
M06-2X/6-31B(d,p) DFT 38 -1.16 3.49 -2.11 5.18 0.79 1.26 -1.28 1.33 2.81 1.8
BHandHLYP/6-31+G(d,p) DFT 34, 83, 84 1.17 3.46 0.37 1.74 1.23 3.20 0.05 2.97 2.84 1.3
TPSS25B95/MG3S DFT 42 -4.39 4.39 -3.55 3.55 -0.47 0.88 -2.95 2.95 2.94 7.8
MPW1KK/MG3S DFT 41 4.32 4.32 3.20 3.20 2.12 2.96 1.41 1.41 2.97 10
MPW1K/MIDIX+ DFT 14 -3.22 3.22 -2.40 2.40 1.85 3.15 -2.65 3.14 2.98 1.0
BB1K/6-31B(d,p) DFT 34, 74, 75 -0.57 3.68 -1.95 4.97 1.13 2.31 -1.39 1.44 3.10 1.3
MPWB1K/MG3T DFT 75, 77, 78 -0.88 1.39 -3.78 7.26 0.83 2.26 -1.56 1.68 3.15 8.8
BHandHLYP/MIDIX+ DFT 34, 83, 84 -1.55 2.52 -2.65 2.65 1.73 3.16 -1.73 4.32 3.16 0.9
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Table 2. Continued

HATBH6 NSBH6 UABH6 HTBH6 DBH24

methods type theory ref MSE MUE MSE MUE MSE MUE MSE MUE MUE cost

BHandHLYP/MIDIY+ DFT 34, 83, 84 -0.54 3.53 -3.00 3.00 2.08 3.56 -0.72 2.61 3.18 1.1
M06-2X/6-31B(d) DFT 38 -0.75 4.81 -2.21 5.22 1.05 1.05 -0.70 1.84 3.23 1.7
mPW1PW/MG3S DFT 36, 78 -5.09 5.09 -2.10 2.10 -0.39 1.93 -3.87 3.87 3.25 11
MPWB1K/6-31B(d,p) DFT 75, 77, 78 -0.67 3.69 -1.96 5.22 1.19 2.48 -1.69 1.69 3.27 1.3
MPW25B95/MG3S DFT 42 -5.51 5.51 -2.21 2.21 -0.94 1.17 -4.32 4.32 3.30 12
MPW1K/6-31B(d,p) DFT 14 -0.75 3.32 -2.08 4.83 1.63 3.63 -1.48 1.65 3.36 1.0
M05-2X/6-31B(d,p) DFT 80 0.53 4.91 -3.43 5.47 1.82 1.89 -0.91 1.36 3.41 1.5
PWB6K/6-31B(d,p) DFT 79 -0.01 4.36 -1.94 5.32 1.44 2.50 -1.36 1.47 3.41 1.4
B98/MG3S DFT 87 -4.75 4.75 -3.16 3.16 0.09 1.84 -3.92 3.92 3.42 11
B97-1/MG3S DFT 86 -4.81 4.81 -3.31 3.31 0.19 1.67 -4.06 4.06 3.46 11
M08-SO/6-31B(d,p) DFT 39 -1.92 4.36 -2.58 5.48 1.00 2.31 -1.61 1.68 3.46 2.0
M08-SO/6-31B(d) DFT 39 -1.67 5.33 -2.63 5.47 1.12 1.90 -1.09 1.35 3.51 1.8
M05-2X/MG3T DFT 80 0.64 1.87 -5.66 8.69 1.54 2.04 -0.46 1.49 3.52 11
PBE1PBE/MG3S DFT 92, 111 -5.81 5.81 -2.09 2.09 -0.63 1.93 -4.54 4.54 3.59 10
BB1K/6-31B(d) DFT 34, 74, 75 -0.27 5.23 -2.08 4.97 1.24 1.92 -0.83 2.27 3.60 1.3
mPW1PW/6-31+G(d,p) DFT 36, 78 -5.56 5.56 -2.27 2.27 -0.17 2.76 -3.86 3.86 3.61 1.4
M08-HX/6-31B(d) DFT 39 -0.81 5.61 -2.04 5.55 1.46 1.69 -1.09 1.69 3.64 1.4
MPW1K/6-31B(d) DFT 14 -0.32 4.56 -2.22 4.83 1.77 3.24 -0.84 2.07 3.67 0.8
M08-HX/6-31G(d,p) DFT 39 -0.90 1.95 -3.83 9.51 1.01 1.85 -0.99 1.55 3.72 1.6
B3PW91/MG3S DFT 34-36 -6.19 6.19 -2.60 2.60 -0.79 1.87 -4.34 4.34 3.75 9.1
TPSS20B95/MG3S DFT 42 -5.80 5.80 -4.49 4.49 -0.86 1.05 -3.67 3.67 3.75 7.8
M06-2X/6-31G(d,p) DFT 38 -1.12 1.58 -4.10 10.25 0.48 1.23 -1.00 2.06 3.78 1.8
B1LYP/6-31+G(d,p) DFT 34, 83, 110 -5.64 5.64 -3.14 3.14 -0.78 2.48 -3.71 4.07 3.83 1.4
MPWB1K/6-31G(d,p) DFT 75, 77, 78 -0.68 1.98 -3.74 9.52 0.84 2.12 -1.47 2.18 3.95 1.3
PBE1PBE/6-31+G(d,p) DFT 92, 111 -6.26 6.26 -2.26 2.26 -0.39 2.75 -4.53 4.53 3.95 1.4
BHandH/MG3S DFT 34, 83, 84 -4.82 5.16 -0.19 1.25 -0.51 3.32 -6.30 6.30 4.01 10
BHandHLYP/6-31B(d,p) DFT 34, 83, 84 1.03 5.37 -2.08 4.81 1.55 3.75 -0.45 2.21 4.03 0.8
X3LYP/MG3S DFT 34, 36, 83, 89 -6.72 6.72 -2.96 2.96 -1.20 1.75 -4.83 4.83 4.07 11
MPWB1K/cc-pVDZ DFT 75, 77, 78 -1.29 3.01 -5.18 9.03 -0.17 1.48 -2.76 2.76 4.07 1.6
B3PW91/6-31+G(d,p) DFT 34-36 -6.67 6.67 -2.76 2.76 -0.59 2.69 -4.36 4.36 4.12 1.5
B3LYP/MG3S DFT 34, 35, 83 -6.74 6.74 -3.55 3.55 -1.21 1.69 -4.65 4.65 4.15 9.4
BHandHLYP/6-31B(d) DFT 34, 83, 84 1.35 5.31 -2.20 4.81 1.66 3.34 0.03 3.53 4.25 0.7
M05-2X/6-31G(d,p) DFT 80 0.43 2.34 -5.44 11.05 1.52 1.77 -0.70 1.98 4.28 1.5
MPW1K/6-31G(d) DFT 14 -0.60 2.04 -3.65 9.28 1.64 3.13 -0.59 2.76 4.30 0.8
τ-HCTHh/MG3S DFT 86, 90 -6.24 6.24 -4.69 4.69 0.05 1.84 -4.78 4.78 4.39 11
B3LYP*/6-31+G(d,p) DFT 91 -5.88 5.88 -2.55 2.84 1.86 4.87 -3.73 4.11 4.42 1.3
PBE1KCIS/MG3S DFT 82, 88, 92, 93 -7.57 7.57 -2.01 2.01 -0.87 2.80 -5.62 5.62 4.50 12
M06/6-31+G(d,p) DFT 38 -4.02 4.40 -2.19 2.25 0.50 2.62 -8.51 9.22 4.62 3.0
M05-2X/6-31G(d) DFT 80 0.62 2.86 -5.36 11.01 1.91 1.91 -0.20 2.75 4.63 1.5
M06/6-31B(d,p) DFT 38 -4.97 7.10 -5.24 6.77 0.64 2.51 -2.27 2.27 4.66 1.8
B97-3/6-31G(d) DFT 81 -2.89 4.13 -5.62 10.46 1.22 1.92 -2.14 2.19 4.67 0.9
M05/6-31B(d,p) DFT 80 -3.96 8.01 -3.29 5.84 1.09 3.03 -1.26 1.91 4.70 1.5
O3LYP/MG3S DFT 83, 94, 95 -7.34 7.34 3.31 5.02 -1.29 2.09 -4.37 4.37 4.70 11
B3LYP/6-31+G(d, p) DFT 34, 35, 83 -7.44 7.44 -3.84 3.84 -1.17 2.59 -4.91 5.12 4.75 1.4
MPW3LYP/MG3S DFT 77, 78, 83 -7.53 7.53 -4.66 4.66 -1.34 1.80 -5.19 5.19 4.80 11
mPW1PW/6-31B(d,p) DFT 36, 78 -5.74 6.14 -5.24 6.04 0.11 2.87 -4.32 4.32 4.84 1.0
TPSS1KCIS/MG3S DFT 64, 82, 96 -7.81 7.81 -5.06 5.06 -1.16 1.59 -4.91 4.91 4.84 13
B3P86/MG3S DFT 34, 35, 37 -8.13 8.13 -3.28 3.28 -1.34 2.78 -5.95 5.95 5.04 9.1
PBE1PBE/6-31B(d,p) DFT 92, 111 -6.33 6.59 -5.27 6.17 -0.10 2.73 -4.93 4.93 5.10 1.0
B3P86/6-31+G(d,p) DFT 34, 35, 37 -8.63 8.63 -3.43 3.43 -1.17 3.58 -5.99 5.99 5.41 1.4
MPW1KCIS/MG3S DFT 3, 75, 82 -8.81 8.81 -4.54 4.54 -1.24 2.61 -6.28 6.28 5.56 13
B97-2/6-31G(d) DFT 86 -3.63 5.96 -6.81 11.19 1.39 2.07 -2.32 3.19 5.60 0.9
B3LYP/6-31B(d,p) DFT 34, 35, 83 -7.52 7.52 -6.96 7.66 -0.97 2.71 -5.33 5.33 5.80 0.9
TPSSh/MG3S DFT 96 -10.11 10.11 -5.92 5.92 -2.81 2.86 -6.64 6.64 6.38 13
HFLYP/MG3S DFT 97 11.81 11.81 5.18 5.18 3.64 4.24 5.52 5.52 6.69 9.4
HFLYP/6-31+G(d,p) DFT 97 11.66 11.66 4.52 4.52 4.11 5.17 5.66 5.67 6.76 1.4
HFTPSS/6-31+G(d,p) DFT 96 10.34 10.34 6.73 6.73 3.12 6.33 4.40 5.32 7.18 2.0
BB1K/6-31B(d) DFT 34, 74, 75 -0.27 5.23 -16.92 19.82 1.24 1.92 -0.83 2.27 7.31 1.2
SOS-MP2/MG3S ML 28, 29 15.35 15.35 1.51 1.51 6.60 6.96 5.89 5.89 7.43 17
MPW1K/3-21G+ DFT 14 -4.57 6.90 -9.15 9.15 5.91 8.50 -3.42 6.11 7.67 0.8
M05-2X/MIDI! DFT 80 -5.16 5.92 -12.44 18.31 1.40 2.75 -3.36 3.83 7.70 1.2
M06-2X/MIDI! DFT 38 -6.63 6.82 -11.76 17.91 0.15 2.23 -3.52 4.24 7.80 1.5
BB1K/MIDI! DFT 34, 74, 75 -6.71 7.21 -11.17 16.86 0.55 2.24 -3.99 5.01 7.83 1.2
BHandHLYP/MIDI! DFT 34, 83, 84 -5.54 5.54 -10.85 17.01 0.70 3.29 -3.23 5.64 7.87 0.6
MPW1K/MIDI! DFT 14 -6.80 6.99 -11.19 16.41 1.04 3.25 -3.84 4.96 7.90 0.7
M08-SO/MIDI! DFT 39 -7.02 7.37 -11.47 18.00 -0.34 2.31 -4.07 4.74 8.11 1.2
SOS-MP2/cc-pVTZ ML 28, 29 15.67 15.67 -1.11 4.60 6.09 6.43 5.83 5.83 8.13 15
HF/MIDIX+ WFT 98 15.61 15.61 3.03 3.19 4.59 5.32 10.54 10.54 8.66 0.2
HF/MIDI! WFT 98 11.74 11.74 -2.25 10.46 3.53 4.94 8.98 9.65 9.20 0.1
HF/MIDIY+ WFT 98 16.78 16.78 2.45 3.26 5.07 5.07 11.87 11.87 9.24 0.3
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Table 2. Continued

HATBH6 NSBH6 UABH6 HTBH6 DBH24

methods type theory ref MSE MUE MSE MUE MSE MUE MSE MUE MUE cost

HF/6-31+G(d,2p) WFT 98 18.10 18.10 5.47 5.56 3.83 4.02 12.29 12.29 9.99 1.0
HF/6-31+G(d,p) WFT 98 18.14 18.14 5.52 5.63 4.10 4.10 12.50 12.50 10.09 0.7
HF/6-31+G(d) WFT 98 18.01 18.01 5.49 5.60 4.39 4.39 12.47 12.47 10.12 0.3
HF/G4MP2TZ WFT 98 18.01 18.01 6.65 6.65 3.35 3.53 12.29 12.29 10.12 5.1
HF/G3Large WFT 98 18.14 18.14 6.31 6.31 3.61 3.68 12.41 12.41 10.14 13
HF/6-31G(d) WFT 98 17.62 17.62 2.67 6.36 4.31 4.31 12.28 12.28 10.14 0.2
HF/MG3S WFT 98 18.29 18.29 6.28 6.28 3.66 3.72 12.43 12.43 10.18 9.2
HF/G3MP2LargeXP WFT 98 18.20 18.20 6.37 6.37 3.49 3.69 12.45 12.45 10.18 10
HF/G3LargeXP WFT 98 18.21 18.21 6.40 6.40 3.49 3.69 12.45 12.45 10.19 17
HF/G4MP2QZ WFT 98 18.07 18.07 6.69 6.69 3.42 3.63 12.46 12.46 10.21 47
HF/G3HFQZ WFT 98 18.13 18.13 6.59 6.59 3.42 3.63 12.47 12.47 10.21 39
HF/G4HF5Z WFT 98 18.08 18.08 6.74 6.74 3.41 3.64 12.50 12.50 10.24 350
MPW1K/STO-3G+ DFT 14 -7.80 11.57 1.23 2.06 4.05 15.15 -0.377 12.86 10.41 0.4
HF/6-31B(d,p) WFT 98 18.27 18.67 3.81 6.81 4.64 4.64 11.95 11.95 10.51 0.2
HF/6-31B(d) WFT 98 18.44 18.79 3.59 6.69 4.63 4.63 12.08 12.08 10.55 0.2
MPW1K/3-21G DFT 14 -5.48 5.48 -15.96 23.87 6.16 9.16 -4.52 7.71 11.56 0.5
HF/STO-3G+ WFT 98 10.62 21.03 8.83 8.83 8.63 14.23 10.51 16.75 15.21 0.09
MPW1K/STO-3G DFT 14 -6.11 6.79 -17.18 37..83 11.09 16.82 -7.11 16.77 19.55 0.4
HF/STO-3G WFT 98 8.14 17.93 7.31 35.94 13.92 16.72 5.90 21.30 22.97 0.08
HF/STO-2G WFT 98 6.68 15.50 6.96 46.63 14.73 17.61 6.21 19.09 24.71 0.06

N 3 Methods
MOHLYP/MG3SXP DFT 40 -1.40 2.94 -0.70 2.92 -0.77 1.94 2.72 4.20 3.00 4.2
MOHLYP/MG3S DFT 40 -1.45 3.02 -0.80 3.12 -0.64 1.83 2.68 4.21 3.05 4.0
MOHLYP/cc-pVTZ+ DFT 40 -1.33 2.78 -0.91 3.26 -0.92 2.04 2.65 4.18 3.07 5.1
MOHLYP/6-31+G(d,p) DFT 40 -1.88 3.21 -1.34 3.21 -0.59 1.55 2.46 4.48 3.11 1.4
MOHLYP/cc-pVDZ+ DFT 40 -1.84 4.10 -1.16 3.02 -1.25 2.45 0.98 2.99 3.14 1.3
MOHLYP/aug-cc-pVTZ DFT 40 -1.51 2.65 -0.02 3.78 -1.05 2.17 2.62 4.12 3.18 7.6
MOHLYP/MIDIY+ DFT 40 -4.01 4.73 -5.30 5.30 0.15 1.84 1.36 3.87 3.93 1.2
M06-L/aug-cc-pVTZ DFT 99 -6.11 6.85 -3.18 3.18 0.27 1.57 -4.22 4.22 3.95 13
M06-L/MG3S DFT 99 -6.08 6.91 -3.35 3.35 0.92 2.58 -2.92 3.05 3.98 5.7
M06-L/cc-pVTZ+ DFT 99 -6.10 6.99 -3.28 3.28 0.32 1.59 -4.27 4.27 4.03 7.5
M06-L/MG3SXP DFT 99 -5.97 6.90 -3.29 3.29 0.37 1.77 -4.06 4.16 4.03 7.3
MOHLYP/6-31B(d,p) DFT 40 -1.67 5.97 -5.01 5.39 -0.36 1.17 2.27 4.24 4.19 0.9
M06-L/6-31+G(d,p) DFT 99 -6.26 7.19 -4.24 4.24 0.43 2.32 -4.01 4.01 4.44 2.1
VSXC/MG3S DFT 100 -6.89 6.89 -5.01 5.01 -0.05 1.49 -4.90 4.90 4.57 5.2
HCTH/MG3S DFT 86 -8.82 8.82 -2.88 2.88 -0.66 1.64 -5.17 5.17 4.63 3.9
VSXC/6-31+G(d,p) DFT 100 -7.42 7.42 -4.63 4.63 0.01 2.16 -4.97 4.97 4.79 2.0
M06-L/cc-pVDZ+ DFT 99 -6.44 7.88 -4.41 4.41 -0.18 2.56 -4.89 4.89 4.94 2.4
MOHLYP/MIDIX+ DFT 40 -4.89 5.97 -5.06 5.06 -0.20 3.31 0.62 5.90 5.06 1.0
MOHLYP/6-31B(d) DFT 40 -1.19 7.45 -5.03 5.47 -0.26 1.49 3.05 6.05 5.11 0.8
OLYP/MG3S DFT 83, 94 -10.17 10.17 -3.20 3.20 -2.21 2.21 -5.80 5.80 5.34 3.7
M06-L/MIDIY+ DFT 99 -7.15 8.74 -6.74 6.74 1.44 2.83 -4.75 4.75 5.65 2.0
τ-HCTH/MG3S DFT 90 -9.19 9.19 -6.12 6.12 -0.57 1.99 -6.13 6.13 5.86 5.4
M06-L/MIDIX+ DFT 99 -8.10 9.87 -6.21 6.21 1.26 2.79 -5.14 5.14 6.00 1.8
M06-L/6-31B(d,p) DFT 99 -7.37 9.13 -7.31 7.78 0.68 2.37 -4.77 4.77 6.01 1.7
M06-L/6-31B(d) DFT 99 -6.90 10.55 -7.18 7.71 0.76 1.95 -3.83 3.83 6.01 1.5
VSXC/6-31B(d.p) DFT 100 -7.68 9.75 -7.79 8.30 0.22 2.18 -5.29 5.29 6.38 1.3
M06-L/6-31G(d) DFT 99 -6.31 8.56 -8.52 12.01 0.71 1.79 -3.13 3.20 6.39 1.6
G96LYP/MG3S DFT 83, 101 -10.93 10.93 -6.35 6.35 -2.75 2.75 -6.52 6.52 6.64 3.9
TPSSKCIS/MG3S DFT 82, 96 -11.63 11.63 -7.67 7.67 -2.22 2.22 -7.00 7.00 7.13 5.7
mPWKCIS/MG3S DFT 75, 82 -11.98 11.98 -6.80 6.80 -2.46 2.46 -7.48 7.48 7.18 6.1
BB95/MG3S DFT 75 -12.57 12.57 -6.60 6.60 -3.06 3.06 -7.94 7.94 7.54 5.4
mPWPW91/MG3S DFT 36, 78 -12.71 12.71 -7.42 7.42 -2.59 2.59 -8.39 8.39 7.78 3.8
BLYP/MG3S DFT 34, 83 -12.37 12.37 -8.74 8.74 -3.06 3.06 -7.75 7.75 7.98 3.7
BLYP/6-31+G(d, p) DFT 34, 83 -13.24 13.24 -7.64 7.64 -3.18 3.18 -8.18 8.18 8.06 1.3
TPSS/MG3S DFT 96 -13.03 13.03 -7.53 7.53 -3.62 3.62 -8.22 8.22 8.10 5.5
PBE/MG3S DFT 88 -13.61 13.61 -7.01 7.01 -2.88 2.88 -9.25 9.25 8.19 3.7
PBEsol/6-31+G(d,p) DFT 43 -14.25 14.25 -7.06 7.06 -2.81 2.83 -9.41 9.41 8.39 1.4
mPWLYP/MG3S DFT 78, 83 -13.45 13.45 -8.19 8.19 -3.24 3.24 -8.77 8.77 8.41 3.7
BP86/MG3S DFT 34, 37 -14.00 14.00 -7.13 7.13 -3.40 3.40 -9.21 9.21 8.43 3.9
BLYP/6-31B(d,p) DFT 34, 83 -13.26 13.26 -11.31 11.31 -3.08 3.08 -8.49 8.49 9.04 1.0
MOHLYP/MIDI! DFT 40 -9.26 9.96 -16.57 19.50 -1.37 3.99 -1.11 6.84 10.07 0.7
M06-L/MIDI! DFT 99 -11.24 12.77 -16.57 18.98 0.76 2.86 -6.12 6.12 10.18 1.4
SOGGA/MG3S DFT 44 -17.46 17.46 -7.14 7.14 -3.93 3.93 -12.96 12.96 10.38 3.7
SOGGA/cc-pVTZ+ DFT 44 -17.34 17.34 -7.09 7.09 -4.13 4.13 -12.96 12.96 10.38 4.7
SOGGA/MG3SXP DFT 44 -17.50 17.50 -7.03 7.03 -4.07 4.07 -12.95 12.95 10.39 4.1
SOGGA/6-31+G(d,p) DFT 44 -17.98 17.98 -7.07 7.07 -3.76 3.79 -12.90 12.90 10.44 1.4
PM3 SEMO 102 -12.88 16.51 13.82 14.56 6.10 13.94 -3.44 5.64 12.67 5 × 10-5

AM1 SEMO 103 -8.51 11.82 10.43 15.62 13.19 18.90 -0.02 5.13 12.87 5 × 10-5

SPL/MG3S DFT 104 -22.41 22.41 -8.44 8.44 -5.07 5.07 -17.67 17.67 13.40 2.5
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In CCSD(T) calculations, using the cc-pVTZ+ basis set
instead of the cc-pVTZ basis set improves the MUE from
2.26 to 1.00 kcal/mol, but it only increases the cost by 40%.
For SN2 reactions, cc-pVTZ+ has a significantly lower MUE
(0.81 kcal/mol) than cc-pVTZ. Although the aug-cc-pVTZ
basis set further improves the MUE to 0.69 kcal/mol, the
cost of aug-cc-pVTZ is about 7.5 times larger than that of
cc-pVTZ for CCSD(T) calculations. In DFT calculations, cc-
pVTZ+ is almost as good as the aug-cc-pVTZ basis set. The
latter has s, p, d, and f diffuse functions for all elements
except H and has s, p, and d diffuse functions on H, whereas
the only diffuse function in cc-pVTZ+ are diffuse s and p
functions on non-hydrogenic atoms. As compared with the
aug-cc-pVTZ and cc-pVTZ basis sets, the basis cc-pVTZ+
has a very good balance between computational cost and
accuracy.

In the methods that scale as N6, BMC-CCSD outperforms
all the other methods. It even has almost the same accuracy
as the CCSD(T)/aug-cc-pVTZ method, but it is about 280
time more efficient. The MUE is only 23% higher than that
of G3SX(MP3), but the computational cost is about 6 times
smaller than that of G3SX(MP3). Furthermore, BMC-CCSD
scales as N6, whereas G3SX(MP3) and CCSD(T) scale as
N7. The other variants, BMC-QCISD and BMC-CCSD-C,
have similar performance to BMC-CCSD, but BMC-CCSD
is the most recommended. All single-level coupled cluster
calculations only with single and double excitations (CCSD)
have MUEs of 1.94 kcal/mol or higher.

In the methods that scale as N5, the MUEs for DBH24
have a large gap between 1.9 and 4.5 kcal/mol. The methods
with MUEs smaller than 1.9 kcal/mol are doubly hybrid
density functionals or MRMP2, while the methods with
MUEs larger than 4.5 kcal/mol are MP2 or correlation-
energy-scaled MP2 methods. Some of the doubly hybrid
density functionals, MC3BB,63 MC3MPW,63 MC3MPWB,64

MC3TS,64 MCG3-MPW, -MPB, and -TS,64 and MCCO-
MPW, -MPWB and -TS,64 are sometimes called multicoef-
ficient extrapolated DFT methods. In these models, HF
orbitals are used for the occupied and unoccupied orbitals
to calculate the second-order Møller-Plesset-type perturba-
tion theory correction, although in unpublished past original
studies it was checked that similar results are obtained with
Kohn-Sham orbitals. The B2P-LYP, B2GP-PLYP, B2K-
PLYP, and mPW2-PLYP density functionals employ the
Kohn-Sham occupied and unoccupied orbitals. Our calcula-
tions show that spin-component scaled (SCS) MP2 and
scaled opposite-spin (SOS) MP2 methods (which scales as
N4) consistently overestimate the barrier heights and degrade

the MP2 accuracy for barrier height calculations, which was
also pointed out by Jung et al. in a previous paper.28 Methods
that involve scaling all correlation (SAC) with MP2 have
better performance than SCS-MP2 even with smaller basis
sets. In unpublished work, we tried to reparameterize the
scaling coefficients in SCS-MP2 using the DBH24/08
database and found that the accuracy cannot be improved
significantly, with errors that are always larger than 5.0 kcal/
mol. This study and the large gap in the N5 methods shown
in Table 2 imply that it is difficult to achieve accuracy better
than 4.0 kcal/mol for calculating barrier height only by using
the correlation energy or scaled correlation energy calculated
by single-reference second-order perturbation theory. The
accuracy for barrier height calculations can be improved
dramatically by mixing density functional correlation energy
and MP2 correlation energy.

As listed in bold in Table 2, the most recommended hybrid
density functionals for barrier heights are M08-SO, M06-
2X, M08-HX, BB1K, BMK, PWB6K, MPW1K, BHandH-
LYP, and TPSS25B95. The newly developed M06-2X, M08-
HX, and M08-SO density functional have the best performance
among the fourth-rung hybrid density functionals (even
including fifth-rung doubly hybrid density functionals), and
they can achieve accuracy better than 1.2 kcal/mol with a
reasonable triple-� basis set, e.g., cc-pVTZ+, MG3S, and
MG3SXP. The density functionals M06-2X, BB1K, PWB6K,
and MPW1K can achieve accuracy better than 2.0 kcal/mol
with a double-� basis set, 6-31+G(d,p).

The recommended cost-effective basis sets as shown in
Table 2 are MIDIX+, 6-31B(d), and MIDI!. The relative
costs of these basis sets are below 1.0 when using the
BHandHLYP and MPW1K density functionals. Actually,
MIDIY+ has better performance than MIDIX+ and has
similar or a little bit higher cost than MIDIX+ because
MIDY+ has a p set of polarization functions on each
hydrogen. The basis set 6-31B(d,p) was tested by using a
number of density functionals; this basis set has the same
size as the Pople’s 6-31G(d,p), but it is more diffuse without
using diffuse functions. A few density functional calculations,
in particular, M06-2X, M05-2X, and MPWB1K, give smaller
MUEs with 6-31B(d,p) than 6-31G(d,p) by 0.7-1.0 kcal/
mol. Although 6-31B(d,p) rather than 6-31G(d,p) is more
diffuse, it still cannot be as accurate as the 6-31+G(d,p)
basis set. This shows the importance of diffuse functions to
calculate barrier heights with density functional theory, as
was already pointed out by Lynch et al.112 The MG3SXP
basis set includes more polarization functions than MG3S,
but it dose not improve MG3S systematically for the tested

Table 2. Continued

HATBH6 NSBH6 UABH6 HTBH6 DBH24

methods type theory ref MSE MUE MSE MUE MSE MUE MSE MUE MUE cost

SPWL/MG3S DFT 105 -22.52 22.52 -8.36 8.36 -5.21 5.21 -17.89 17.89 13.49 3.5
PM6 SEMO 106 -21.07 22.38 -0.90 4.19 14.10 22.07 -8.03 14.09 15.68 1 × 10-4

RM1 SEMO 107 -19.47 20.59 0.17 15.41 10.61 19.86 -5.60 7.15 15.75 5 × 10-5

PDDG/PM3 SEMO 108 -16.32 17.97 15.46 15.46 5.38 13.57 -8.91 17.55 16.14 5 × 10-5

SCC-DFTBb SEMO 109 9.69 11.54 1.10 9.77 -30.34 30.34 17.22 4 × 10-4

a WFT denotes wave function theory; ML denotes multilevel method; DFT denotes density functional theory; SEMO denotes
semiempirical molecular orbital method. b For this method, the value for the HAT category includes only the reaction H + N2O f OH + N2

and its reverse.
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density functionals (e.g., M06-2X, M08-HX, M08-SO, and
SOGGA) and wave function methods (e.g., CCSD(T) and
CCSD).

It is very interesting that MOHLYP and HCTH are the
only local density functionals in the bold recommended
combinations of local density functional and basis set on the
cost-to-performance basis used to make entries bold in Table
2. The MOHLYP density functional was originally designed
for inorganometallic and organometallic chemistry. It has
MUEs for HAT reactions about 3.0 kcal/mol, while the other
local density functionals have MUEs for HAT reactions
around 7.0 kcal/mol or above. M06-L which has a better
performance over broader test sets has a similar performance
to MOHLYP for barrier heights of all types of reactions
except HAT reactions.

A word of caution is in order in interpreting the bold
entries in Table 2. In presenting these bold entries in Table
2 we considered only barrier heights. Even for thermochemi-
cal kinetics one wants a method that accounts for energies
of reaction as well as barrier heights, and in other cases one
might also want to consider other properties such as
ionization potential, dipole moments, or noncovalent interac-
tions in selecting a method for a given application. We know,
for example, that MPW1K and MPWB1K are better overall
methods than BHandHLYP, and M06-L is a better overall
method than MOHLYP. Nevertheless the selection of bold
entries in Table 2 emerges from a rigorous impartial
screening, and the boldface methods deserve consideration
whenever we consider barrier heights.

4.2. Effect of Consistent Geometry Optimization. Table
3 lists mean signed errors and mean unsigned errors for the
CCSD, MP2, B3LYP, M05-2X, and M06-2X methods with
the MG3S basis set calculated at QCISD/MG3 geometries
and at the geometries optimized with the corresponding
methods.19 The deviations between the two sets of MUEs
for DBH24/08 are around 0.4 kcal/mol or smaller for all the
tested methods. M06-2X/MG3S gives the smallest deviation
between the MUEs at QCISD/MG3 geometries and at the
consistently optimized geometries; these deviations of MUEs
for each type of reactions in the DBH24/08 database are
smaller than 0.06 kcal/mol. We conclude that using either
QCISD/MG3 geometries or consistently optimized geom-
etries gives similar results for the more accurate methods
listed in Table 2.

5. Conclusions

In this paper, we updated our DBH24 database by using W4
and W3.2 data to replace previous W1 values; we call the
new database DBH24/08. We assessed 348 model chemis-
tries, each containing of a combination of wave function
theory level or density functional approximation with a one-
electron basis set. There are too many methods in the table
to comment explicitly on all the interesting pairwise com-
parisons, but a few key issues will be summarized here to
conclude the paper. Some conclusions drawn in our previous
work1 are reconfirmed by using this improved database and
including more methods. For example, BMC-CCSD is still
the best model chemistry whose cost scales as N6 and its
cost is an order of magnitude smaller than the N7 method
with the best cost-adjusted performance, G3SX(MP3),
although the mean unsigned error is only marginally higher,
namely 0.70 kcal/mol vs 0.57 kcal/mol. Other conclusions
are now broader in scope. For example, among the N5

methods except MRMP2 we now conclude not only that
doubly hybrid density functionals and multicoefficient ex-
trapolated density functional methods perform better than
MP2 but also that they perform better than any correlation-
energy-scaled MP2 method. The most recommended hybrid
density functionals, judged entirely on the basis of barrier
height calculations, are M08-SO, M06-2X, M08-HX, BB1K,
BMK, PWB6K, MPW1K, BHandHLYP, and TPSS25B95.
MOHLYP, M06-L, VSXC, and HCTH are found to be the
best performing local density functionals for barrier heights.
The basis set MG3S and 6-31+G(d,p) are the most
recommended triple-� and double-� basis sets for calculations
using density functional theory according performance-for-
cost considerations. The basis set cc-pVTZ+ is more efficient
than aug-cc-pVTZ with similar accuracy, especially for
density functional theory. The basis sets cc-pVDZ+,
6-31+G(d,p), 6-31B(d,p), 6-31B(d), MIDIY+, MIDIX+,
and MIDI! are recommended for density functional calcula-
tions on large systems for their good balance between
accuracy and cost, and the basis sets cc-pVTZ+, MG3S,
MG3SXP, and aug-cc-pVDZ are recommended for density
functional calculations when larger basis sets are affordable.
The best performance of any methods tested is attained by
CCSD(T)(full)/aug-cc-pCV(T+d)Z with a mean unsigned
error of 0.46 kcal/mol; however, this is several orders of

Table 3. Comparison of Mean Signed Errors (MSEs) and Mean Unsigned Errors (MUEs) (in kcal/mol) Calculated at
Different Geometries

HATBH6 NSBH6 UABH6 HTBH6 DBH24

methods MSE MUE MSE MUE MSE MUE MSE MUE MUE

CCSD/MG3S//QCISD/MG3 5.00 5.00 1.92 1.92 1.72 1.72 2.75 2.75 2.85
CCSD/MG3S 4.70 4.70 1.92 1.92 1.50 1.50 2.58 2.58 2.67
MP2/MG3S//QCISD/MG3 11.59 11.59 0.69 0.86 5.25 6.10 0.14 2.88 5.63
MP2/MG3S 9.87 9.87 0.61 0.79 5.51 5.75 4.40 4.40 5.20
B3LYP/MG3S//QCISD/MG3 -6.74 6.74 -3.55 3.55 -1.21 1.69 -4.65 4.65 4.15
B3LYP/MG3S -6.16 6.16 -3.64 3.64 -0.83 1.70 -4.34 4.36 3.97
M05-2X/MG3S//QCISD/MG3 1.36 2.31 -1.05 1.65 1.38 1.76 -0.28 1.29 1.75
M05-2X/MG3S 1.59 2.46 -1.02 1.65 1.64 1.99 0.03 1.36 1.87
M06-2X/MG3S//QCISD/MG3 -0.06 0.73 0.60 0.85 0.36 1.09 -0.50 1.25 0.98
M06-2X/MG3S 0.03 0.72 0.58 0.90 0.46 1.07 -0.36 1.19 0.97
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magnitude more expensive than M08-SO/cc-pVTZ+ with a
mean unsigned error of 0.90 kcal/mol.
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Abstract: As density functional theory conventionally assumes that the density of a chosen
model system (e.g., the Kohn-Sham system) is the same as the exact one, one might expect
that approximations to the exact density introduce supplementary errors by falsifying the density.
In fact, this is not true: by modeling the exchange-correlation holes for all densities, density
functional approximations avoid this problem. The technique used to show it is a potential-
driven adiabatic connection which hopefully will also permit constructing new approximations in
the spirit of DFT.

Introduction

DFT. In density functional theory (DFT), the Schrödinger
equation is solved for model systems where the interaction
between particles is fictitious, that is, not the physical,
Coulomb one. In the Kohn-Sham model,1 for example, the
interaction is reduced to its simplest form: it is set to zero.
The energy of the model is, of course, different from that of
the physical system. Insight into the nature of this difference,
which is needed for obtaining the energy, can be obtained
by considering an “adiabatic connection”, a process in which
the interaction is progressively modified from that of the
model to that of the physical system.2-5 The evolution
between the model and the physical system can be character-
ized by a parameter, λ, which varies between λ0, character-
izing the model, and λ1, characterizing the physical system.

In its most widespread formulation, the expression of the
correction to the model energy, needed to obtain the exact
energy, contains the evolution of the pair density, P2(r1,r2)
along the adiabatic connection. Modeling P2(r1,r2) was not
only successfully used for constructing many of the density
functional approximations (see, e.g., refs 6-12) but is also
explicitly used in methods like the random phase approxima-
tion (see, e.g., refs 13 and 14). In its most widespread variant,
although P2 is a function of λ, the one-particle density n(r)
does not vary along the adiabatic connection.3,4

Model Densities May Not Be Exact. With a density
functional approximation (DFA), the model does not yield

the exact density; in general, nλ0 * nλ1. In the following, a
simple example will be given. It can be considered exag-
gerated, but it has the advantage that accurate numbers are
known for it.15 The system of two noninteracting particles
in the potential -�/r will be assumed to be an approximation
of the exact Kohn-Sham system which yields the density
of the He atom. The choice of � ) 1.344 yields the exact
asymptotic decay of the density of the He atom. This model
system thus reproduces exactly only a given property of the
physical density, not the physical density itself. One can
numerically construct a system in which the interaction
between electrons is of the Coulomb type but has the density
of this model, nλ0 ) 2(�3/π) exp(-�r),15 and calculate the
ground-state energy of the fully interacting system having
this density, in the external potential of the He atom. Keeping
the density constant produces a very large error in the total
energy (≈0.13 hartree). Not surprisingly, the largest error
comes from the electrostatic part of the electron-electron
interaction, ≈0.37 hartree, and the difference in the one-
particle part of the energy is on the same order of magnitude,
≈0.3 hartree. If one concentrates, however, on the parts
which are modeled in DFT, the situation is better: the
correlation energy obtained for the physically interacting
system with nλ0 is -0.043 hartree, reasonably close to that
of the He atom (see, e.g., ref 16), -0.042 hartree. However,
the exchange energy differs considerably; it is -0.840
hartree15 for the system with nλ0, versus -1.025 for the He
atom (see, e.g., ref 16).* Author e-mail: andreas.savin@lct.jussieu.fr.

J. Chem. Theory Comput. 2009, 5, 822–826822

10.1021/ct8005776 CCC: $40.75  2009 American Chemical Society
Published on Web 03/19/2009



This example seems to support the idea that one should
take into account the change of the density between the
model and the physical system.

Objective. The objective of this paper is to show that,
with a slightly modified adiabatic connection, the problem
of variable density is in fact avoided by DFAs. The key idea
is that one has to take into account that DFAs provide models
for all densities. Furthermore, it will be argued that the
modified adiabatic connection allows going beyond DFAs
in a systematic way. Of course, like in all methods of
quantum chemistry, this last step has to be payed with more
computational effort.

The Modified Adiabatic Connection

Family of Hamiltonians. Let us consider a family of
model Hamiltonians, λ0 e λ e λ1:

where

is a local one-particle potential,

is the physical, local one-particle potential (Vλ1 ≡ Vne), and

is an operator which describes a fictitious two-particle
interaction, which becomes, for λ ) λ1, the physical two-
particle interaction

where Vee(r,r′) ) 1/|r - r′|, in hartree atomic units.
In order to compare with DFT, Vλ is further decomposed:

where

and Vxc
λ is defined by eq 6. Below, for analyzing approxima-

tions, we will proceed in a different way: we will choose
some Vxc

λ(r) and use eq 6 to define Vλ; Vxc
λ will be chosen to

vanish as λ f λ1, to ensure that Vλ1 f Vne.
Energy Expression. To obtain the total energy, we will

write, also in analogy to DFT,

where Ψ is an antisymmetric wave function; Ψλ will be used
as a notation for a minimizing Ψ. Ψλ yields the one-particle
density nλ(r). Furthermore,

is a Hartree (i.e., electrostatic) term, and Exc is defined by
eq 8.

Please notice that the last two terms on the right-hand side
of eq 8 vanish when λ ) λ1.

Variation with λ. In order to study the change with respect
to λ, after taking the derivative of eq 8 with respect to λ, we
get

To obtain eq 10, we have used the variational character of
Ψλ for Hλ,

and

as well as eq 6.
Integrated Formulas. Equation 10 can be integrated over

λ, between λ0 and λ1, to yield

One can also use the exchange-correlation part of the pair
density produced by Ψλ, P2(r1,r2;Ψλ),

to rewrite eq 13 as

Hamiltonian-Driven Adiabatic Connections. In the
derivation of the formulas above, the adiabatic connection
was driven by the change in the Hamiltonian, in particular,
by the change of the one- and two-body potential: it was
potential-driven. One can also produce model Hamiltonians
by changing the kinetic energy operator. For example, one
can keep the two-body operator equal to Vee for all λ’s (cf.,
e.g., ref 17). With such a one-body-operator-driven adiabatic
connection, one can produce expressions for the correlation

Hλ ≡ H(Vλ, wλ) ) T + Vλ + Wλ (1)

Vλ ) ∑ i)1,N
Vλ(ri) (2)

Vne ) ∑ i)1,N
Vne(ri) (3)

Wλ ) ∑ i<j
w(ri, rj) (4)

Vee ) ∑ i<j
Vee(ri, rj) (5)

Vλ(r) ) Vne(r) + Vh(r;n, Vee - wλ) + Vxc
λ(r) (6)

Vh(r;n, w) ≡ ∫ d3 r' n(r') w(r, r') (7)

E ) 〈Ψλ|T + Vne + Wλ|Ψλ〉 + U[nλ;Vee - wλ] +

Exc[V
λ, wλ] (8)

U[n;w] ≡ 1
2 ∫∫ n(r) n(r') w(r, r') (9)

0 ) 〈Ψλ|∂λW
λ|Ψλ〉 - U[nλ;∂λw

λ] - ∫ Vxc
λ
∂λn

λ +

∂λExc[V
λ, wλ] (10)

∂λ〈Ψ
λ|T + Vne + Wλ|Ψλ〉 ) ∂λ〈Ψ

λ|T + Vλ + Wλ|Ψλ〉 +

∂λ ∫ d3r (Vne - Vλ) nλ ) 〈Ψλ|∂λV
λ + ∂λW

λ|Ψλ〉 -

∫ d3r nλ
∂λV

λ + ∫ d3r (Vne - Vλ) ∂λn
λ )

〈Ψλ|∂λW
λ|Ψλ〉 +

∫ d3r (Vne - Vλ) ∂λn
λ (11)

∂λU[nλ;Vee - wλ] ) ∫ d3r Vh(r;nλ, Vee - w)∂λn
λ -

1
2 ∫∫ d3r d3r' n(r) n(r') ∂λw

λ (12)

Exc[V
λ0, wλ0] ) ∫λ0

λ1 dλ(〈Ψλ|∂λW
λ|Ψλ〉 - U[nλ;∂λw

λ] -

∫ Vxc(r;nλ, Vee - Vλ) ∂λn
λ) (13)

Pxc(r1, r2;Ψλ) ) P2(r1, r1;Ψλ) - nλ(r1) nλ(r2) (14)

Exc[V
λ0, wλ0] )

∫λ0

λ1 dλ 1
2 ∫∫ d3r d3r' Pxc(r1, r2;Ψλ) ∂λw

λ(r, r') -

∫λ0

λ1 dλ ∫ Vxc
λ (r) ∂λn

λ(r) (15)
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energy which depend on the one-body density matrix along
the adiabatic connection, γ(r,r′; Ψλ).

This type of adiabatic connection will not be discussed
here, as it is only seldom used to produce approximations
to the universal correlation energy functional.

Relationship to DFT

Relationship to Exact DFT. The adiabatic connection
formula of DFT is well-known.3 The resulting equation has
the same form as eq 15 without the last term on the right-
hand side, as n does not vary with λ. One should keep in
mind that in DFT Exc is not determined by Vλ0 and wλ0, but
by n and wλ0,

and that Vλ is constructed by using in eq 6:

Density Functional Approximations. In practice, DFAs
are made to define the model systems: Exc is in general
replaced by some approximation, Ẽxc:

P̃xc is some model for Pxc; in LDA, for example, it is that of
the uniform electron gas with density ñλ0(r). ñλ0 is the density
obtained from Ψ̃λ0, which in turn depends on wλ0 and Vλ0.
For the latter, eq 6 is used, and

at n ) nλ0.
Comparing the equation of DFT, eq 16, with that of DFAs,

eq 18, one can notice two differences: (i) the latter uses of
a model, and (ii) the model uses nλ0 instead of nλ. The latter
point arises because the DFT assumption was made in the
derivation, namely, n was assumed not to change with λ.
(When a calculation at λ0 is done, only nλ0 is known, so that
the information about nλ(>λ0) is missing.)

Derivative of Ẽxc with Respect to λ. Notice that Ẽxc

depends on λ implicitly, via the λ dependence of nλ, and
explicitly, for a given λ, as the functional will change for
the same density, as the interaction wλ changes with λ:

The first term on the right-hand side is the derivative of
Ẽxc at fixed λ, which by the chain rule is

while the last term on the right-hand side of eq 20, the
derivative at fixed n, is, by using eq 18,

Special Choice for Wxc
λ. We now go back to the adiabatic

connection in which the density is allowed to vary but specify
now a potential which, until now, was arbitrary. We choose

By this choice,

Adiabatic Connection for the Special Choice of Wxc
λ.

We can use eq 23 in eq 15; next, we use eq 21, followed by
eq 20, and finally use eq 22:

so that, with Ẽxc[nλ0,λ1] ) 0,

Interpretation. Equation 26 shows that the error of the
model is due to the difference between Pxc(Ψλ) and the model
P̃xc(nλ). As in DFA, the models are defined to work for all
densities (as one does not know beforehand what density is
of interest); they also work for nλ. Thus, from the perspective
of eq 26 (and that of the modified adiabatic connection), there
is no need for any supplementary correction due to density
changes.

Relevance for DFAs. When the ground-state energy is
computed, eq 26 tells us that we can comfortably ignore the
fact that the density of the model is not the exact onesas
long as the DFA is based upon a hole model. Most of the
existing approximations used (the local density approxima-
tion, LDA; most of the generalized gradient approximations,
GGAs; etc.) are based on hole models.

Notice also that in “density functional calculations”,
sometimes potentials are used which are not derivatives of
a functional of the density. They show up, for example, when
optimized effective potentials are used, or when making
approximations for time-depenent DFT, for example, for

Exc[n, wλ0] ) ∫λ0

λ1 dλ 1
2 ∫∫ d3r d3r' Pxc(r, r';Ψλ) ∂λw

λ(r, r')

(16)

Vxc
λ(r) ) δExc[n, wλ0]/δn(r) (17)

Ẽxc[ñ
λ0, λ0] ) ∫λ0

λ1
dλ 1

2 ∫∫ d3r d3r' P̃xc(r, r';ñλ0(r)) ∂λw
λ(r, r')

(18)

Ṽxc
λ0(r;n, w) ≡ δẼxc[n, λ0] δn(r) (19)

∂λẼxc[n
λ, λ] ) ∂λẼxc[n

λ, λ̃]|λ̃)λ + ∂λẼxc[n, λ]|n)nλ (20)

∂λẼxc[n
λ, λ̃]|λ̃)λ ) ∫ Ṽxc(r;nλ, wλ) ∂λn

λ(r) (21)

∂λẼxc[n, λ]|n)nλ ) -1
2 ∫∫ d3r d3r′P̃xc(r, r′ ;nλ(r)) ∂λw

λ(r, r')

(22)

Vxc
λ(r) ) Ṽxc(r;nλ, wλ) (23)

Ψλ ) Ψ̃λ

nλ ) ñλ (24)

Exc[V
λ0, wλ0] ) ∫λ0

λ1 dλ 1
2 ∫∫ d3r d3r′ Pxc(r1, r2;Ψλ) ×

∂λw
λ(r, r’) - ∫λ2

λ1 dλ ∫ Ṽxc(r;nλ, wλ) ∂λn
λ(r) )

∫λ0

λ1 dλ 1
2 ∫∫ d3r d3r′ Pxc(r1, r2;Ψλ) ∂λw

λ(r, r′) -

∫λ2

λ1 dλ(∂λẼxc[n
λ, λ̃]|λ̃)λ) )

∫λ0

λ1 dλ1
2 ∫∫ d3r d3r′ Pxc(r1, r2;Ψλ) ∂λw

λ(r, r′) -

∫λ2

λ1 dλ(∂λẼxc[n
λ, λ] - ∂λẼxc[n, λ]|n)nλ) )

∫λ0

λ1 dλ 1
2 ∫∫ d3r d3r′ Pxc(r1, r2;Ψλ) ∂λw

λ(r, r′) -

∫λ2

λ1 dλ(∂λẼxc[n
λ, λ]) -

∫λ2

λ1 dλ 1
2 ∫∫ d3r d3r′ P̃xc(r, r′ ;nλ(r)) ∂λw

λ(r, r′)

Exc[V
λ0, wλ0] - Ẽxc[n

λ0, λ0] )

∫λ0

λ1 dλ 1
2 ∫∫ d3r d3r′(Pxc(r1, r2;Ψλ) -

P̃xc(r, r′ ;nλ(r))) ∂λw
λ(r, r′) (26)
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correcting the asymptotic behavior of the approximate
Kohn-Sham potential. In such situations, one leaves the
standard frame of DFT, but not that of the present approach.

Perspectives

Losses and Gains. A Hamiltonian-driven adiabatic con-
nection is identical to the adiabatic connection in DFT when
the density is kept constant. When the density is not kept
fixed, it loses the pure beauty of DFT. However, the added
flexibility might not only bring theory closer to what is done
in practice in DFAs but also might give some hints about
how to improve approximations. Finally, many of the
successful DFAs were constructed from hole models, and
they can continue to be used in the potential-driven adiabatic
connection.

Choosing Wλ. Analysis of Vλ was used over the years to
understand DFAs, which are normally constructed by using
an ansatz of the form

Unfortunately, the equality does not suffice to define ε̃xc:
the left-hand side is a number, while ε̃xc is a function. (In
other words, any function which multiplied with n integrates
to zero can be added to ε̃xc without changing the value of
the integral.) However, in DFT, one can compare safely, for
a given system, the accurate Vxc

λ, eq 17, with that obtained
from approximations. Thus, one can also use the knowledge
gained in the past years for constructing accurate Vxc

λ’s in
DFT and for constructing Vλ for the potential-driven adiabatic
connection.

Because of the requirement of using model systems having
as the ground-state density the exact one, DFT ensures that
the model system is in most cases sufficiently close to the
exact one, for example, has the exact electrostatic energy.
In practice, however, as the exact density is unknown, DFAs
produce only “reasonable” densities. Thus, to have similar
performance in the potential-driven adiabatic connection, the
Vλ should yield “reasonable” densities, and thus be suf-
ficiently “close” to the Vλ which keeps the density constant.
As the terms “reasonable” and “close” are not well-defined,
the choice of Vλ is left to further exploration. It is possible
to perform calculations in the spirit of DFT without
the constraint of using potentials which are derivatives of
some density functional. To start the explorations, however,
one can imagine using forms of Vλ similar to those existing
in DFAs; a few parameters in Vλ could be determined “on
the fly”, that is, made system-specific, for example, by using
perturbation theory, see below.

State Following. In the potential-driven adiabatic con-
nection, the model system does not have to be in its ground
state. (Of course, the model for the pair density will have to
show some dependence on the state chosen, e.g., by a
dependence on the depth of the exchange-correlation hole,
cf. refs 18-20. ) Because of convenient choices of Vλ, it
should not only be possible to follow a given state along
the adiabatic connection but also to avoid some of the
surprises produced in model systems keeping the ground-
state density constant (the change of the nature of the ground

state, artificial degeneracies, missing degeneracies, jumps,
etc.). As the potential-driven adiabatic connection has more
flexibility, size-consistency problems such as those presented
in ref 21 might also be avoided.

Perturbation Series for Improving Exc
λ. The idea to use

perturbation theory to improve density functionals (see, e.g.,
ref 22) can also be borrowed for the present context.
Considering the system at λ0, defined by the Hamiltonian
Hλ0, one can recover information about the system at Hλ by
using perturbation series where the perturbation operator is
Hλ - Hλ0. Obtaining the first-order correction to the energy
might be not very expensive, as only the wave function (or
the reduced density matrices) at λ0 are needed. The “slope
of the correction”, being now known, can be used for
improving “on the fly” Exc, for example, by readjusting the
depth of the exchange-correlation hole.

Such an approach to correct Exc was already used with a
different adiabatic connection, where the one-electron part
of the Hamiltonian is modified.17

By a change of viewpoint, one can see the perturbation
series as resulting from taking derivatives with respect to λ.
Taking the first derivative with respect to λ in eq 8 is
equivalent to considering the first-order perturbation term.
Higher derivatives are related to higher orders in perturbation
theory. One can consider that, as when deriving eq 10, the
total physical energy, E, is independent of λ. This method
yields further equations which can be used to constrain Exc

using information specific to the system.
The adiabatic connection, eq 13 or eq 15, amounts to

replacing the perturbation expansion at one point with first-
order perturbation corrections at all points between λ0 and
λ1. This suggests that one could repeat the calculation at a
new λ0, say λ0′, and use both the information at λ0 and λ0′ to
improve an existing ansatz for an approximation of the
exchange-correlation term. This could be useful, for instance,
if we either wanted to avoid the effort of higher-order
perturbation calculations or we do not trust the perturbation
expansion to higher order.

Still another way to exploit the adiabatic connection is to
use different potentials and to compute different corrections
to it, starting at the same λ0. Of course, in principle, the
physical energy, E, is independent of the path chosen. This
constraint may be a path to further improve the approxima-
tions for Exc.
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Abstract: Partition theory (PT) is a formally exact methodology for calculating the density of
any molecule or solid via separate calculations on individual fragments. Just as Kohn-Sham
density functional theory (DFT) introduces noninteracting fermions in an effective potential that
is defined to yield the exact density of the interacting problem, in PT a global effective potential
is found that ensures that the sum of the fragment densities is that of the full system. By combining
the two, density functional partition theory (DFPT) produces a DFT scheme that yields the (in
principle) exact molecular density and energy via Kohn-Sham calculations on fragments. We
give the full formalism and illustrate DFPT in the general case of noninteger fragment occupations.

1. Introduction

In the world of electronic structure, molecules and solids
are typically considered in one of two distinct ways. In the
first, the system is treated as a whole, and molecular orbitals
(or bloch wave functions for bulk crystals) are calculated.
These are solutions of some effective potential theory, such
as Kohn-Sham density functional theory1,2 or Hartree-
Fock,3,4 and often describe the system well near equilibrium
geometries. The major difficulty is then finding usefully
accurate approximations to the total energy. In the second
view, one considers isolated atoms as the starting point, and
then relatively weak interactions between such units. This
view appears necessary for strongly correlated solids such
as NiO, strongly correlated molecules such as Cr2, or any
molecule as its bonds are stretched. In such cases, standard
approximations for the single-reference approach usually fail,
often quite completely. Thus, in practice, the worlds of weak-
and strong-correlation have divided.5

In previous work,6 we showed that the partition theory in
ref 7 plays a role analogous to that of the Kohn-Sham (KS)
formalism in density functional theory (DFT). In Kohn-
Sham theory,2 a reference system is created which is much
easier to solve and in which the interactions between
electrons have been turned off. In partition theory,7,8 the
reference system has been constructed from isolated effective
fragments (e.g., atoms) between which there are no interac-
tions. In both theories, the total electronic density of the
system is used as the connection between the reference and
reality; it remains unchanged from one to the other and so
uniquely defines the reference. Many other analogies are
made within the paper. Suffice it to say that, just as KS DFT
is particularly well-suited to weakly correlated systems,
partition theory is well suited, though not limited to, weakly
interacting fragments. We illustrate our method with an
analysis of a system of two electrons moving independently
in a simple one-dimensional potential. In ref 6, a model
calculation was shown in which only integer particle numbers
occurred, as determined by symmetry. Just as in pure
partition theory, much more is gained in going from that
case9 to the asymmetric case,10 leading to fractional occupa-
tions. Unlike in ref 6, here, we perform a calculation with
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† UC Irvine Physics.
‡ Rutgers University and Princeton University.
§ Purdue University.
|UC Irvine Chemistry.
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noninteger occupations, which is the more general case that
will be encountered in molecular calculations.

We start with the relevant background information on
DFT, including the KS scheme and how partition theory can
be used to break a system into fragments. Following this,
we review density functional partition theory (DFPT) before
generalizing the analysis of ref 6. Next, we perform a DFPT
calculation on a one-dimensional model system of a hetero-
nuclear diatomic molecule, leading to fractionally occupied
fragments, before we conclude with a discussion of
significance.

2. Background

In this section, we review both Kohn-Sham DFT and
partition theory, highlighting the analogies between them.

2.1. Kohn-Sham Density Functional Theory. In the
KS2 approach to DFT, one constructs a set of noninteracting
equations:

where the orbitals φj(r) are defined to reproduce the exact
density, n(r), of the interacting system of interest. The KS
potential Vs(r) is unique via the Hohenberg-Kohn theorem.1

The total energy is then rewritten in terms of the reference
system:

where TS is the KS kinetic energy, U the Hartree energy,
EXC the unknown XC energy, and V(r) the one-body external
potential. The (in principle exact) total energy can be found
by solving eq 1 and inserting the resulting density in the
expression above, eq 2. The most important result of ground-
state DFT is that the KS potential of eq 1 is given by

where

is the Hartree potential and

is the XC potential. Thus, if one knows EXC as a density
functional, a closed set of self-consistent equations results,
which can be solved for any system. With good approxima-
tions to EXC[n], this scheme has proven useful in many
applications.11

2.2. Partition Theory. On the other hand, partition
theory7 provides a method for breaking a system into a sum
of fragments. Begin from the one-body potential, V(r), which
is typically a sum of contributions, most from individual
nuclei, for example,

where Z� is the atomic charge of a nucleus at point R�. In
partition theory, we group these contributions into Nf

fragments of our choosing:

and each VR(r) is the sum over one or more nuclei. The
simplest possible choice is to divide the system into two parts
(Nf ) 2), which we call binary fragmentation. These parts
would obviously be the two nuclei in a diatomic molecule
but could also be the nuclei of a chemical group extracted
from a large molecule, or those of a molecule interacting
with a surface. One can imagine many cases for which that
could prove useful; two examples can be seen in Figure 1.
An alternative choice is atomization, in which every term in
eq 6 above is separated, and the number of fragments
matches the number of nuclei.

Once the fragments have been picked, the partition
problem is to find fragment densities nR(r) such that they
add to the total molecular density:

Within partition theory, this is done by minimizing the total
energy of the independent fragments, Ef, with the constraint
that the sum of the fragment densities must match the
molecular density, that is, eq 8. The total energy of the
fragments is

where εR is the energy of each fragment. Since there is no
constraint that a fragment’s particle number, NR, be an
integer, the Perdew, Parr, Levy, and Balduz (PPLB)
formulation12,13 is used. Thus

where ER[n] is the energy density functional for each
fragment R. The fragment particle number is NR ) pR + νR,
pR and pR + 1 are the lower and upper bordering integers of
NR, and 0 e νR < 1. The PPLB scheme is simply that of the
fragment in contact with an infinite but distant reservoir.

We note the following:
• If all fragments are separated from each other, these

fragment densities become exactly those of the isolated
fragments, nR

(0)(r).
• One solves the Hamiltonian for each isolated fragment

independently of the other fragments. It is the sum of these
fragment energies that is minimized.

• It may appear that finding the minimum requires first
solving for the molecular density and, so, is even more work
than solving the initial problem. But an exactly analogous
statement can be made about KS DFT, whose true value is

[-1
2

∇ 2 + Vs(r)]φj(r) ) εjφj(r) (1)

E[n] ) TS[n] + U[n] + EXC[n] + ∫ d3r n(r) V(r) (2)

Vs(r) ) V(r) + VH(r) + VXC(r) (3)

VH[n](r) ) δU[n]
δn(r)

) ∫ d3r′ n(r′)

|r - r′|
(4)

VXC[n](r) )
δEXC[n]

δn(r)
(5)

V(r) ) -∑
�

Z�

|r - R�|
(6)

V(r) ) ∑
R)1

Nf

VR(r) (7)

∑
R)1

Nf

nR(r) ) n(r) (8)

Ef ) ∑
R)1

Nf

εR (9)

εR ) (1 - νR)ER[npR
] + νRER[npR+1] (10)
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only apparent when approximations are made. Below, we
show the same thing for partition theory.

The process of finding the minimum produces an ex-
tremely useful conceptual tool. Minimizing the Lagrangian:

where NR ) ∫ d3r nR(r), yields the solution to the partition
problem.7 The Lagrange multiplier µ is identified as the
chemical potential of the molecule,8 while the Lagrange
multiplier that constrains the sum of the fragment densities
to be the molecular density is a potential, dubbed the partition
potential, Vp(r). This is a global property of the molecule,
uniquely defined once we have chosen a particular fragmen-
tation. It has the interesting aspect that, when added to any
fragment potential, the sum is exactly that potential for which
the fragment density is a ground-state density. In the upper
panel of Figure 2, the exact total density for a model system
is shown. It is the solution for two noninteracting fermions
in the potential shown in the lower panel of Figure 2 and is
discussed in detail later, in the illustration. Solving the
partition problem yields the two fragment densities, which
are also shown in the upper panel of Figure 2. It can be
seen that adding these two fragment densities will give the

total density. In the lower panel of Figure 3, we show the
exact partition potential for this problem. When added to a
fragment potential, it gives an effective potential for each
fragment; this is shown as the dashed line in the lower panel
of Figure 3. The ground-state density of this effective
potential can be seen in the upper panel of Figure 3, it is
exactly the same as the fragment density shown in the upper
panel of Figure 2.

We emphasize here that, once a choice of fragmentation
has been made, the entire procedure is then unambiguously
defined and leads to unique densities. The user chooses
fragments depending on which aspects they wish to study,
usually guided by chemical intuition.

The conceptual structure of partition theory has deep roots,
going back to Moffitt’s proposed solution of the atoms in
molecules (AIM) problem, the ultimate partition into “at-
oms”.14 Some of the fundamental concepts of partition theory
were introduced by Parr et al.15 in prescient work which
reformulated the AIM problem within the framework of DFT.
They introduced three central ideas:

1. The electron density of a molecule should be decom-
posed exactly into a sum of contributions from individual
atoms.

2. This decomposition should be made unique by mini-
mizing the promotion energy, the increase of the sum of the
energies (the density functionals) of the individual atoms
caused by meeting constraint 1.

3. The electron numbers on the individual atoms need not
be integers.

Palke16 applied these ideas to an analysis of the H2

molecule. Building upon the Parr et al. work, Guse17

developed the conceptual structure further, carrying out a
Legendre transformation on the sum of the atomic energies
before the minimization, thereby introducing a Lagrange
parameter without recognizing explicitly that it plays the role
of an external potential, which is the same for all of the
atoms. Rycklewski and Parr18 reformulated the theory in
terms of wave functions. Ayers and Parr19 recognized that

Figure 1. Two examples of binary fragmentation into frag-
ments A and B. The figure on the left shows a lithium hydride
molecule at equilibrium bond length, while on the right, an
ethene molecule is shown with one substituent cornered off
as one of two fragments. Due to the lack of symmetry, in both
cases, the fragments will have noninteger occupations at
equilibrium bond lengths.

Figure 2. Top panel: The exact density (solid line) for two
noninteracting fermions in the potential defined in eq 26 with
R ) 3 and shown below. The two exact partition densities
(dashed lines) for this system. Bottom panel: The correspond-
ing molecular potential (solid line) as defined in eq 26.

G ) Ef - µ(∑
R)1

Nf

NR - N) + ∫ d3r Vp(r) (∑
R)1

Nf

nR(r) - n(r))
(11)

Figure 3. Top panel: The fragment density (dashed line) for
the B atom of Figure 1. Bottom panel: The exact partition
potential vp(x) (solid line) for this system, the nuclear potential
vB(x) (dotted line), and the fragment potential vB(x) + vp(x)
(dashed line). This potential has the fragment density shown
in the upper panel as its ground-state density, and the same
is true for the A atom.
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the atoms in the molecule were changing in response to an
effective external potential in a significant contribution to
chemical reactivity theory, but that potential was not identi-
fied with Guse’s Lagrange multiplier. Perdew et al. (PPLB)12,13

constructed a rigorous generalization of DFT for noninteger
systems, and Parr20 used its conceptual structure only to give
physical meaning to the notion that atoms-in-molecules could
have noninteger electron numbers. Thus, several of the
essential elements of the conceptual structure of partition
theory had been present in the literature for two decades
before the current formulation.7

3. Density Functional Partition Theory

In this section, we expand upon the methodology developed
in ref 6, which allows one to calculate a molecular density
and energy from indiVidual calculations on fragments via a
self-consistent loop. In this sense, it is the analog of the KS
method, in which the energy is found from self-consistent
calculations on noninteracting electrons. Clearly, such a
capability could in general have tremendous significance for
many areas of current research, from O(N) scaling to
quantum mechanics/molecular mechanics (QM/MM) methods.

To do so, think of the total fragment energy, eq 9, as
analogous to the sum of orbital energies in KS theory. Then,
define the partition energy as

analogous to the Hartree-XC energy in KS theory. If E f
0 )

∑R εR0 is the total energy of the isolated fragments, then we
can write

where Erel is the fragment relaxation energy (the promotion
energy15):

and Edis ) E - Ef
0 is the dissociation energy. For any bound

molecule, Edis < 0. Furthermore, since εR0 is the ground-state
energy for the isolated fragment and εR is an expectation
value of the same Hamiltonian, ∆εR e 0 always. Thus, Ep <
0. Note that these energies are typically much smaller than
total electronic energies and vanish as the molecule is
stretched.

We can consider the partition energy as a functional,
Ep[{nR}], of the fragment densities alone for the given
external potential and choice of fragmentation. We now
examine the effect of making small variations in one
fragment density, δnR(r), to the partition energy. The first
term of eq 13 is the ground-state energy of the system relative
to that of the isolated parts, so variations in the density are
zero because we are at its minimum. For Erel, the second
term, only the Rth fragment energy changes. Since the
fragment density minimizes the Rth fragment in the presence
of Vp(r), then Vp(r) ) -δεR/δnR(r), so that

that is, given any expression for Ep[{nR}], we can extract
the corresponding partition potential, Vp(r), and then calculate
new fragment densities, which are then used to generate a
new partition potential, and so on. Thus, approximating
Ep[{nR}] produces a closed loop, and a direct scheme for
doing a DFPT calculation. The steps of a DFPT calculation
are as follows:

(1) Guess the fragment densities {nR}. A reasonable first
guess would be {nR

0(r)}, the densities of the isolated
fragments. This naturally leads to integer occupations, usually
those of the neutral fragements.

(2) Construct the partition potential, Vp(r), using eq 15.
(3) Solve for each nR(r) in its respective fragment potential

VR(r) + Vp(r), retaining the values of the fragment occupa-
tions, {NR}.

(4) Cycle steps 2 and 3 until self-consistency, and evaluate
Ef.

(5) Repeat with small changes of the occupation numbers,
and continue to find the lowest value of Ef.

(6) Along with the fragment densities, this yields the total
molecular density and the molecular energy (via E ) Ef +
Ep).

This is the method we have used in our illustration, and it
is guaranteed to yield the molecular density and energy, once
self-consistent potentials can be found at each value of the
occupations. In a larger calculation, it would be optimum to
take variations in the fragment occupations also and find both
occupations and potentials simultaneously self-consistently.

In principle, any electronic-structure method can be used
to calculate the fragments. However, in practice, most of
such methods will not provide a way to functionally
differentiate the corresponding Ep. Even within KS DFT, one
does not usually know the noninteracting kinetic energy, TS,
as a functional of the density. Only with an explicit density
functional can the corresponding derivative needed for the
partition potential be taken.

To derive the expression for Vp(r) in DFPT, we begin with
the universal functional, defined via the Levy constrained
search:21,22

Then, the ground-state energy of any density is given by

where V(r) is its corresponding one-body potential. Thus,

where, for simplicity, we assume NR is an integer; otherwise,
eq 10 must be used. Thus, Ep is

Ep ) E - Ef (12)

Ep ) Edis + Erel (13)

Erel ) Ef
0 - Ef ) ∑

R)1

Nf

∆εR ) ∑
R)1

Nf

(εR
0 - εR) (14)

Vp(r) )
δEp[{nR}]

δnR(r)
(15)

F[n] ) min
Ψfn

〈Ψ|T̂ + V̂ee|Ψ〉 (16)

E[n] ) F[n] + ∫ d3r n(r) V(r) (17)

εR ) F[nR] + VR[nR] (18)

Ep[n] ) F[n] - ∑
R)1

Nf

F[nR] + ∑
R)1

Nf

∑
�*R

Nf ∫ nR(r) ν�(r)

(19)
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Now

and

so we can write the partition potential in terms of functional
derivatives of the universal functional:

This gives an expression for Vp(r) for each of the Nf

fragments. From eqs 17 and 2, the universal functional can
be decomposed into F[n] ) TS[n] + U[n] + EXC[n], leading
to

for any R and using the fact that the Hartree potential is
linear in n(r). Explicit density functional expressions are
needed for both TS[n] and EXC[n]. However, since the
expression only depends on differences between the func-
tional derivatives of these, some of the error due to
approximating these may cancel.

We point out that DFPT is close in spirit (not in execution)
to previous work by other authors. Cortona’s crystal potential
(called embedding potential by later workers)23,24 is analo-
gous to our Vp(r), but the procedure for finding it is distinct
from the variational framework of DFT. And, he does not
provide an explicit functional for it. Wesolowski and
Warshel25 gave an explicit form to it and applied it to a two-
part system instead of a crystal, with solvation effects
specifically in mind. Carter and collaborators26,27 applied
these ideas to adsorbates on and defects in metals, giving a
functional form for the embedding potential that is formally
equal to ours but has quite a different interpretation. We
highlight six key features of DFPT: (1) We can break the
system up into an arbitrary number of fragments. (2) We do
not suppose that the densities of the parts can be varied
independently when their densities are constrained to add to
the density of the whole. (3) We obtain the partition potential
as a Lagrange multiplier, which allows relaxation of the
constraint in a variational procedure that lies outside the pre-
established domain of DFT. (4) Our partition potential acts
on all parts and is the same for all. (5) We achieve
electronegativity equalization through the use of PPLB. (6)
We do not fix the density of any part of our system. All
fragment densities are self-consistent with respect to one
another.

4. Illustration

In ref 6, we illustrated DFPT on a model system of a
homonuclear diatomic molecule. We found, as expected, that

DFPT gave exactly the right energy and density. While this
demonstrated the principle of DFPT, a more powerful
example of its usefulness and relevance to real systems is a
heteronuclear diatomic molecule. Unlike the symmetric case,
the covalently bonded fragments will contain fractional
numbers of electrons, necessitating the use of the PPLB
formalism.12 In partition theory, the AB heteronuclear system
has been studied10 for insight into molecular dissociation.

For one- or two-electron systems, the kinetic energy
density functional is given exactly by the von Weizsäcker
functional:

and if we study noninteracting fermions, then Ep[n] as a
density functional is known exactly. Taking the functional
derivative with respect to a fragment density yields the
partition potential, which for a binary fragmentation of a
system is

and vice-versa for the A fragment. If we work in one
dimension, then the fragments can be solved for easily.

For this example, we use a 1/cosh2(x) potential for each
“nucleus”, giving the total potential for a diatomic system
with separation R as

Here, the A fragment plays the role of a Lewis base, while
B is a Lewis acid. The small difference in nuclear charges
is chosen so as to mimic the effect of screening in an
interacting system. The total particle number is two, allowing
us to use the von Weizsäcker functional even when fractional
charges are present.28

The minimization of the Lagrangian, eq 11, in the partition
problem is over both the density nR(x) and the occupation
NR. As described above, we find self-consistent solutions for
fixed values of NR. In Figure 4, we plot the molecular energy
found after three iteration cycles for five occupation numbers.
We can clearly see that there is a minimum at NA ) 0.655,
and in fact, it is already extremely close to the exact
molecular energy. The convergence for the other occupation
numbers is very slow, but the minimum at NA ) 0.655
remains even after 10 iteration steps. For practical calculation,
the occupancy may be set on the fly, but for the purposes of
this demonstration, this procedure is sufficient.

To see how the density converges for each iteration, we
will use the final occupation NA ) 0.655 from now on. In
Figure 5, we show the convergence for one of the two
fragment densities for this problem, through several self-
consistency cycles. The total potential is the same as that
shown in the lower panel of Figure 2, while the two fragment

δF[n]
δnR(r)

) δF[n]
δn(r)

) µ - V(r) (20)

δF[nR]

δnR(r)
) µ - VR(r) - Vp(r) (21)

Vp(r) ) δF[n]
δn(r)

-
δF[nR]

δnR(r)
+ ∑

�*R

Nf

V�(r) (22)

Vp[{nR}](r) )
δTs[n]

δn(r)
-

δTs[nR]

δnR(r)
+ VXC[n](r) -

VXC[nR](r) + ∑
�*R

Nf

(V�(r) + VH[n�](r)) (23)

TW[n] ) 1
8 ∫ d3r

|∇ n(r)|2

n(r)
(24)

Vp(r) ) VB(r) + ( n′2(r)

8n2(r)
- n′′ (r)

4n(r)) - ( n′A
2 (r)

8nA
2 (r)

-
n″A(r)

4nA(r))
(25)

V(x) ) VA(x) + VB(x) ) - 1

cosh2(x + R/2)
-

1.1

cosh2(x - R/2)
(26)

Density Functional Partition Theory J. Chem. Theory Comput., Vol. 5, No. 4, 2009 831



potentials, VA(x) and VB(x), are given in eq 26 with R ) 3.
For the initial fragment densities (cycle 0), we use the
densities for the two isolated fragments. We then use these
to construct a partition potential from eq 25, which is then
used to construct effective fragment potentials, VR(x) + Vp(x).
If we then solve for each fragment density in this new
potential, we find the cycle 1 density, shown as the
dotted-dashed line in Figure 5. It can be seen that the density
for this fragment has been shifted toward the other “nucleus”,
as compared to the isolated case. This is due to the partition
potential lowering the fragment potential, VA, so as to move
density into the bonding region, as would be expected.

In Figure 6, the solid line is the total molecular density,
found by directly solving for two noninteracting fermions
in total potential V(x). It is the same as that shown in Figure
2. In both this case and for the fragments, the density is found
by solving the Schrödinger equation numerically on a real-
space grid. Derivatives of the density are found using a finite-
difference scheme. If we sum the A fragment density shown

in Figure 5 with its counterpart on B at each iteration step,
we find the corresponding molecular density. These are
plotted in Figure 6, and it can be seen that the density at
each self-consistency cycle is converging to the exact answer.
The convergence toward the exact molecular density can be
seen more clearly in Figure 7, where we show the density
differences from the overlapped “atomic” densities. We add
in the results for more iteration steps, and it is clear that the
error decreases with every iteration.

The energy of the molecule may also be calculated using
eq 12 for each set of fragment densities. Again, we see the
calculation converge to the exact energy of -1.30106. The
energy of the initial guess was -1.26067, while after three
cycles, it was -1.30104, essentially converged for this level
of calculation.

5. Significance

We have demonstrated that, with an explicit expression for
the partition energy functional Ep, a self-consistent DFPT
calculation can be performed on fragments and that the result
converges to the molecular answer. Unlike ref 6, here the
fragments have noninteger occupations. The fragments are

Figure 4. The molecular energy after three iteration cycles
as a function of the fractional occupation of the A fragment
(NA) used in each DFPT calculation. The occupation on B is
thus 2 - NA. The initial fragment densities are the same for
each calculation and are simply those of the respective free
fragments. The minimum occurs at NA ) 0.655, which is then
the occupation used in all subsequent calculations.

Figure 5. The density for the left (A) fragment as defined by
eq 26 with R ) 3 for the first three self-consistency cycles,
labeled 0, 1, and 2, respectively. Also shown is the exact
fragment density. Even after just two cycles, the fragment
density is almost on top of the exact density, on this scale.
For more self-consistency steps, it continues converging
toward the exact answer. Calculations were performed using
three-site finite difference formulas for derivatives and 2001
grid points with a grid spacing of 0.013 au.

Figure 6. Molecular densities for various cycles 0, 1, and 2
of the self-consistency calculation for this system. Also shown
is the exact density for the full system. The density after just
two cycles is very close to the exact density, and after three
cycles it cannot be distinguished from the exact density on
this scale. Convergence continues as more cycles are added,
as can seen in Figure 7.

Figure 7. Difference between the exact molecular density,
nex(x), and the sum of the fragment densities for each self-
consistency cycle of the DFPT calculation. It is the difference
between each of the DFPT densities in Figure 6 and the exact
density. After each cycle, this difference decreases, and the
convergence to the exact answer is clear.
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solved individually, which, for large interacting systems,
would greatly reduce computational cost.

One may wonder, what is the point of our methodology?
After all, in order to find the partition potential exactly, we
need to know the functional for the entire problem, so we
have saved nothing. The point is that one can construct
simple approximations to the partition energy as a functional
of the fragment densities, which will yield new and different
approximations to the many-atom problem. In principle, one
can even apply a high-accuracy quantum chemical method
to the solution for a fragment and, via an approximate
partition functional, embed that solution in the entire
molecule (QM/MM). Another useful possibility is to perform,
for example, a molecular mechanics simulation and then use
overlapped atomic densities in an approximate partition
potential to apply to the fragment of interest, where accurate
energy differences are needed. Work is ongoing to explore
the most useful approximations in different situations.
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Abstract: We present a first-principles study on the ground and excited electronic states of a
carotenoid-porphyrin-C60 molecular triad. In addition, we illustrate a method for using DFT-based
wave functions and densities to simulate complicated charge-transfer dynamics. Since fast and
efficient calculations of charge-transfer excitations are required to understand these systems,
we introduce a simple DFT-based method for calculating total energy differences between ground
and excited states. To justify the procedure, we argue that some charge-transfer excitations
are asympototically ground-state properties of the separated systems. Further justification is
provided from numerical experiments on separated alkali atoms. The donor-chromophore-
acceptor system studied here can absorb and store light energy for several hundreds of
nanoseconds. Our density-functional calculations show that the triad can possess a dipole
moment of 171 D in a charge-separated state. The charge-transfer energy technique is used to
obtain the energies of the excited states. The charge separated excited states with a large
dipole moment will create large polarization of the solvent. We use a model to estimate the
stabilization of the excited-state energies in the presence of polarization. The calculated excited-
state energies are further used to calculate the Einstein’s A and B coefficients for this molecular
system. We use these transition rates in a kinetic Monte-Carlo simulation to examine the
electronic excitations and possible charging of the molecule. Our calculations show that the
solvent polarization plays a crucial role in reordering the excited-state energies and thereby in
the charge-separation process.

Introduction

Solar energy is an abundant source of alternative energy.
Nearly 75% of the solar radiation striking the upper
atmosphere reaches the surface of the earth. The natural light
harvesting systems such as plants or bacteria have evolved
in ways that allow for a relatively efficient mechanism for
converting and storing solar energy. This is done through a
complex network of donor-acceptor systems which funnel
the absorbed energy into a reaction center where the charge
separation occurs. To replicate such light-harvesting systems,
a plethora of donor-acceptor molecular diads and triads have

been synthesized and tested for efficient photovoltaic proper-
ties. In this paper, we study from first principles one such
molecular donor-acceptor triad system containing a caro-
tenoid, a porphyrin, and a C60 molecule.

This carotenoid-porphyrin-C60 molecular triad (see Figure
1) was first synthesized by Liddell et al.,1 and many
experimental studies have been reported (see refs 2-4 and
references therein). In the experiments a pulse laser at 590
nm was used to excite the porphyrin which then leads to a
cascade of transitions between the three components. The
charge-separated state was found to have a lifetime of
hundreds of nanoseconds. This charge-separated state has a
large dipole moment of 153 D.2 The large dipole moment
and long lifetime can be exploited to build a molecular solar-
cell.
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It is known that photoinduced charge transfer (CT) as seen
in photosynthesis is a complex nonradiative process where
the transfer of energy depends on many different physical
characteristics of the system. Developing a first-principles
method that is both fast and relatively accurate presents a
significant challenge as there are many different effects that
must be included. Effects that must be included to get a full
quantitative understanding of photoinduced charge transfer
include vibrational effects, electronic transitions, energy
transport, and polarization effects. In this work we discuss
some computatationally efficient density-functional strategies
that can be used and refined to allow for some predictive
understanding in this area. We combine various methods to
obtain a reliable description of the transitions involving
absorption of light. Here we present a simple density-
functional theory (DFT) based approach for the study of
excited charge-separated states, the solvent polarization and
stabilization of the charge separated states, and finally any
possible radiative transitions. From a combination of density-
functional-determined properties a kinetic Monte-Carlo
method is used to determine charge-transfer rates. We show
that the radiative transitions leading to charge separation are
rare events but can be accelerated through a bias caused by
an external electric field or due to the presence of counte-
rions. This study is done for radiation density of solar
radiation and forms a sequel to our earlier study of the
electronic ground-state properties of this molecular triad.5

Simple Charge Transfer Systems

One of the goals of this paper is to perform simulations on
large molecules for which charge-transfer energies and rates
are the relevant figures of merit. It is highly desireable to
find fast methods for calculating such excitation energies.
Davidson and Nitzsche6 performed delta-SCF calculations
on excited-state within Hartree-Fock early on. They identi-
fied at least one case where errors could be made if
orthogonality between the ground and excited-state singlets
were not maintained. From the standpoint of excited-state
calculations within density-functional-based approximations,
Perdew and Levy discussed conditions for which extrema
of the density-functional energy could be used for excited
states in a seminal paper.7 It is interesting to note that in
introducing their ideas they include a quotation from an even
earlier piece of literature that is worthwhile reflecting on here:
“One of the most important and controVersial questions in
density-functional theory concerns the extent to which excited
states can be studied by these methods”.8 While the statement
on the controversy is probably as true today as it was in
1984-1985, the need for considering many ways to address
this problem is probably more urgent since we are at least a

quarter of a century closer to the time when replacements
and/or more efficient uses of petroleum resources will be
required. The ability to calculate excited states will be key
to availing this generation of new scientists with tools for
computationally improving many technologies that are
needed for addressing relatively short-term societal needs.
While the scientific debate and iterative improvement of the
most ideal way for computing excited states should continue,
progress toward deploying a multifaceted array of compu-
tational methods for addressing excited states during the next
quarter of the century could prove to be truly convenient
with respect to more effectively developing technologies that
address current issues.

As such we introduce an efficient albeit imperfect means
for the calculation of charge-transfer energies in a forthcom-
ing section. The method could be used with almost any type
of functional or mean-field quantum-mechanical theory and
could be improved upon. For practical reasons it is most
attractive to determine the effectiveness of such a method
on the standard density-functional methods. In particular we
note that we have not relied on either self-interaction
corrections9-11 or exact exchange to stabilize the process.
Instead, we include the strong constraint of orthogonalization
to the many-electron ground-state reference state. Before
discussing this in reference to the light-harvesting triad, we
perform some calculations on very simple charge-transfer
systems.

Charge Transfer within Ground-State DFT. In this
section, we carefully discuss the charge-transfer energy that
relates to removal of an electron from one neutral alkali atom
and subsequent attachment of this electron to a different albeit
identical alkali atom that is at a large distance from the
original atom. The purpose of this discussion is to show that
this charge-transfer excitation energy depends entirely on
ground-state properties of the alkali neutral and charged
states. From the arguments presented here we conclude that
even within the strictest possible formulation of density-
functional theory, the lowest charge-transfer excitation energy
in these systems is a ground-state property and is rigorously
amenable to calculation within the strictest possible density-
functional framework.

We start by considering the case of an isolated alkali atom
with either a net positive or net negative charge. These
systems are spin unpolarized, and therefore their ground-
state energies and densities are rigorously attainable within
the original and strictest version of density-functional theory.
If we now turn on a static electric or magnetic field, the
energy of the charged alkali atom changes due to two effects.
To first order, there is direct interaction between the net
charge of the alkali atom and the electric field. The system
has no net moment so there is not a first-order interaction
between a charged alkali and an applied magnetic field. In
addition there are small second-order effects related to the
field-induced polarization terms. The conclusion of this
discussion is that the ground-state energy of a positively (UI)
or negatively (UA) charged alkali atom is rigorously attainable
from density-functional theory. From the definition of
ionization energies and electron affinities, the energy of the
charged ground states relative to the neutral ground states

Figure 1. The triad molecule containing a carotenoid-
porphyrin-buckyball.
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are given by UI ) Uo + I and UA ) Uo - A with Uo being
the energy of the neutral ground state. In many systems
(including alkali atoms) I and A are both positive quantities
according to the common sign conventions that we also use
in this paper.

We now discuss the ground state of the neutral alkali atom.
While the practice of using spin-polarized energy functionals
is exceedingly well accepted and common in many applica-
tions, the original version of density-functional theory was
only applicable to nondegenerate ground states. Early argu-
ments to extending density-functional theory to spin-polar-
ized ground states noted that an infinitesimal magnetic field
would split the energy of a doublet state yielding a nonde-
generate ground state. For the present case of interest (one
unpaired electron outside of a closed shell), this simply means
that we can in principle calculate the ground-state energy
Uo(B) as a function of applied field and extract the ground-
state energy at zero field and the spin susceptibility. From
this discussion it follows immediately that for two infinitely
separated alkali atoms, the charge-transfer energy is a ground-
state property given by C ) I-A. Further, for two well-
separated alkali atoms the charge-transfer energy is given
by I-A-1/R with R being the separation between the two
atoms. The 1/R stabilization is simply due to the classical
coulomb interaction of two charged particles and also
immediately falls out by considering the difference of the
coulomb energy of two neutral atoms compared to two
oppositely charged atoms.

This energy is correct to O(R-4) for the case of two alkalis.
The lowest correction term arises from the polarization-
induced stabilization of each ion that occurs due to the
electric field of the other counterion. This energy depends
linearly upon the sum of the polarizabilities of the counte-
rions. As in the case of the coulomb interaction, monopole-
induced-dipole stabilization as well as other electrostatic
interactions between the separated ion are extractable from
ground-state density-functional calculations. In Table 1, the
charge-transfer energies for pairs of alkali atoms are pre-
sented and compared to experiment using the PBE-GGA.12

As discussed below, the agreement with experiment is good.
Charge-Transfer Energies between Two Well-Separa-

ted Alkalis. In Table 1, we present electron affinites
calculated within the PBE-GGA for H, Li, Na, K, Rb, and
Cs. Very extensive basis sets were used for these calculations.
We started with the basis sets developed by Porezag and
Pederson13 for ground-state density-functional calculations.
The NRLMOL code was used for the calculations.14-17 This

work optimizes each Gaussian exponent in the problem by
variationally minimizing the atomic energy with respect to
variation of each nonlinear exponent and the linear expansion
coefficients. As discussed in that paper the shortest range
Gaussian function must scale as Z10/3 to ensure that the energy
of the 1s-core electrons are all converged to the same
absolute error. Since the anions are expected to be more
diffuse than the neutral atoms, we have appended additional
long-range single-Gaussian functions to the basis as well and
have also used some r2 gaussians to represent the s-functions.
For lithium we have used a total of 11 Gaussian exponents
that range between 3200 and 0.005 bohr-2. In addition to
11 s- functions generated from these maximum and minimum
values we have also included the r2 s-type gaussians that
fall in the range of 1.28 to 0.02827 bohr-2. For Rb, which
has a much larger Z, we have used a total of 23 bare
gaussians ranging between 84105050 and 0.005 bohr-2. The
basis for the functions contained all 23 of the single Gaussian
and also included 17 r2 functions with decay parameters
ranging between 9612 and 0.0211 bohr-2. The p-type orbitals
utilized 20 functions ranging between 81517 and 0.005
bohr-2. The 17 d-type functions with the same decay
constants as the r2 s-type functions were used. The calcula-
tions in Table 1 are well converged with respect to basis
set. Examination of the tables reveals that from calculations
on the isolated species, the charge-transfer energies of these
systems can be calculated with very high accuracy as
compared to experiment.18

If one attempts to self-consistently determine the energy
of the well separated cation and anion using a standard
ground-state density-functional the system quickly finds the
real ground state consisting of two neutral atoms. Part of
the problem is that the standard DFT iterative method
reorders occupation numbers to account for Fermi-level
misalignments. This sort of a problem is related but slightly
different than the problem that occurs when two well
separated systems with different electronegativities are
computationally treated as a single system. In such cases,
fractional charges are known to occur on the atoms.19-21

The misalignment present for the cation-anion pair is in
fact physical in this case as it correctly identifies the fact
that the electronic configuration of the charge separated state
is not the ground state. A computational method that allows
for minimization of the functional within the constraint of
orthogonality to the ground state does not have this short-
coming. In the forthcoming sections where we wish to apply
this procedure to excitations with well-separated but not
infinitely separated electron-hole pairs, we introduce a
constrained variational method to perform the calculations.

It has long been recognized that the commonly used
density-functionals are not self-interaction free.9-11 As
touched upon elsewhere in this paper and a multitude of other
papers (see ref 22 and references therein), one of the
manifestations of functionals devoid of self-interaction
corrections are unbound anions. By unbound, one generally
means that the orbital eigenvalue lies above zero. However
highly charged anionic systems are experimentally known
to exist for long periods of time. At the macroscale, such
systems are referred to as capacitors, but nanoscale analogs

Table 1. Calculated Ionization Energies (Ip) and Electron
Affinities (A) of Hydrogen-Like Atomsa

affinity ionization charge transfer

atom DFT EXP DFT EXP DFT EXP

H 0.76 0.75 13.6 13.6 12.84 12.85
Li 0.51 0.61 5.59 5.39 5.08 4.78
Na 0.55 0.55 5.36 5.13 4.81 4.58
K 0.51 0.50 4.45 4.34 3.93 3.84
Rb 0.51 0.49 4.22 4.17 3.71 3.62
Cs 0.48 0.47 3.83 3.89 3.35 3.42

a Included in the table are results from large-basis sets
PBE-GGA calculations and experiment.18 All energies are in eV.
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such as molecular dianions are known to exist. Compton et
al. have provided convincing arguments as to why a dianion
can be long-lived even if the dianion is unstable relative to
the anion. See refs 23 and 24 and references therein. To the
extent that such systems are experimentally known to be
unstable the best-possible quantum-mechanical theory, which
would be self-interaction free, should provide positive
eigenvalues and unbound states. There should be a sensible
way of describing such systems within a quantum-mechanical
framework. In this regard, the shortcoming of unbound
anionic systems within standard DFT functionals is only one
example of a larger class of problems, some of which are
experimentally observable, that should have a sensible solu-
tion. Convergence in such systems, if this word can be used,
would most likely be obtained through the use of either
implicit or explicit constraints. By implicit constraints we
refer to the use of localized basis functions or possibly
imposition of a vanishing boundary condition. By explicit
constraints we refer to methods that would be similar in scope
to those suggested by Watson25 and Boyer26 for stabilizing
anions and dianions or more recently by Van Voorhis for
stabilizing charge-transfer states.27-29 In each of these cases,
a methodology has been developed for including external
potentials that force a charge state or charge rearrangement
that would be otherwise unstable. The tacit assumption in
all of these cases is that the resulting structure is representa-
tive of physical systems that could be prepared through the
application of external electric fields. Imposition of con-
straints has proven to be valuable for a variety of practical
applications.

A Constrained Excited-State Method

In this section we discuss an attempt for developing a
practical means for calculating excited states using the
standard approximations to the density-functional theory.
Prior to the development of density-functional theory, a
transition-state approach due to Slater which used the XR-
method as an approximation to Hartree-Fock was investi-
gated and used with some success for describing localized
excitations in atoms and defects. From the standpoint of using
density-functional-based approximations, Perdew and Levy
discussed conditions for which extrema of the density-
functional theory could be used for excited states.7 Further
they review efforts aimed at extending DFT to the lowest-
energy state of each symmetry and the efforts due to
Theophilou30 which asserts that the M lowest-energy states
are a functional of the average density of these states
provided that the M lowest-energy states are constrained to
be orthogonal to one another. In regard to such attempts they
note that not all excited-state densities are expected to be
v-representable.

In the method proposed below, a variational formalism
for excited states is developed; however, the variations are
performed in a way that do not require v-representable
excited-state densities. In developing this method we intro-
duce a constraint of orthogonality between the many-electron
Slater determinants that are constructed from the ground-
and excited-state of interest. Imposition of such a constraint
would appear naturally if one thinks in terms of many-

electron wave functions. This constraint leads to a set of
single-particle orbitals that do not move in a local Hamil-
tonian and therefore do not guarantee that the resulting
excited-state density is v-representable.

To motivate this method, we assume that a set of
orthonormal single-particle orbitals have been determined
from a mean-field method such as Hartree-Fock or density-
functional theory. Starting with the expression for the total
energy and the set of single-particle orbitals that minimize
the energy we then wish to build a set of approximate many-
electron excited-state Slater determinants that are efficiently
optimized from the standpoint of a variational principle. The
variational principle that seems most reasonable is to require
that the energy of an approximate excited state is minimized
relative to all possible variations that maintain orthogonality
of the excited state to the ground-state wave function. Once
such a set of wave functions are identified, it is possible to
imagine using the ground and low-lying excited configura-
tions as a basis for constructing a more exact set of ground-
and excited-state orbitals through a configuration-interaction
procedure. Further it is assumed that the energies of the
resulting set of Slater determinants can be reasonably well
approximated from the energy functional that has been used
to construct the ground-state energy. In this work, we limit
our applications to standard GGA energy functionals.
However, the formalism described here can be used within
any of the functionals developed by Perdew and collabora-
tors. The computational formalism described here is moti-
vated with the idea that the precise functional that would
lead to the best excited states could be developed in concert
with the use of this variational procedure. In order to prevent
the procedure from leading to a set of orbitals that have
collapsed into the ground-state manifold, we introduce the
constraint that the many-electron excited-state Slater deter-
minants must be orthogonal to the many-electron ground-
state Slater determinant that is composed of the ground-state
orbitals. Before continuing we emphasize that if we construct
two many-electron Slater determinants (Φ) and (Ψ) from
two different sets of orthonormal wave functions (φ1,φ2...φN)
and (ψ1,ψ2, ...,ψN), the overlap of the two many-electron
wave functions (Φ|Ψ) vanishes as long if (φi|ψj) ) 0 for
some value of i and all values of j. Alternatively the overlap
of the two many-electron wave functions vanishes if (ψi|φj)
) 0 for some value of i and all values of j.

We begin by constructing a single Slater determinant from
the single particle self-consistent lowest N Kohn-Sham
orbitals φ to describe the ground-state wave function as

where N is the number of particles. Here, “A” represents the
antisymmetrizing operator which simply makes an N-electron
Slater determinent out of the N single-particle orbitals. The
wave functions for single excitations can be constructed from
N - 1 of the original occupied orbitals φi (with i * h) and
an unoccupied orbital which we refer to as φp

where subscripts h and p refer to the hole and particle states.
It is important to emphasize the occupied φ-orbitals are only

Ψ({Rbn}) ) A(φ1φ2 · · ·φN) (1)

Φ ) A(φ1φ2 · · ·φh-1, φp, φh+1 · · ·φN) (2)
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defined up to an arbitrary unitary transformation so the most
optimal hole state is only constrained to lie in the space
spanned by the occupied Kohn-Sham orbitals. The ground-
state density Fg is determined by the Kohn-Sham orbitals
with occupancy f as Fg ) i

Nfi|φi|2. The nonself-consistent
density is then given by Fex ) Fg - Fh + Fp where Fh ) |φh|2

and Fp ) |φp|2. The self-consistent ground-state Hamiltonian
is

Generally, one can approximate the excited-state Hamil-
tonian in terms of

However, it is generally not possible to self-consistently
determine Hex if one attempts to iterate using standard
iterative procedures. Doing so will often lead to the collapse
of the second set of orbitals onto the first set. It is clear that
such a collapse violates the original orthogonality constraint
between the excited-state and ground-state determinants.

To make further progress we first consider a parameter
dependent perturbative Hamiltonian of the form

where R is only a tuning parameter. The φh and φp are the
active orbitals which start out orthogonal to one another and
to all the passive ground-state Kohn-Sham orbitals. If we
vary the passive excited-state orbitals in the space that is
orthogonal to φh and φp, we are guaranteed to produce a total
energy that is lower than that of the rigid excitation. Further
the SD composed of these new passive orbitals and the
particle orbital would still be orthogonal to the ground-state
SD. To determine the improved excited-state passive orbitals
we perturbatively update these orbitals using the following
expression

and

In the above h e N and k e N. Further, instead of holding
the active particle orbital rigid, which would indeed be a
somewhat unphysical constraint on the orbitals, it is possible
to refine the method further by relaxing the particle orbital
in the space of the unoccupied orbitals using exactly the same
purturbative approach

This approach is intuitively more palatable since it is
unreasonable to expect the particle orbital to be an eigen-
function of the ground-state Hamiltonian. The resulting set
of orbitals depart from orthonormality at second-order. To
produce a set of R-dependent orthonormal orbitals we first

renormalize the relaxed hole orbital (giving us φh′′ ). We then
Schmidt orthogonalize all passive relaxed orbitals φk′ (k *
h) to the relaxed hole-electron φh′′ . Finally the passive
occupied states and active particle states are orthonormalized
using Löwdin’s method of symmetric orthonormalization.31

By following this prescription we are now furnished with a
set of R-dependent orthonormal orbitals that can be used to
construct an R-dependent Slater determinant that is orthogo-
nal to the ground-state Slater determinant. The excited states
can then be expressed as

The orthogonality between the ground-state Slater determi-
nant and the individual excited-state determinant follows
since 〈φi′′ |φh′′〉 ) 0 for i * h. The orthogonality to the ground
state is achieved because it is possible to find a unitary
transformation (actually there are an infinite number of such
unitary transformations) on the original orbital set (φi) which
creates a new set of orthonormal orbitals which span the
same space as the Kohn-Sham ground-state orbitals and lead
to the same density and energy. These orbitals can be written
as (ψ1,ψ2, ...,ψh-1,φh′′ ,ψh+1, ...,ψN) with φh′′ identically equal
to the relaxed hole electron.

The density is then calculated from the occupied passive
and active orbitals as

From this density the coulomb energy and exchange cor-
relation energies may be calculated, and the orbitals can also
be used to calculate the kinetic energy and the interaction
of the density with an external potential. The same procedure
is repeated with different values of R. From a set of R and
corresponding total energies, the R for lowest energy is
determined. The best-excited-state Slater determinant can
then be determined by minimizing the energy as a function
of R. Once the best R is determined, this provides us with a
new way of estimating an excited-state single-electron
Hamiltonian Hex which gives a new ∆H. Given the improved
∆H we can return to eq 4 above and further improve the
estimation of the single-particle orbitals. The process can
be iterated until self-consistency is established.

In this method the excited-state density is varied by
varying the parameter R. In practice, three different R are
chosen, and the Rlowest is varied using the Newton-Raphson
method. The same procedure can again be repeated to refine
the Rlowest parameter and thereby the energy. This method is
inexpensive, since the diagonalization is not required and
the Rlowest can be extracted relatively inexpensively. The only
computationally intensive part is the calculation of coulomb
energy for the new density F′. However, the procedure needs
to be repeated for each set of the particle-hole excited states
in question. Also the orthogonality between two excited states
is not achieved exactly at present. However, this is a problem
that can be solved as well using projection methods and/or

Hg ) H(Fg) (3)

Hex ) H(Fex)

∆H ) R(Hex - Hg) (4)

φh
′ ) φh + R∑

j<N

〈φj|∆H|φh〉 |φj〉
εj - εh

(5)

φk
′ ) φk + R∑

j>N

〈φj|∆H|φk〉 |φj〉
εj - εk

k * h (6)

|φp
′ 〉 ) |φp〉 + R∑

j>N

〈φj|H ′ |φp〉
εj - εp

|φj〉 (7)

Φex ) A(φ′′1φ′′2...φ′′h-1φ′′h+1...φ′′N;φ′′p) (8)

F′ ) ∑
j

|φ′′j*.h|2 + |φ′′p |2
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explicit orthonormalization methods similar to the ones
discussed above.

Computational Details

The calculations reported here were carried out with the
NRLMOL code.14-17 The calculations were performed at
the all-electron level with generalized gradient approximation
for exchange-correlation potential. The code uses a large
Gaussian basis with polarization functions. The basis set for
each atom uses the same set of primitive Gaussians thereby
reducing computation. The coefficients of the contracted
Gaussians are optimized for each atom.13 The grid for
calculation is variational in that the error in integrals is
minimized with respect to the number of points.15 Moreover,
the coulomb potential is calculated analytically. For the triad
calculations the electronic structures were calculated using
5 s-type, 4 p-type, and 2 d-type basis functions for carbon,
nitrogen, and oxygen atoms. These were contracted from 12
primitive Gaussians for carbon and 13 primitives for oxygen
and nitrogen atoms. For hydrogen 4 s-type and 3 p-type
functions contracted from a set of 6 primitives were used.
The calculations are done at the all-electron level and use
generalized gradient approximation for exchange-correlation
functionals.12

Results and Discussion

We have performed calculations for different systems from
small atoms to large molecules. The purpose of this calcula-
tion is to examine the cases where the ∆SCF method will
be more suitable and where the present method will have an
edge. As the simplest case, we have calculated the excitation
energies of the first and second row atoms H - Ar. Since
our treatment is based on the perturbation method, the small
atoms are expected to show the worst agreement with
experiment. One way of improving the results for small
atoms will be to include higher order terms in the expansion
of the wave functions. Another point worth noting in closed
shell inert atoms is the necessity for including the long-range
Gaussians in the basis. In the inert atoms such as He, the
excited electronic state will be spread over a much larger
space than the tightly bound ground state which requires
long-range Gaussians.

Applications to Atoms and Molecules. The results of our
calculations on atoms along with the experimental values
are tabulated in Table 2. The experimental values are taken
from the NIST Atomic Structure Database. The values show
that the perturbative treatment adopted in the present method
does not perform very well for closed shell atomic systems.
However, such a deficiency is expected due to the relatively
large perturbation for the atoms.

We have performed calculations on several small atoms
and molecules to gauge the applicability of the method. The
HOMO-LUMO excitation energies for the singlet and triplet
states are shown in Table 3 and are compared with other
available values from the literature.32-37 All these calcula-
tions are spin unrestricted. The basis set effect is large in
small molecules also. The basis set used here is large, but
improvements can be made. The results are not perfect but

show reasonable accuracy. For small atoms and molecules,
the relaxations of the passive orbitals due to a charge
rearrangement is expected to be larger than relaxations due
to less localized excitations in large molecules. In almost
all cases, the constrained orthogonality method overestimates
experiment. This could indicate that further iterations over
the perturbative approach could improve the agreement
between theory and experiment. Another point is that these
are vertical excitations and therefore exclude the effects due
to the rearrangements of ions.

Ground-State Properties of the Triad

We have optimized two different geometries of the triad
molecule using density-functional theory at the all-electron
generalized gradient level, details of which can be found in
ref 5. A linear structure nearly 50 Å long was found to be
lower in energy, and therefore all subsequent calculations
are done on this structure. The ground state of the molecule
has a permanent dipole moment of 9 Debye, and its highest

Table 2. Calculated Excited State Energies (eV) For
Atoms Using the Constrained Orthogonality Method
(COM), ∆SCF, and Experimenta

atom state COM ∆SCF expt

H 2s 11.95 9.90 10.20
H 2p 10.78 9.91 10.20
H 3s 12.44 11.69 12.09
He 1s2s(1S) 22.32 20.32 19.82
He 1s2s(3S) 22.17 19.48 20.62
He 1s2p(1P) 23.80 20.82 20.96
He 1s2p(3P) 23.67 20.38 21.22
Li 1s22p 1.89 1.89 1.85
Be 1s22s2p(3P) 3.44 1.63 2.72
Ne [He]2s22p53s(1S) 17.91 16.74 16.62
Na [Ne]3p 1.91 1.91 2.10
Mg [Ne]3s3p 3.71 2.73 2.71
Ar 3s23p5(2P(1/2)4s 11.67 11.64 11.72
Ar 3s23p5(2P(1/2)4p 12.87 12.59 13.28
Kr 4s24p55s 10.23 10.17 9.91

a See ref 11.

Table 3. Calculated Excited State Energies (eV) for Small
Molecules Using the Constrained Orthogonality Method
(COM), ∆SCF, and Experiment32-36a

system state COM ∆SCF expt

N2 singlet 8.49 8.48 9.31
triplet 7.50 7.49 8.04

H2O singlet 7.50 7.45 7.40
triplet 7.13 7.07 7.20

CO singlet 7.20 7.51 8.51
triplet 5.67 5.91 6.32

CO2 singlet 9.04 8.70
triplet 8.02 8.13

O3 singlet 1.94 1.88 1.95
triplet 1.43 1.36 1.45

LiH triplet 3.15 3.07 3.25
singlet 3.85 3.44 3.61

HF singlet 11.41 11.65
triplet 11.38 8.61

HCN singlet 8.91 9.11
triplet 7.93 6.61

O2 singlet 1.65 1.64

a The theoretically calculated results are vertical excitations. For
LiH, in the experimental column, we have used configuration
interaction results of ref 37.
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occupied and lowest unoccupied orbitals (HOMO and
LUMO) are found on the carotenoid and the C60, respectively.
The gap between these two levels with zero spatial overlap
is 0.17 eV from eigenvalue difference. The details of the
ground-state electronic structure can be found in ref 5.

Excited States

While the calculation of the ground state is straightforward,
obtaining an accurate description of the excited states from
DFT especially for the charge-separated particle-hole states
is difficult. To understand the transitions between various
components we first need to calculate the energies of the
relevant excited states. For that purpose, we consider a set
of the highest ten occupied orbitals and ten lowest unoc-
cupied orbitals over an energy range of 3 eV. These sets of
orbitals in consideration are listed in Table 4.

As listed in the table these orbitals are mostly on one
component of the triad. We label the states by HN/PM where
H(P) refers to the location of the hole (particle) which can
be carotenoid (C), porphyrin, and buckyball (B). N,M refer
to the state number given in Table 4. From these two sets of
occupied and unoccupied orbitals we have derived a set of
100 singly excited particle-hole states. A number of these
excited states have large overlap between the particle and
the hole orbitals when both the orbitals are on the same
component. We have carried out the method described above
to estimate the excited-state energies. This computationally
inexpensive approach incorporates the charge polarization
effects and the long-range 1/R interaction between the particle
and hole, referred to as “electron-transfer self-interaction”,38

without requiring the added expense of a complete self-
interaction correction9-11 treatment of the passive orbitals.
In the separated fragment limit, the method correctly
reproduces the CT excitation (I - A - 1/R) which depends
only on ground-state quantities. For the porphyrin-porphyrin
excitations, our corrected excitation energy (2.05 eV) differs
only slightly from the eigenvalue difference (1.87 eV) and
is in excellent agreement with experiment (1.98)39 and
TDLDA calculations (2.16 eV).40 However, for the large
dipole excitation where TDLDA has been shown to fail,38

the eigenvalue difference of 0.17 eV dramatically underes-
timates our corrected excitation energy of 2.46 eV in good
agreement with an estimate based on the carotenoid ioniza-
tion energy, the fullerene affinity, and the fullerene-caro-

tenoid separation (I - A - 1/R ) 2.5 eV). Our TDDFT
calculation on the excitation of the triad also does not yield
the charge-transfer energies.41

Polarization

The dipole moments of some of the singly excited particle-
hole states are quite large (∼171 Debye). The electric field
of such large dipoles will in turn induce dipoles on the nearby
molecules or on the solvents around them. The electric field
due to these induced dipoles in turn stabilizes the dipole state.
The solvent polarization is important since the photoinduced
charge separation is observed when experiments have been
performed on molecules solvated in 2-methyltetrahydrofuran
or benzonitrile but not in toluene. Similar dipole-induced
polarization will also appear in a molecular crystal as well.
We demonstrate below that in the molecular crystal the dipole
induced polarization will lower the energies of the excited
states, and this stabilization depends on the square of the
dipole moments and also on the molecular volume or
concentration. This is demonstrated by considering the energy
of a classical array of polarizable particles on a lattice. To
estimate the orientation and lattice packing of an assembly
of the triad, we have optimized the total energy of a dimer
assuming a classical van-der-Waals (vdW) pair potential
between the atoms on different molecules. The intramolecular
bonds are held rigid during this procedure. The triad
dimerizes such that the total dipole moment vanishes. Further
DFT calculations on the dimer suggest that the repulsive
interaction is significantly underestimated by the available
vdW parameters, and the dimer cell volume thus derived is
likely to be a lower bound. However, the stabilization energy
can still be estimated in terms of the dimers at lattice
positions. The stabilization energy is ∆Ei ) Ex

i - Eg, where
Ex

i is the energy of the lattice with the central molecule in
the ith excited-state and Eg is the energy of the lattice with
the ground-state dimer at each site. The energy of the dipole
lattice is calculated variationally using a method developed
for determining the dielectric constant of a fullerene crystal
from the molecular polarizability and unit cell volumes (see
ref 42). This energy is written as

In the above equation pbµ and pbµ
i are the total and induced

dipole at lattice position rbµ and rbµν ) rbµ - rbν. The
polarizability tensor R is calculated from self-consistent total
energy and dipole moment of the molecule as a function of
various applied electric field along the three Cartesian
directions.42-44 The eigenvalues of the polarizability tensor
are 878, 220, and 199 Å3 where the first eigenvector is along
the molecular axis. The stabilization energy also depends
on the molecular volume and orientation. The stabilization
energies of a few excited states with large dipole moments
are shown in Figure 2. The stabilization of the large dipole
states depend critically on the molecular volume as can be

Table 4. Eigenvalues (eV) and Molecular Parentage of the
Ten Highest Occupied and Ten Lowest Unoccupied
Orbitals (-εFermi ) 4.30 eV)

hole particle

index -ε parentage index -ε parentage

1 5.77 C60 11 4.13 C60

2 5.74 C60 12 4.08 C60

3 5.70 C60 13 3.83 C60

4 5.68 porphyrin 14 3.30 carotene
5 5.60 C60 15 3.13 porphyrin
6 5.56 carotene 16 3.09 porphyrin
7 5.25 porphyrin 17 3.03 C60

8 5.00 porphyrin 18 3.00 C60

9 4.97 carotene 19 2.88 C60

10 4.30 carotene 20 2.71 C60

E ) 1
2 ∑

µ*ν [ pbµ·pbν

|rµν|3
-

3(pbµ· rbµν)(pbν· rbµν)

|rµν|5 ] +

∑
µ,ν

1
2

pbµ
i Rµν

-1·pbν
i δµν (9)
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seen from the figure. We find that it is necessary to increase
the vdW dimer volume to avoid polarization induced
divergences for the large dipole states (C10/B11-13 in our
notation).

The polarization induced divergence is also present in the
Clausius-Mossotti expression which relates the dielectric
constant to the ratio of the polarizability to unit-cell volume.
This divergence is not entirely unphysical as it is to some
degree reflecting the fact that a crystal composed of highly
polarizable particles will indeed breakdown when either a
large enough internal or external electric field is applied. In
a real system, this dielectric breakdown could be avoided
by moving the charges.

The polarization lowers the energies of the large dipole
states significantly bringing the theoretical energy levels
closer to the experimental ones. In Figure 2 the stabilization
of some of the particle-hole states are plotted as a function
of inverse volume. Due to their small dipole moments, the
ground and the porphyrin-porphyrin excited-state energies
are nearly unaffected by cell volumes. Reduction of the
transverse cell dimensions lowers the large-dipole excited
states energies steeply leading to polarization induced
breakdown. The stabilization energy decreases monotonically
with increasing volume.

Dipole Transition Probabilities for KMC

In the experiment the triggering radiation was sent as a pulsed
laser at 590 nm which corresponds to the porphyrin absorp-
tion frequency.1 It was observed by Liddel et al. that the
final charge separated state was reached following a series
of transitions involving the P*-C60

1 , P*-C60
- , and the C+-P-

C60- states.
When bathed in a radiation density similar to that of

sunlight, a large number of dipole allowed transitions
between various electronic states as well as vibronic states
can occur. In this paper, we concentrate only on the electronic
dipole-allowed transitions and examine whether a sequence
of dipole allowed transition can lead to one of the charge-

separated states. To find the possible sequence of radiative
transitions leading to the charge-separated state, we have
calculated Einstein’s A and B coefficients. At this stage, the
transition probabilities are calculated at temperature T ) 0
and only to first-order. These probabilities are then used in
a kinetic Monte-Carlo simulation to obtain the risetime of
the charge-separated states.

The transition probability γ is determined as γij ) AijΘ
(εi - εj) + Biju(ωij) and γii ) -∑jγij. Note that the spectral
power distribution contains an Arrhenius-like factor of
e-∆/kT with ∆ being the relevant excitation energy. Bij is
obtained from the dipolar transition matrix elements between
the particle-hole states constructed from the unperturbed
ground-state Kohn-Sham orbitals and Aij ) (2pω3/π2c3)Bij.

46

The incident solar radiation with energy density u(ω)dω can
be simulated as blackbody radiation at temperature T ) 6000
K attenuated by a factor (Rs

2/D2) where Rs and D are the
radii of the sun and average earth trajectory. The lifetime of
the ith state is τ ) γii

-1. At each τ/20, the transition is
determined to happen if a random number is less than 1/20.
At this point a second random number is used to determine
to which state the molecule evolves. This is weighted to
ensure correct branching ratios stipulated by 1/γij. First, the
simulations were carried out for a million steps, and the total
time spent in each state is noted. The Einstein A and B
coefficients depend on dipole matrix elements between
particle and hole states.

In this work we have used the ground-state Kohn-Sham
orbitals for estimating the dipole matrix elements. However,
a more accurate and more involved approach to calculating
these dipole matrix elements would be to calculate the many-
electron dipole matrix element between the two Slater
determinants. This would account for both direct and indirect
relaxation effects. By direct, we refer to the fact that the
particle state relaxes slightly due to the change in density.
For the dipole matrix elements that connect the HOMO and
LUMO porphyrin levels we find that this effect is quite small
and that the matrix elements change by less than 1.5%. We
also point out that there are other small corrections to this
approximation at the many-electron level since the passive
orbitals have also been allowed to relax. Inclusion of such
effects would certainly be an improvement.

The Monte-Carlo simulations are first carried out for the
molecule in gas phase. The large dipole states C10/B11-13
lie above the ground state by 2.46, 2.51, and 2.80 eV. The
porphyrin excited state lies about 2 eV above the ground
state. The dipole moments of these states are nearly 171
Debye. In the isolated molecule, the incident solar radiation
fails to excite the molecule to any of the large dipole states.
This situation is similar to when the experiments are done
using toluene as solvent. Experimentally, CT is not observed
when the triad is solvated in toluene (dipole moment µ )
0.375 D) but is observed in 2-MTHF (µ ) 1.47 D) and
benzonitrile (µ ) 4.18 D).1 Carbonera et al. have estimated
from electrochemical measurements that the energy of the
charge separated state in 2-MTHF is 1.24 eV above the
ground state.45 This is clearly an effect of the solvent
polarization. The polar solvent encourages CT by lowering
the energy of the CT states. If the polarization is ignored,

Figure 2. Change in energy levels of four excited states due
to polarization effects. The labels C, P, and B refer to
carotenoid, porphyrin, and buckyball. A/B refers to hole and
particle localizations. The stabilization energy as a function
of molecular volume is shown for lattice model.
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then the large dipole states C10/B11-13 lie above the
porphyrin excited states. Also the energy ordering of these
states does not match that of the experiment without
accounting for polarization of the solvents. The molecule
spends 99.8% of its time in the ground state. As we have
mentioned earlier the energy shift due to polarization depends
on the molecular volume. We have estimated the time taken
to reach any of the charge-transfer states from carotenoid
HOMO to any one of the C60 T1u LUMO states taking into
account the energy shifts due to polarization. These are the
lowest energy states with a hole in the carotenoid and a
particle on the buckyball. For these calculations, a molecular
volume of 100 × 35 × 35 {a.u.}3 was chosen. This volume
reduces the energies of the lowest HOMO-LUMO transition
to 1.17 eV, close to the experimental values. The Monte-
Carlo simulations were allowed to go up to 10 million steps
in a given run, and the runs were repeated for 100,000 times
to obtain good averages. We find that on average about 62 s
are taken to reach the target CT states. This is slower
compared to charge transfer in biological systems and not
fast enough for a useful solar cell.

Another situation where the energies of the CT states will
be lowered is when there are counterions present in the
sorrounding. One way of testing this hypothesis is to apply
a bias field to lower the energies of the dipole states. Applied
negative bias along the direction of the largest dipole moment
state will lower the energy of that state. We have carried
out this test by applying a uniform field in the range of
-0.005 au to +0.005 au along the dipoles of the excited
states of interest. The average time taken to reach any of
the carotenoid-buckyball CT states is shown in Table 5. The
initial state in this calculation was taken as the ground state.
The average risetime is calculated from 105 such samplings.
We note that in the actual sample the field will not be a
uniform one. The local electric field in the sample can be
caused by a large dipole moment of a neighboring excited
molecule (possibly) or due to the presence of counterions
and/or polar solvents in the environment (definitely). A
similar counterion activated charge transfer is shown to occur
in a DNA molecule in ref 47. A field of the order of 0.001
au can be easily created by counterions. To illustrate the
possibility of large counterion induced electric fields we have
placed a dissociated Na+-Cl- pair about 7 Å from C60 and
the carotenoid center. The leads to an average electric field
on the order of 0.0013 au. SCF calculations demonstrate the
emergence of a large dipole. This effect is nearly independent
of counterion type.

Carbonera et al. have proposed a CT reaction pathway
which includes the porphyrin excited-state and also buckyball
singlet to triplet excitations leading finally to the C+-P-C60

-

state.45 We have ignored the spin polarization and spin-orbit
interaction to limit the computational expenses. Our calcula-
tions show that in the absence of solvent polarization, the
C+-P-C60

- state lies about 0.3-0.4 eV above the porphyrin
excited states. Thus incident radiation is necessary to excite
the triad to the large dipole state. The difference in the
energies arises because the experiments are carried out on
molecules solvated in a polar media. The polarization effects
would also occur in a lattice of molecules although it is
different from the solvent effect. These polarization effects
can change excited-state ordering and will be treated self-
consistently in future. In the future, we will also include the
nonradiative vibration assisted transitions in our calculations.

In summary, we present and discuss a method to calculate
the excited-state energies from density-functional theory and
apply it to calculate the energies of the charge-transfer states.
We have carried out a DFT-based calculation on the radiative
transitions on a large molecular triad. We present a scheme
to calculate the charge-transfer energies from DFT which is
computationally efficient. The method has been applied it
to a large molecular triad. The charge separated states have
large dipole moments. We show that medium polarization
would lower the energies of the charge-separated states with
large dipole moments. We examine the charge-transfer
process using a kinetic Monte Carlo approach where we use
Einstein’s A and B coefficients. We show that the transition
to the charge-separated states is catalyzed by several factors
such as applied electric field and most notably the presence
of counterions in the material. The one-second charging time
obtained here suggests an absorption power of ∼30-100
mWatt/m2 per monolayer of the molecule. In the presence
of counterions in the solvent, the transition to a charge
separated state can trigger a domino-like effect.
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Abstract: In potential-functional theory the total electronic energy is expressed as a functional
of the external potential. We discuss how approximations, T s

app[v], of the noninteracting kinetic
energy functional can be exploited for interacting systems. Two possibilities are discussed: (a)
Via an adiabatic connection formula, T s

app[v0] can be used directly with the external potential v0

of the interacting system, and (b) by employing the variational principle of density functional
theory, the kinetic energy functional T s

app[vs] is evaluated at the Kohn-Sham potential vs, which,
in turn, is determined by an iterative procedure. Advantages and disadvantages of the two
approaches are discussed.

The Kohn-Sham equations of density functional theory
(DFT) are the method of choice to calculate medium to large
electronic systems of up to 10000-100000 electrons. The
basic strategy of the Kohn-Sham method is to map the
interacting electronic system of interest onto a system of
noninteracting particles such that the latter has the same
ground-state density as the interacting system. Solving the
Kohn-Sham single-particle Schrödinger equations rather
than the interacting many-body Schrödinger equation makes
the problem numerically tractable. However, for larger
systems, even the solution of the Kohn-Sham equations
becomes too costly. Here, orbital-free DFT,1 that is, the
representation of the total energy as an explicit functional
of the density, is the ultimate method. Alternatively, one may
express the total energy as a functional of the external
potential.2 This alternative approach, called potential-
functional theory (PFT), will be addressed in this com-
munication. The approach has its roots in semiclassical
Wigner-Kirkwood-type expansions.3-5 The design of more
refined semiclassical approximations was outlined in the
1960s by Kohn and Sham6 in one-dimensional systems.
Three-dimensional generalizations have also been formu-
lated.7 On the basis of the work of Kohn and Sham, highly

accurate potential functionals in 1D have recently been
developed by Elliot et al.8

We start from the many-body Hamiltonian

where T̂ is the kinetic energy and Ŵee is the Coulomb
repulsion of the electrons. Restricting ourselves to potentials
V(r) having a nondegenerate ground state, the Schrödinger
equation

implies that the ground-state wave function Ψ[V] is uniquely
determined by the potential V(r). Consequently, the ground-
state density

is a unique functional of the potential, and so is the total
energy

with
* To whom correspondence should be addressed. E-mail: hardy@

physik.fu-berlin.de.
⊥ Permanent address: Centro Atómico Bariloche and Instituto

Balseiro, 8400, S. C. de Bariloche, Rı́o Negro, Argentina.

Ĥ[V] ) ∑
i)1

N

V(ri) + T̂ + Ŵee (1)

Ĥ[V]Ψ[V] ) E[V]Ψ[V] (2)

F[V](r) ) ∫ d3r2...∫ d3rN|Ψ[V](r, r2, ..., rN)|2 (3)

E[V] ) T[V] + W[V] + ∫ F[V](r)·V(r)d3r (4)

T[V] ) 〈Ψ[V]|T̂|Ψ[V]〉 (5)

J. Chem. Theory Comput. 2009, 5, 844–849844

10.1021/ct9000334 CCC: $40.75  2009 American Chemical Society
Published on Web 03/23/2009



The basic idea of PFT is to find good approximations for
T[V] and W[V] so that the total energy of a given system,
characterized by the external potential V0(r), is obtained
directly by plugging V0(r) in the functional (eq 4).

Most potential functionals known to date have been
obtained by semiclassical considerations.3-6 Highly accurate
approximations have recently been constructed8 for the
kinetic energy and the density of noninteracting particles in
one spatial dimension (1D). To use these approximations as
part of the total energy functional of interacting systems, it
appears desirable to have a coupling constant integration
formula (or adiabatic connection) in PFT. We will deduce
such a formula in the following. Consider the λ-dependent
Hamiltonian

where λ with 0 e λ e 1 allows us to switch off the
electron-electron interaction. The V(r) is an external po-
tential which, in contrast to the adiabatic connection of DFT,
is independent of λ. For the time being, we restrict ourselves
to systems where for each λ, the ground-state solution Ψλ[V]
of the Schrödinger equation

is nondegenerate. Evidently, the fully interacting (λ ) 1)
total energy can then be written as

Let us first evaluate the total energy functional of noninter-
acting particles Eλ)0[V]. The (nondegenerate) ground-state
wave function of noninteracting particles is the determinant

with orbitals satisfying the single-particle Schrödinger equa-
tion (atomic units are used)

The total energy of the noninteracting system then reads

with

The integrand of the coupling constant integral can be
evaluated using the Hellmann-Feynman theorem

Defining

the total energy at full interaction can then be written as

This is the adiabatic connection formula of PFT. Ts[V] and
Fs[V] are exactly the functionals for which highly accurate
approximations have recently become available.8 Wλ[V], on
the one hand, can be approximated using standard many-
body perturbation theory, that is, Feynman diagrams with

representing the unperturbed Hamiltonian. This leads to
approximations of the form

where Gs[V](x,x′) is the Green’s function associated with the
noninteracting Hamiltonian (eq 18). The functional Gs[V],
on the other hand, can be approximated very accurately, at
least in 1D, using the semiclassical approach described in
refs 6 and 8. Hence, the adiabatic connection formula of PFT
can readily be used to evaluate the total energy of interacting
systems without ever solving any interacting or noninter-
acting Schrödinger equation. Despite this attractive feature,
the approach described so far has some drawbacks:

(i) In practice, evaluation of the functional Wλ[Gs[V]] in
eq 19 may be rather costly.

(ii) In the context of DFT, the noninteracting kinetic energy
functional, T s

D[Fint], evaluated at the interacting ground-state
density Fint, represents a major contribution to the total
energy. In PFT, an analogous role is played by the functional
Ts[V] (cf. eqs 13 and 17). The latter, however, has to be
evaluated at the external potential, V0(r), that is, the bare
nuclear Coulomb potential in the case of atoms, molecules,
and solids. The density of noninteracting particles moving
in the bare nuclear Coulomb potential is much more localized
than the interacting density, Fint(r), and consequently, Ts[V0]
will be much larger than T s

D[Fint]. It is expected that, in terms
of numbers, T s

D[Fint] is much closer to the fully interacting
kinetic energy, TD[Fint], than Ts[V0] is to T[V0]. The difference,
T [V0] - Ts[V0], is of course accounted for by the coupling
constant integral ∫0

1 Wλ[V]dλ. However, since T [V0] - Ts[V0]
is expected to be larger than TD[Fint] - T s

D[Fint], one has to
work harder to construct sufficiently accurate approximations
for the potential functional Wλ[V] than for the corresponding
density functional Wλ

D[F].
(iii) The approach described so far is not variational. In

fact, a variational principle has been formulated as well.2,9

Employing the Rayleigh-Ritz principle, one simply mini-
mizes the total energy functional

W[V] ) 〈Ψ[V]|Ŵee|Ψ[V]〉 (6)

Hλ[V] ) T̂ + λŴee + ∑
i)1

N

V(ri) (7)

Hλ[V]Ψλ[V] ) Eλ[V]Ψλ[V] (8)

Eλ)1[V] ) Eλ)0[V] + ∫0

1 dEλ[V]

dλ
dλ (9)

Ψs[V](r1...rN) ) 1

√N!
det{�j[V](rk)} (10)

(- ∇ 2

2
+ V(r))�j[V](r) ) εj[V]�j[V](r) (11)

Eλ)0[V] ) Ts[V] + ∫ Fs[V](r)V(r)d3r (12)

Ts[V] ) ∑
j)1

N ∫ d3r�*j [V](r)(- ∇ 2

2 )�j[V](r) (13)

Fs[V](r) ) ∑
j)1

N

|�j[V](r)|2 (14)

dEλ[V]

dλ
) 〈Ψλ[V]|∂Ĥλ[V]

∂λ |Ψλ[V]〉
) 〈Ψλ[V]|Ŵee|Ψλ[V]〉

(15)

Wλ[V] :) 〈Ψλ[V]|Ŵee|Ψλ[V]〉 (16)

Eλ)1[V] ) Ts[V] + ∫ Fs[V](r)V(r)d3r + ∫0

1
Wλ[V]dλ

(17)

Ĥs[V] ) T̂ + ∑
i)1

N

V(ri) (18)

Wλ[V] ) Wλ[Gs[V]] (19)
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with respect to V(r). Hence, for the exact functional, the
following Euler-Lagrange equation is satisfied

In practice, however, this variational principle is not very
useful. For an approximate functional, EV0

app[V], the stationary
point will generally be achieved at an approximate external
potential, V0

app(r), which is the solution of the Euler equation

The variationally optimized external potential V0
app(r),

however, is not really of interest because, after all, the true
external potential, V0(r), is known. Furthermore, at the true
external potential, EV0

app[V0] will usually not be stationary,
which may cause difficulties, for example, in the calculation
of vibrational spectra. However, the variational eq 22 may
be useful as a quality check for the approximate functional
EV0

app[V]. One may either compare V0(r) and V0
app(r) directly,

or one may assess the difference EV0
app[V0] - EV0

app[V0
app].

The three difficulties mentioned above can all be overcome
by another flavor of PFT, namely, by representing the total
energy as a functional of the Kohn-Sham potential, Vs(r),
rather than the external potential. This idea was recently
proposed by Yang and co-workers.2 The crucial point is to
exploit the standard variational principle of DFT

where the total energy functional is given by

where V0(r) is the fixed external potential of the system at
hand and EH[F] and Exc[F] are the usual Hartree and
exchange-correlation energy functionals of DFT. Assuming
noninteracting V representability, the ground-state density
F(r) of an interacting system with external potential V(r) can
be represented as the ground-state density of noninteracting
particles moving in the Kohn-Sham potential Vs(r). The
uniqueness of Vs(r) follows from the Hohenberg-Kohn
theorem, while the existence of Vs(r) (i.e., V representability)
has been demonstrated10 in the ensemble sense for systems
on an arbitrarily fine but discrete real-space grid. Hence, we
can represent the densities F(r) as Fs[Vs](r) with the functional
Fs[V] given by eq 14. Consequently, substituting Fs[Vs](r) for
F(r) in eq 24, the variational principle (eq 23) of DFT can
be recast in the form

with

where Vs,0 is the Kohn-Sham potential corresponding to the
interacting ground-state density F0(r) of the external potential
V0(r)

It is easy to see that

with the potential functional Ts[V] defined in eq 13. Hence,
the total energy functional (eq 26) can be written as

As opposed to the external potential functional (eq 17),
eq 29 has to be evaluated at the Kohn-Sham potential Vs,0(r).
The latter is determined from the variational principle (eq
25); using the exact definition (eq 13) of the functional Ts[V],
one immediately verifies that

and the variational principle (eq 25) yields the desired
potential as

where, as usual

In ref 2, the above variational approach was employed
with the exact functional Ts[Vs] to put the optimized effective
potential method on a firm variational basis. Here, we exploit
the variational approach with approximate functionals Ts

app[Vs]
and Fs

app[Vs]. We propose to determine the desired potential
Vs,0(r) by the following iteration

Clearly, eqs 34 and 35 would represent the usual Kohn-Sham
self-consistency loop if the new density Fn+1 had to be
evaluated from the exact functional (eq 14), that is, by solving
the one-body Schrödinger equation with the potential Vs

(n)(r).
By using the approximate (but explicit) functional Fs

app[Vs
(n)]

EV0
[V] ) 〈Ψ[V]|T̂ + Ŵee + ∑

i)1

N

V0(ri)|Ψ[V]〉

) T [V] + W [V] + ∫ F[V](r)V0(r)d3r

(20)

δEV0
[V]

δV(r) |
V0

) 0 (21)

δEV0

app[V]

δV(r) |
V

0
app

) 0 (22)

δEV0
[F]

δF(r) |
F0

) 0 (23)

EV0
[F] ) Ts

D[F] + ∫ F(r)V0(r)d3r + EH[F] + Exc[F]

(24)

δEV0
[Vs]

δVs(r) |
Vs,0

) 0 (25)

EV0
[Vs]: ) Ts

D[Fs[Vs]] + ∫ Fs[Vs](r)V0(r)d3r +

EH[Fs[Vs]] + Exc[Fs[Vs]] (26)

Vs,0(r) ) Vs[F0](r) (27)

Ts
D[Fs[Vs]] ) Ts[Vs] (28)

EV0
[Vs] ) Ts[Vs] + ∫ Fs[Vs](r)V0(r)d3r + EH[Fs[Vs]] +

Exc[Fs[Vs]] (29)

δTs[Vs]

δVs(r)
) -∫ d3r′Vs(r′)

δFs[Vs](r′)
δVs(r)

(30)

Vs,0(r) ) V0(r) + VH[Fs[Vs,0]] + Vxc[Fs[Vs,0]] (31)

VH[F](r) :)
δEH[F]

δF(r)
) ∫ F(r′)

|r - r′ | d
3r′ (32)

Vxc[F](r) :)
δExc[F]

δF(r)
(33)

Fn+1(r) ) Fs
app[Vs

(n)](r) (34)

Vs
(n+1)(r) ) V0(r) + VH[Fn+1](r) + Vxc[F

n+1](r) (35)
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in eq 34, the costly step of solving the Schrödinger equation
is avoided. The charm of this procedure is that it only relies
on the well-established time-proven approximations for the
density functional Vxc[F] and on the noninteracting potential
functionals Fs

app[V] and Ts
app[V], both of which are accurately

known within the recent semiclassical approximations.8

It should be noted that the above derivation of the
variational eq 31 relies on the exact noninteracting func-
tionals Ts[Vs] and Fs[Vs]. For approximate functionals, Ts

app[Vs]
and Fs

app[Vs], the Euler eq 25 takes the form

This general variational equation is, of course, much more
complicated than eq 31. As a consequence, in each iterative
step, the following nonlinear equation

has to be solved to obtain the new potential Vs
n+1. This raises

the question whether, for certain approximations, the varia-
tional eq 36 still takes the simple form of eq 31. This is
expected, if Ts

app[Vs] and Fs
app[Vs] come from the same

semiclassical expansion for the one-body Green’s function,
Gapp[Vs](r). In the Appendix, we show explicitly that this is
the case for two specific varieties of semiclassical Green’s
functions.

Employing the iteration (eqs 34 and 35) and plugging the
resulting Vs,0(r) in the functional of eq 29, the total energy
of the interacting system is evaluated without ever solving
the interacting or noninteracting Schrödinger equation. This
procedure is clearly a very efficient way to exploit PFT for
interacting particles. We expect the approach to become the
method of choice for very large interacting many-body
systems.
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Appendix

Semiclassical Approximations in PFT. An alternative
expression for the noninteracting kinetic energy functional
as given by eq 13 is the following

with

The integration in eq A2 is in the complex ε-plane, along
any closed contour C which encloses the occupied energy
levels.6 Gs[V](x,ε) is the diagonal of the noninteracting one-
body Green function, which is the solution of

Throughout this appendix, we use the shorthand notation
Gs[V](x,ε) ≡ Gs[V](x,x,ε). The density can be expressed as a
contour integral as well

Taking the functional derivative of eq A1 with respect to
V(y), we obtain the identity

Equation A5 is valid both for the exact, Gs[V](x,ε), and for
approximate, Gs

app[V](x,ε), Green’s functions. In the former
case, comparison with the result of eq 30 reveals that for
consistency between both expressions, the first and second
terms on the right-hand side of eq A5 should cancel each
other. In the following, we will show that this cancellation
also holds for approximate Green’s functions, provided that
Gs

app[V](x,ε) satisfies two conditions. The first one

requires that Gs
app[V](x,ε) depends on V and ε exclusively

through its functional dependence on k(V(x),ε) ) [2(ε -
V(x))]1/2 ≡ k(x). This condition is obviously satisfied for all
semiclassical approximations.

The second condition

requires symmetry under exchange of coordinates. This
condition is obviously satisfied for local Thomas-Fermi-von-
Weizsäcker-type approximations

It is straightforward to verify that the symmetry condition
(eq A7) also holds for the exact Green’s function. To prove

δTs
app[Vs]

δVs(r) |
Vs,0

) -∫ d3r′(V0(r′) + VH[Fs
app[Vs,0]](r′) +

Vxc[Fs
app[Vs,0]](r′))

δFs
app[Vs](r′)
δVs(r) |

Vs,0
(36)

δTs
app[Vs]

δVs(r) |
Vs

(n+1)
) -∫ d3r′(V0(r′) + VH[F(n+1)](r′) +

Vxc[F
(n+1)](r′))

δFs
app[Vs](r′)
δVs(r) |

Vs
(n+1)

(37)

Ts[V] ) ∫ d3xts[V](x) (A1)

ts[V](x) ) 1
2πi IC dε[ε - V(x)]Gs[V](x, ε) (A2)

[-1
2

∇ 2 + V(x) - ε]Gs(x, x′, ε) ) δ(x - x′) (A3)

Fs[V](x) ) 1
2πi IC dεGs[V](x, ε) (A4)

δTs[V]

δV(y)
) -Fs[V](y) + ∫ d3xIC

ε dε
2πi

δGs[V](x, ε)

δV(y)
-

∫ d3xV(x)
δFs[V](x)

δV(y)
(A5)

Gs
app[V](x, ε) ) Gs

app[k(V(x), ε)] (A6)

δGs
app[V](x, ε)

δV(y)
)

δGs
app[V](y, ε)

δV(x)
(A7)

Gs
app[k(x)] ) g(k(x), ∇ k(x), ∇ 2k(x), ...) (A8)
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the cancellation of the first two terms on the right-hand side
of eq A5 under these conditions, we first realize that

In the first equality above, we have used the condition in eq
A7. In the second equality, eq A6 was used. In the third
line, we have used δk(z)/δV(x) )-δ(x - z)/k(z). Proceeding
from eq A9 and noting now that 1/k(z) ) ∂k(z)/∂ε, we obtain

Inserting this into the second term on the right-hand side of
eq A5, we obtain

The second equality above follows from partial integration
in the complex plane, with the “boundary” contribution of
the contour integral being zero. Through this cancellation,
eq A5 reduces to eq 30, with Ts[V] replaced by Ts

app[V] and
Fs[V](x) by Fs

app[V](x). In turn, this implies that the general
variational eq 36 reduces to

provided that the approximate functionals Ts
app[V] and Fs

app[V]
come from approximate Green’s functions Gs

app[V] satisfying
the conditions in eqs A7 and A8.

As a further example for the validity of the variational
result of eq 31 for approximate functionals of Ts[V] and Fs[V],
we now discuss the recently developed semiclassical ap-
proximations of Elliot et al.8 Adding and subtracting NEF,
eqs A1 and A2 can be written in the more convenient form

where, in order to make contact with the work of Elliot et
al., we restrict ourselves to the 1D case. Taking again the
functional derivative with respect to δV(y), we obtain

The particular model studied by Elliot et al.8 consists of a
one-dimensional box with potential V(x), 0 e x e L, and EF

> V(x) everywhere. Hard-wall boundary conditions were
imposed at x ) 0 and L. The corresponding Gs

semi[V](x,ε) is
given by

with f(Θ) ) {cos Θ(L) - cos[2Θ(x) - Θ(L)]}/sin Θ(L),
k(x) ) [2(ε - V(x))]1/2, and Θ(x) ) ∫0

x dx′k(x′). One easily
verifies that Gs

semi[V](0,ε) ) Gs
semi[V](L,ε) ) 0. Inserting

Gs
semi[V](x,ε) from eq A15 into the 1D version of eq A4, the

semiclassical expression for the density is8

where R(x) ) πτF(x)/TF, τF(x) ) ∫0
x dx′/kF(x′), and TF ) τF(L);

also, kF(x) ) [2(EF - V(x))]1/2. The first term on the right-
hand side of eq A16 is the 1D analogue of the 3D
Thomas-Fermi density; the second term, which is of the
same order in p as the first, ensures satisfaction of the hard-
wall boundary condition Fs

semi[V](0) ) Fs
semi[V](L) ) 0.

Considering that, from eq A15

and inserting the first term on the right-hand side of eq A17
in the last term on the right-hand side of eq A14, we obtain

Following the same steps as those in ref 8, the last
contribution in eq A18 is found to be another half of
Fs

semi[V](x). As the contribution from the second term in the
right-hand side of eq A17 to eq A14 can be proved to be
null, we obtain again the desired result

which translates also in this case to a variational equation
of the type of eq A12, with the label “app” replaced by
“semi”.
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Abstract: Recent Hyper Rayleigh Scattering measurements report a significant increase of
second-order hyperpolarizability upon introduction of positive charges at the pyridyl end groups
in trispyridyl octopolar chromophores. We calculated the geometries, linear response, and first-
order hyperpolarizabilities of a series of six trispyridyl molecules both in the neutral and protonated
forms. The calculations were performed with ab initio and semiempirical methods. The results
are in good agreement with the experimental values and a correlation between the first
hyperpolarizability and two structural properties, the N-C bond elongation and the C-C bond
length alternation, 〈∆r〉 was established. To test these effects we computed the hyperpolarizability
for several constrained geometries and confirmed the importance of planarity on the hyperpo-
larizability values. However the 〈∆r〉 values alone seem to have little influence both on the
hyperpolarizability and on the gap values. Replacing the triple C≡C bond by a double C)C
bond in the conjugation bridge has no significant effect due to the strong hyperpolarizability
dependence on the pyridyl-benzene dihedral angle.

1. Introduction

Photonics is playing an ever-increasing role in today’s
technology by efficiently replacing electronics in electro-
optic devices. In this context, researchers have been focusing
on the search for materials with large optical nonlinearities
and for their application in the fields of high speed data
transmission, processing and storage.1-6 Organic molecules
are promising candidates since their properties can be
custom-tailored, and their dielectric constants and refractive
indixes are much smaller than those of the most common
inorganic molecules. A second-order Non-Linear Optical
(NLO) chromophore typically contains a conjugated π-elec-
tron system, asymmetrically substituted by electron donor
and acceptor groups, through which a charge transfer occurs.
In such systems the dominant first hyperpolarizability
component is along the direction of charge transfer.

In the early 1990s it was shown that, for a given
conjugation bridge, there is an optimal combination of donor

and acceptor strengths or ground-state polarization to maxi-
mize the dipole moment-first hyperpolarizability product, µ�.
Beyond a certain point, increased donor-acceptor strength
or further ground-state polarization attenuates µ�.7,8 Bond
length alternation, i.e., the average difference in length
between single and double bonds in the molecule, was also
shown to be a relevant parameter in the optimization of the
hyperpolarizability of molecules.9-11 Recently, the possibility
of modulating NLO properties at the molecular level using
molecules which respond to electrochemical or chemical
inputs such as protons or metal cations has been explored.12-15

In chemosensitive systems of the donor-π-acceptor type,
interaction with a cationic species alters the electron density
of the terminal sites, resulting in a modulation of the internal
charge transfer character of the dye molecule which leads
to a change in the optical response.16-18 There have been
several reports of modulation of the two-photon absorption
and fluorescence properties of linear chromophores upon
cation binding or protonation/deprotonation at the terminal
donor substituent.19-22

The antiparallel alignment of the dipole moments of one-
dimensional chromophores leads the majority of π-conju-
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gated organic molecules to crystallize in centrosymmetric
space groups, having therefore null second-order bulk
susceptibility. One of the solutions to achieve dipole
minimization without losing the molecular hyperpolarizability
is the use of noncentrosymmetric octopolar systems, since
theirsymmetryensurescancelationof thedipolemoment.1,23-34

Despite the growing impact that octopolar systems are having
in the field of nonlinear optics, few studies report on organic
NLO octopoles with switchable second-order nonlinearity.35-38

Theoretical calculations on octopolar tris-acetylene benzenes
suggest that the second-order hyperpolarizability � could
increase more than 1 order of magnitude upon introduction
of positive charges at the pyridyl end groups.39-42 Assel-
berghs et al. report a strong increase of the charge transfer
character and, consequently, of second-order hyperpolariz-
ability upon introduction of positive charges at the terminal
pyridyl groups of octopolar 1,3,5-trisalkynylbenzenes.37 In
a work by Oliva et al. the origin of the first-order NLO
response was attributed, for the neutral systems, to octopolar
contributions, while the enhanced response after protonation
was attributed to the involvement of dipolar excited states
yielding dipolar contributions to the NLO outcome.38

In the present work we explore the relation between
protonation, bond length alternation, and enhanced hyper-
polarizability in octopolar chromophores. We performed
calculations for several prototypical chromophores of neutral
and protonated 1,3,5-trispyridylbenzene in order to determine
the parameters that influence its hyperpolarizability. We
studied the influence of the conjugation bridge by considering
both a C-C≡C-C bridge connecting the pyridyl rings to
the central benzene ring (we refer to these systems as the T
series) and a C-CdC-C bridge (the D series, see Figure
1). We also compared the hyperpolarizability values for
normal (T1 and D1 series) and methylated compounds (T2
and D2 series, Figure 1), both in the neutral and the
protonated forms. Finally, we assessed the effect of the
location of the pyridyl nitrogen (series T1a, T1b, etc. ---
see Figure 2).

2. Computational Methods

We obtained the ground-state geometries, hyperpolarizability,
and optical properties of all these molecules within Density
Functional Theory (DFT) and Time Dependent Density
Functional Theory (TDDFT), using B3LYP for exchange and
correlation.43,44 The molecular geometries were optimized
with the GAMESS-US code45 using a 6-311G+(d,p)46 basis
set of wave functions. The static second-order hyperpolar-
izabilities were computed using the finite fields method
within the same level of theory. The OCTOPUS code47,48

was used to compute the ground-state Electron Localization
Function (ELF)49 and the optical absorption spectra. The
ground-state geometries and hyperpolarizability values were
again computed using MOPAC2007,50 with the PM351-54

and PM655 Hamiltonians.

3. Results and Discussion

The discussion of our results will be done in four steps: i)
comparison of our results for the second-order nonlinear
polarizabilities with experimental (Hyper Rayleigh Scattering
-- HRS) and other computational results; ii) comparison
between the T and D series; iii) discussion of the computed
molecular geometries and ELF, and their relation with the
hyperpolarizability values; and iv) report on DFT energy
levels and Kohn-Sham orbitals and linear response.

3.1. Nonlinear Optical Properties. In Table 1, we
compare the static �xxx0 component computed for the T series
within DFT/B3LYPPM3, and PM6 semiempirical methods

Figure 1. One example of each series: D1, D2, T1, and T2.
The rest of the series corresponds to different locations of
the nitrogen atom in the pyridyl rings, as shown in Figure 2.

Figure 2. Nitrogen location in the pyridyl rings of the
molecules under study.

Table 1. Calculated and Experimental First
Hyperpolarizability Component �xxx0 for the T Series

B3LYP (au) PM3 (au) PM6 (au) Exp.37 (au) CPHF38 (au)

Neutral
1a 804 796 753
1b 229 240 525
1c 722 938 653 926 417
2a 2446 1722 3262 1389 1346
2b 1763 916 1920
2c 2860 2002 3537 1041 1198

3+
1a 6415 6430 7405
1b 3548 4701 4049
1c 3438 4561 2350 2199 1844
2a 9815 9848 8837 16895 5248
2b 6231 6146 4070
2c 5944 3302 2718 4397 3044
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to HRS experimental values, obtained within the three level
model.37 In order to make the comparison easier, the same
results are plotted in Figure 3.

The present results, obtained both ab initio and semiem-
pirically, reproduce very well the trend of the experimental
results.37 The increase of the computed hyperpolarizability
with protonation and the larger hyperpolarizability of mol-
ecules belonging to the 2 series (compared with series 1)
reflect the stronger donor character of the CH3 group and
are in agreement with experiment. Within each of the neutral
series the calculated hyperpolarizability values are very
similar, whereas in the case of the protonated series the
differences are larger: molecules a present hyperpolarizability
values significantly larger than molecules b and c. This is
particularly noticeable for the T2 series computed within the
PM3 and PM6 methods. This is again in good agreement
with the HRS results. The DFT/B3LYP results are also in
good agreement with Coupled Perturbed Hartree-Fock
(CPHF) results.38 The small differences can be attributed to
the use of different basis sets and computation methods.

In Figure 6 we show also the intrinsic hyperpolarizability,
�int, as defined by Zhou et al.56 This property gives a scale-
independent intrinsic value, useful as a metric that takes into
account the molecular size. In the case of the present series,
and since the molecules have the same size and number of
π electrons, its value depends only on the energy gap. �int

follows very closely the variation of the absolute � values.
The exceptions are the protonated T1c and T2c molecules,
which show a small increase of �int with respect to T1b and
T2b, contrary to what happens to the absolute �.

Although the calculated values reproduce well the experi-
mental trends, the absolute values show some discrepancies.
The molecule with the largest hyperpolarizability presents
also the largest deviation from the experimental results.
Although DFT methods are expected to overestimate hy-
perpolarizability, as in fact happens for the other molecules,
the measured value for T2a3+ is 1.8 times larger than the
computed �xxx0. The experimental value reported for this
particular molecule is 16895 ( 578 au. The DFT/B3LYP
values do not fall in this range. These differences may have
several origins: the basis set, the exchange and correlation
functional, and the neglect of solvent effects.

In order to test the basis set used in the ab initio
calculations we performed also some calculations with the
Z3POL basis set,57,58 a basis set specially tailored for the
calculation of electrical properties. The �xxx0 obtained with
Z3POL for the neutral and protonated T2a molecules are
2352 and 9584 au, whereas the 6-311G+(d,p) values are
2446 and 9815 au, respectively. The results are not signifi-
cantly different, showing that 6-311G+(d,p) is adequate for
the task at hand.

Among the DFT exchange and correlation functionals used
in the calculation of nonlinear optical properties, the hybrid
methods, like the B3LYP used in the present study, represent
a significant improvement on the pure DFT methods.59,60

Sałek et al. reports mean absolute errors of 9% for dynamic

Figure 3. Comparison between calculated and experimen-
tal37 hyperpolarizability component �xxx0 for the T series.

Figure 4. 〈�HR〉 in atomic units, computed within DFT/B3LYP,
PM3 and PM6 methods for the D series.

Figure 5. Comparison between the computed DFT/B3LYP
〈�HR〉 values for the T and D molecules. In the plot, the 1b,
1c, 2b, and 2c symbols include also, for the D series, the
values of 1bb, 1cc, 2bb, and 2cc.

Figure 6. Comparison of the absolute hyperpolarizability
values with the intrinsic hyperpolarizability.
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hyperpolarizabilities.59 However there are some problems
for systems with large charge transfer. In cases like para-
nitroaniline the hyperpolarizability calculations underestimate
the experimental values by 16% at low frequencies and by
30% to more than 40% at higher frequencies.61 This could
also explain why the molecules with larger hyperpolariz-
ability show also larger discrepancies to experimental results.

Solvent measurements indicate a large shift in the hyper-
polarizability values for charge transfer molecules62 in
solutions with large dielectric constants. Allin et al. reports
ratios as large as 6 between the hyperpolarizabilities calcu-
lated in vacuo and in a solvent (the average ratio is 3.7).63

Although solvent effects should be less important in octopolar
than in linear dipolar molecules,37 the neglect of these effects
adds to the previous innacuracies.

All these effects must be taken into account when
comparing the calculated values with the experimental ones.
Nevertheless, and since the most important trends are well
reproduced, the present results allow for a detailed analysis
and the drawing of interesting conclusions.

The DFT/B3LYP hyperpolarizability results obtained for
the D series are summarized in Table 2 and plotted in Figure
4. PM3 and PM6 semiempirical results are, in general, similar
and in reasonable agreement with the DFT results. There
are, however, some exceptions. The geometries obtained for
protonated molecules using the two semiempirical Hamil-
tonians and DFT/B3LYP show significant differences, and
this is reflected in the hyperpolarizability values. DFT
geometries and, therefore, hyperpolarizability values, are
closer to PM6 values, both predicting off-plane pyridyl rings.
The planar geometries obtained within the PM3 Hamiltonian
for the D1 molecules lead to significantly larger hyperpo-
larizability values. The effect of geometry in hyperpolariz-
ability is discussed in the next sections.

The hyperpolarizability values of the D series are of the
same order of magnitude and display a similar pattern of

modulation to those of the T molecules (Figure 5). This is
in agreement with the results reported Lee et al., in which
no significant hyperpolarizability enhancement is seen when
the double C-C bond is replaced by a triple bond in a series
of compounds.64 The protonated series presents larger
hyperpolarizability than the neutral forms, as in the T
molecules. However, the increase on hyperpolarizability seen
from the T1 to the T2 series, due to the presence of electron
rich CH3 groups which increase the donor-acceptor strength,
does not happen for the D series. D2 molecules yield
hyperpolarizability values similar to the D1 series and present
lower values than its T2 counterparts. The reason for this is
discussed below.

3.2. Energy Gaps. From now on we will focus on the
DFT/B3LYP results. Calculations show that, for the T series,
protonation decreases the HOMO-LUMO energy gap. There
is also a decrease on the energy gap from the T1 to the T2
series. Figure 7 shows that the hyperpolarizability values
follow very closely the trend of the energy gap, as predicted
by the three-level model for octopolar molecules.65 The D
series presents a more complex scenario. There is still a
decrease of the gap from the neutral to the protonated series.
However, for the neutral molecules, and contrarily to what
happens in the T series, the D2 energy gap is larger than
the D1 gap and so is its hyperpolarizability. For the charged
molecules the hyperpolarizability and the energy gap of the
D1 and D2 are similar but do not present a common trend.

Table 2. 〈�HR〉 in Atomic Units, Computed within DFT/
B3LYP, PM3, and PM6 Methods

D T

B3LYP PM3 PM6 B3LYP PM3 PM6

Neutral
1cc 898 1087 682 - - -
1bb 358 318 371 - - -
1a 880 660 377 567 662 626
1b 339 223 142 141 168 356
1c 847 918 526 449 622 504
2cc 1011 1210 925 - - -
2bb 523 477 421 - - -
2a 932 626 715 1521 1178 2150
2b 416 375 425 1142 692 1608
2c 938 1082 822 1780 1370 2252

3+
1cc 2393 3379 1293 - - -
1bb 2330 4345 1925 - - -
1a 4162 7499 3495 3998 5392 4750
1b 2510 4391 2197 2299 2902 2556
1c 2217 4345 1785 2139 2820 1692
2cc 1626 1933 1707 - - -
2bb 2447 2151 2319 - - -
2a 4384 3010 3488 6104 7326 7398
2b 2614 2320 2372 3942 4092 2974
2c 1453 2200 1906 3714 2164 2372

Figure 7. C-C bond length deviation (top) and energy gaps
(bottom) calculated within DFT/B3LYP for the T series and
compared with �xxx.
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3.3. Molecular Geometries. 3.3.1. T Series. The mo-
lecular DFT/B3LYP geometry optimization, performed within
the C3 point group symmetry for the T molecules, results
mainly in planar geometries. The only exception is the
molecule T2a in the neutral form, which has the pyridyl rings
tilted by 22°. This deviation does not seem to affect its
hyperpolarizability, since, in the neutral series, this is the
molecule that has the largest hyperpolarizability and HRS
values. Also, the bonds from the central ring to the three
pyridyl rings are not exactly linear, with calculations yielding
bond angles that can be as large as 8°. There are however
other differences in the molecular geometries which seem
to be more important from the point of view of nonlinear
optics. The most significant differences are a consequence
of protonation.

We computed the elongation of the C-N and C-C bonds,
〈RaV - Ropt〉 , (Ropt(N - C) ) 1.334 Å, Ropt(C - C) ) 1.388
Å),66 using the DFT/B3LYP optimized geometries. Proto-
nation leads to a significant elongation of the C-N bonds
in the pyridyl rings: the average value of this elongation for
the neutral molecules is 0.003 Å and increases to 0.020 Å
for the protonated molecules. This effect follows the large
increase in the hyperpolarizability values.

The mean deviation of the C-C bond lengths from their
average value, 〈∆r〉C-C, which was already identified as
relevant for dipolar molecules,9-11 is superimposed with the
C-N bond elongation. Figure 7 presents a plot of 〈∆r〉C-C

and 〈�HR〉 values. Since the molecules in each series differ
only on the N site in the pyridyl rings, only the C-C bonds
in the pyridyl rings and the bonds connecting the pyridyl
rings to the conjugation bridge were considered. In fact, the
bond length alternation in the central ring is almost negli-
gible, with a maximum of 〈∆r〉 ) 0.004 Å. Within each series
〈∆r〉C-C follows very closely the hyperpolarizability values,
with maxima for the protonated 1a and 2a molecules. It is
possible that a larger 〈∆r〉C-C or C-N elongation would
increase further the hyperpolarizability. The ideal value
determined by Marder67 for push-pull polyenes is 0.03 <
〈∆r〉 < 0.05 Å.

Protonation enhances the bond length alternation for
molecules T1a, T1b, T2a, and T2b and has the opposite
effect on molecules T1c and T2c. However, the N-C
elongation causes the hyperpolarizability of the protonated
molecules to be larger even for the latter molecules. This
indicates that the two structure related effects that influence
the hyperpolarizability values, C-N bond elongation due to
protonation and the variation of 〈∆r〉C-C with the N site,
happen mainly within the pyridyl rings.

3.3.2. D Series. In the case of the D series, the three
methods used to optimize the molecular geometries predict
different structures. In particular for the D1 series, PM3 and
PM6 methods predict respectively, on plane and off-plane
pyridyl rings, which leads also to different values of
hyperpolarizability as will be described below. DFT/B3LYP
geometries for the neutral D1 molecules are close to PM3
results. Although in the protonated case DFT/B3LYP ge-
ometries present also off-plane pyridyl rings, the deviations
from planarity are smaller than 30°, whereas PM6 geometries

show deviations close to 90°. The computed dihedral angles
are summarized in Table 3.

We will focus from now on only on the DFT/B3LYP
results. The D1 neutral molecules are mainly planar, with
pyridyl ring torsion angles below 3°. Upon protonation, the
distortion increases to values around 50°. D1 is an exception,
presenting an almost planar geometry. In the case of the D2
series, due to steric crowding, the CH3 group forces the
pyridyl rings to be almost perpendicular to the central
benzene ring, and protonation does not lead to significant
changes on the torsion angles.

As the hyperpolarizability values of the T molecules were
well correlated with structural parameters, we looked for
other structural parameters that could explain the differences
between the T and D series. T1 and T2 molecules are mainly
planar, whereas D1 molecules are planar and D2 molecules
have the pyridyl rings tilted with respect to the central
benzene ring plane. This means that the stronger CH3 electron
donor character of the D2 series, which was expected to
enhance its hyperpolarizability, is somehow canceled by the
rotation of the pyridyl rings due to the same CH3 groups.
The relation between the deviation from planarity and the
hyperpolarizability values can be seen in Figure 8. As the
dihedral angle deviates from 180°, the computed � values
decrease.

We compared again the hyperpolarizability values with
the 〈∆r〉 of the pyridyl rings. For the neutral molecules, 〈∆r〉
shows small variations, with values between 0.007 and 0.009
Å. In this case the modulation of hyperpolarizability follows
very closely the variations of the dihedral angle. In the
charged molecules, 〈∆r〉 ranges from 0.009 to 0.022 Å. The
three properties, dihedral angle, 〈∆r〉, and hyperpolarizability
follow the same trend, revealing the effect of the two
structural parameters in the calculated hyperpolarizability
values.

The calculated values suggest that, independently of the
bond order present in the conjugation bridge between the
donor and acceptor groups, hyperpolarizability is somehow
controlled by the planarity of the molecules, the donor and
acceptor strengths, and the bond length alternation. All the
T molecules are planar, and therefore the hyperpolarizability
values are determined by the donor and acceptor strengths
(series T1 vs series T2) and, within each series, by the C-C
bond length alternation. For the D series, the dependence
on the pyridyl dihedral angle can mask the increase of the
donor-acceptor strength.

Table 3. Pyridyl-Central Benzene Dihedral Anglea

neutral protonated

B3LYP PM3 PM6 B3LYP PM3 PM6

1a -179 180 -12 156 180 86
1b 171 180 82 131 180 83
1bb 170 180 81 133 180 96
1c 179 180 166 138 180 81
1cc 176 180 140 132 180 61
2a 110 96 41 111 -122 72
2b 98 71 115 100 126 102
2bb 92 75 33 90 -120 103
2c 117 125 137 91 -120 59
2cc 115 123 94 93 -77 44

a In degrees, computed within DFT/B3LYP, for the D series.
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3.4. Electron Localization Function. The origin of the
N-C bond elongation is clarified by the analysis of the
Electron Localization Function (ELF). Figure 9 shows
the ELF, calculated for the neutral and protonated T1a
molecule. In both cases there is a regular alternation between
the maxima (bonds) and minima (nuclear sites, except H)
of the ELF along the molecular plane. The C≡C triple bond
in the conjugation bridge is clearly seen as a characteristic
torus around the bond axis. The main difference appears in

the pyridyl rings. For the neutral molecule the N lone pair
is seen as a diffuse ELF gradient (Figure 9, left), whereas in
the protonated molecule ELF presents a higher and more
constant value around the H and N nuclei (Figure 9, right).
A very similar analysis can be made for all the other T series
molecules. The same happens for the D series. Again, the
main difference appears in the pyridyl rings. For the neutral
molecules the N lone pair is seen as a diffuse ELF gradient,
even more diffuse than in the T series, whereas in the
protonated molecules ELF presents a higher and more
constant value around the H and N nuclei.

One way of optimizing the first hyperpolarizability, that
has already proved to be successful, is the localization of
states obtained through a bump on the potential energy.68

This causes a modulation of conjugation, and the system
becomes closer to the three-level model system. A similar
effect can be seen in Figures 9 and 10, in which the
isosurface ELF)0.75, corresponding to a considerably high
electron localization, is plotted. In the neutral molecule, the
isosurface corresponding to the N lone pair does not reach
the N site (Figures 9 and 10, left). The charged molecule,
however, presents an isosurface that encompasses the H and
N nuclei (Figures 9 and 10, right). Therefore we can conclude
that protonation results in an increase of the electron
localization around N, attracting part of the electrons of the
N-C bond. As a consequence, the N-C bond order
decreases and the bond length increases, leading to a decrease
of the conjugation of the pyridyl ring and a modulation of
the conjugation of the system.

3.5. Wave Functions. Figure 11 shows the Kohn-Sham
HOMO and LUMO orbitals for the neutral and protonated
T1a molecule, computed with the Octopus code, as an
example of the general behavior. The highest occupied
energy levels are distributed by a set of two almost
degenerate orbitals and another set of three orbitals with
slightly lower energies. The neutral molecules show two
unoccupied orbitals above HOMO with very similar energies,
whereas the protonated molecules LUMO shows a set of
three unoccupied orbitals. LUMO orbitals, both in the neutral
and charged cases, extend over the whole molecule allowing
the charge to travel from the donor to the acceptor fragments,
a necessary condition for a large hyperpolarizability. Pro-
tonation seems to modify the HOMO orbitals. In the neutral
case, three of the five highest occupied orbitals do not extend

Figure 8. Torsion angles (top), C-C bond length deviation
(center), and energy gaps (bottom) calculated within DFT/
B3LYP for the D series.

Figure 9. ELF for the z)0 slab (top) and ELF)0.75 isosur-
face (bottom) for neutral (left) and protonated (right) T1a
molecule.

Figure 10. 0.75 ELF isosurface for neutral (left) and proto-
nated (right) D1a molecule.
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beyond the pyridyl rings, reducing the possibility of charge
transfer, whereas in the charged case the wave functions
extend over the whole molecule.

3.6. Linear Response. In Figure 12 we present the
absorption spectra computed for the T molecules, in the
neutral and charged forms (as, to our knowledge, no
experimental absorption spectra exist for the D molecules,
we will only discuss our results for the T series). The neutral
molecules show a first peak (set of peaks in the case of T1b)
between 300 and 350 nm and a less intense structure between
350 and 400 nm. For molecules T1a, T1c, T2a, and T2c
protonation causes a shift of the spectrum toward higher
wavelengths, consistent with the decrease in Egap. It also leads
to an increase of the peak separation and a decrease of the
difference in magnitude of the two major absorption peaks.
The molecules T1b and T2b show a slightly different
behavior. The shift due to protonation, contrary to the
decrease of Egap, is small and toward lower wavelengths,
indicating other transitions other than HOMO-LUMO.

For the T2 series there is a shoulder at the right-hand side
of the peak at higher wavelength which can be explained by
the energy distribution of the levels just below HOMO. For
the charged molecules, there is a shift of the same peak
toward higher wavelengths: from T1a to T2a, the peak at

425 nm is shifted to 450 nm; from T1b to T2b the peak at
370 goes to 400 nm. These results are in good agreement
with the experimental results which report, for the protonated
forms of T1c, T2a, and T2c, broader, red-shifted absorption
bands with high molar absorptivities, when compared to the
neutral forms.37,38 Our results show, however, peaks slightly
shifted toward higher wavelengths than the experimental
values, possibly due to solvent effects.

The two main peaks of the absorption spectra of the neutral
molecules can be attributed to transitions between the HOMO
states and the first and second sets of unoccupied states. The
eigenvalue differences between HOMO and LUMO states
range from 2.7 to 2.9 eV (459-427 nm) and between HOMO
and LUMO+1 states from 3.0 to 3.4 eV (413-365 nm). This
explains the splitting between the two main peaks of the
absorption spectra, although it does not give their exact
location. For the protonated molecules, the two main peaks
correspond to transitions from the two sets of highest energy
occupied states. The HOMO-LUMO eigenvalue differences
range from 2.5 to 2.8 eV (496-443 nm), and the HOMO-
1-LUMO gap ranges from 3.1 to 3.3 eV (376-400 nm), in
agreement with the red-shifted absorption spectra of the
protonated molecules.

4. Interplay between Geometric and
Electronic Properties

To date, the vast majority of effective chromophores,
concerning the electro-optic activity, are planar conjugated
π-electron systems with electron-donor and-acceptor moieties
at their ends. As mentioned above, these chromophores
exhibit a dominant intramolecular charge-transfer transition
from the ground-state to the first excited-state and produce
effective polarization along the π-conjugated axis. Recent
results69-72 suggest that molecules with twisted π-electron
systems bridging donor (D) and acceptor (A) substituents
exhibit large hyperpolarizabilities. The twist-induced reduc-
tion in D-π-A conjugation leads to aromatic stabilization and
formal charge-separated zwitterionic ground states, relatively
low-energy optical excitations, and large dipole moment
changes from the ground state to the first excited-state.

In order to study in more detail the interplay between the
molecular structures and the electronic properties we com-
puted the T series hyperpolarizability for several values of
the pyridyl rings torsion angle and of the 〈∆r〉 , without a
previous geometry relaxation. In Figure 13 we plot �xxx and
1/Egap

2 for different torsion angles for the neutral and
protonated T1a molecule. Contrarily to what happens to the
chromophores reported by Kang et al.69 the increase of the
torsion angle decreases significantly the hyperpolarizability:
�xxx is 4 to 5.5 times larger in the case of the planar
geometries than when the pyridyl rings are perpendicular to
the central ring. The same happens to 1/Egap

2 . However the
values change in a smaller range: for the neutral molecules
1/Egap

2 is 1.5 times larger for the planar geometry than for
the geometry with a 90° torsion angle, whereas for the
protonated molecule there is no significant variation.

We also varied the 〈∆r〉 values for the protonated form of
T1a by changing the length of the C-C bonds in the pyridyl
rings. In doing so, 〈∆r〉 ranges from the value of the

Figure 11. Kohn-Sham orbitals for neutral (top) and proto-
nated (bottom) 1a molecules. Symmetry related degenerate
orbitals are not shown.

Figure 12. Calculated absorption spectra for, from top to
bottom, T1a, T1b, T1c, T2a, T2b, and T2c. The solid (dashed)
lines correspond to the neutral (protonated) molecules.
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optimized geometry to less than half of that valuer. However,
there are no significant changes in the hyperpolarizability
values neither in the energy gaps.

5. Conclusions

Ab initio calculations correctly reproduce the large hyper-
polarizabilities of the charged octopolar molecules, including
the significant increase of first hyperpolarizability upon
protonation reported in previous studies. The HOMO-LUMO
energy gap decreases upon protonation, its inverse square
being related to the � values, in agreement with the three-
level model. Linear response TDDFT calculations are also
in good agreement with the experimental absorption spectra,
reproducing the bathochromic shift of the peaks upon
protonation, due to the gap reduction mentioned above. DFT/
B3LYP calculations allowed the identification of the levels
involved in the transitions.

Ab initio hyperpolarizability values of the protonated
octopolar D molecules follow closely the values calculated
for the corresponding T molecules, both in the neutral and
protonated cases. The calculated values suggest that, inde-
pendently of the bond order present in the conjugation bridge
between the donor and acceptor groups, hyperpolarizability
is mainly controlled by the planarity of the molecules, the
donor and acceptor strengths, and the bond length alternation.
All the T molecules are planar, and therefore the hyperpo-
larizability values are determined by the donor and acceptor
strengths and, to a lesser degree, by the C-C bond length

alternation. For the D series, the dependence on the pyridyl
torsion angle can mask the increase of the donor-acceptor
strength.

Changes in the molecules’ geometries were also analyzed,
and a correlation between the molecular structures and the
first hyperpolarizability, �, was suggested. Several parameters
affecting � were identified: i) the C-N bond elongation upon
protonation, which follows from the localization of the
electrons around H and N, as seen in the ELF plots, and
accompanies the increase of the � values; ii) the planarity
of the molecules; and iii) the C-C bond length alternation,
already identified as relevant for dipolar molecules. To test
these effects we computed the hyperpolarizability for several
constrained geometries, thus confirming the importance of
planarity on the hyperpolarizability values.
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Abstract: This paper gives a simple and pedagogical explanation, using density matrices of
two-level systems, how to calculate excitation energies with time-dependent density-functional
theory. The well-known single-pole approximation for excitation energies is derived here in an
alternative way and extended to time-dependent current-density-functional theory.

1. Introduction

Time-dependent density-functional theory (TDDFT)1 is a
universal approach to electronic dynamics and excitations.
Just like ground-state density-functional theory (DFT), where
the rigorous theorems by Hohenberg, Kohn, and Sham2,3

prove a one-to-one correspondence between ground-state
densities and potentials, there is a similar existence theorem
for TDDFT, due to Runge and Gross,4 which establishes the
time-dependent density as a fundamental variable.

Many of the concepts that were pioneered by John Perdew
for ground-state DFT have now begun to make an important
impact also in TDDFT: two prime examples are the self-
interaction correction5 and the discontinuity of the exchange-
correlation (XC) potential upon change of particle number.6

These concepts now find an important place in the discussion
of the dynamics of electronic systems.7-11 Therefore, it
seems not inappropriate that the following article, dedicated
to honor John Perdew’s scientific achievements, addresses
a topic in the area of TDDFT.

Many areas in science require an understanding of the
electronic excitations of atomic or molecular systems,
nanostructures, mesoscopic systems, or bulk materials.12-15

A wide variety of spectroscopic techniques is being used to
characterize the electronic structure and dynamics of these
systems by probing their excitation spectra. The performance
of any nanoelectronic device, such as a molecular junction,
is dominated by its electronic excitation characteristics.16,17

The usage of TDDFT as a practical tool to calculate
excitation energies started in the mid-90s with the ground-
breaking work of Petersilka et al.18 and Casida.19 In the
Casida-formalism, the excitation energies are obtained from

the following eigenvalue problem (in this paper we use
Hartree atomic units, e ) m ) p ) 1):

Where the matrices A and K are defined as follows:

and

Here, �iσ and εiσ are the Kohn-Sham orbitals and eigen-
values coming from a self-consistent ground-state DFT
calculation; we use the standard convention that i, i′,... and
a, a′,... are indices of occupied and unoccupied orbitals,
respectively. The term fxc,σσ′(r, r′, ω) is the so-called XC
kernel,20 defined as the Fourier transform of

where Vxc,σ(r, t) is the XC potential of TDDFT, and n0σ(r)
is the ground-state spin density. In general, fxc,σσ′(r, r′, ω) is
a frequency-dependent quantity, but in practice, it is often
approximated using frequency-independent expressions. This
is known as the adiabatic approximation.

The eigenvalues ω of eq 1 are, in principle, the exact
excitation energies of the system, provided one starts from
an exact Kohn-Sham ground-state calculation and then uses
the exact fxc,σσ′. In practice, of course, static and dynamical* E-mail: ullrichc@missouri.edu.

( A K

K* A* )(X
Y ) ) ω(-1 0

0 1 )(X
Y ) (1)

Aiaσ,i′a′σ′ ) δii′δaa′δσσ′(εaσ - εiσ) + Kiaσ,i′a′σ′ (2)

Kiaσ,i'a'σ′ ) ∫ d3r∫ d3r' �iσ
* (r)�aσ(r)[ 1

|r - r′ | +

fxc,σσ′(r, r′, ω)]�i′σ′(r′)�a'σ′
* (r′) (3)

fxc,σσ′(r, t, r′, t′) )
δVxc,σ(r, t)

δnσ′(r′, t′) |
nσ(r,t))n0σ(r)

(4)
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XC functionals need to be approximated. The formalism of
eqs 1-3 can also be recast in the shape of an eigenvalue
problem for the squares of the excitation energies:

where ωiaσ ) εaσ - εiσ.
This TDDFT formalism for excitation energies has become

very popular for practical applications, due to its unique
balance between accuracy and efficiency, allowing the user
to study systems that would be impossible to treat with
traditional wave function methods, for example in all-electron
studies of the photochemistry of large biomolecules.21,22 The
broad spectrum of applications of TDDFT for excited states
has been recently reviewed by Elliott et al.23 From the large
body of available literature, the following trends for mol-
ecules have emerged. Transition frequencies, calculated with
standard gradient-corrected XC functionals, are typically
good to within 0.4 eV. Excited-states structural properties
such as bond lengths, vibrational frequencies, and dipole
moments are essentially as good as those of ground-state
calculations (about 1% for bond lengths and about 5% for
dipoles and vibrational frequencies). Most importantly for
large systems, the computational costs scale as N3 versus N5

for wave function methods of comparable accuracy.
While there exist efficient iterative algorithms for solving

the full eigenvalue problem (1), it is nevertheless useful to
consider approximations, since these can lead to further
insight and sometimes even better results. One such method
is the Tamm-Dancoff approximation (TDA), which has been
known for a long time in nuclear physics.24 The TDA can
be viewed as an approximation to the so-called random-phase
approximation (RPA), limited to single particle-hole pairs
that are propagating forward in time. In the context and
language of quantum chemistry, this approximation is
formally identical to the configuration interaction singles
(CIS) method. The TDA has been adopted in TDDFT,25 but
with a somewhat different meaning than originally in nuclear
physics: one simply neglects the off-diagonal matrices K in
eq 1 but keeps the matrix A as it is; see eq 2. This results in
the simpler eigenvalue problem

This TDDFT/TDA approach has some technical advantages
over the full TDDFT linear response formalism away from
ground-state equilibrium geometry, as shown by Casida et
al.26 The physical meaning of the TDDFT/TDA will become
clear when we discuss two-level systems.

In an even more drastic approximation, eq 5 is truncated
down to a 1 × 1 matrix. This yields the so-called small-
matrix approximation (SMA),27 which for spin-saturated
systems is given by

This can be further approximated if the correction to the bare
Kohn-Sham excitation energy ωiaσ is small, which is known
as single-pole approximation (SPA):18,27

This approximation can also be viewed as a TDA for a two-
level system, as we shall show below.

The original derivation of the SPA18 proceeded along a
different line of thought. The excitation energies of a many-
body systems can be represented as the poles of its
density-density response function. If the excitation of
interest is sufficiently well “isolated” from neighboring
excitations, one can focus on a single pole of the response
functionshence the name SPA. Carrying out a Laurent
expansion in the TDDFT linear response equation then leads
to eq 8, where fxc,σσ′(r, r′, ω) in the matrix element Kia,ia is
evaluated at the bare Kohn-Sham excitation energy ωiaσ.
Evaluating fxc,σσ′ in eqs 7 and 8 self-consistently at the
frequencies ωSMA and ωSPA, respectively, has been termed
“dressed” SMA and SPA in the literature.28 Needless to say,
this distinction is irrelevant unless one uses a nonadiabatic
approximation for fxc,σσ′.

It turns out that the SMA and SPA can perform surpris-
ingly well for systems with well-separated excitations, such
as simple closed-shell atomic systems29 or semiconductor
nanostructures such as quantum wells.30,31 We will give a
brief example at the end of this paper. From a practical point
of view, the SMA and SPA might be seen as merely a
curiositysafter all, even large molecular systems can be
described with the full Casida TDDFT formalism without
resorting to such drastic approximations. Instead, the main
importance of the SMA and SPA is as analytical tools that
give us insight into how the TDDFT linear response
formalism works in combining Kohn-Sham single-particle
excitations to form the true excitations.18,27 Furthermore, they
can be extended to treat more complicated processes where
excitations involve two close-lying poles32 or as starting point
for the analysis of double or charge-transfer excitations.28,33

The main purpose of this paper is to present an alternative,
more direct way to derive simplified TDDFT approaches to
excitation energies such as SMA and SPA. Instead of starting
from Casida’s equations or the TDDFT linear response
equation and eliminating all excitations except for a single
pole, we will simply work with two-level Kohn-Sham
systems from the very beginning. This has the advantage
that the derivation is very transparent and does not require
familiarity with linear response theory; only a basic knowl-
edge of static DFT.

We will show that our two-level system derivation of the
SMA and SPA can be extended to systems with phenom-
enological dissipation in a straightforward manner. Next, we
will consider the case of time-dependent current-DFT (TD-
CDFT), where one deals with XC vector potentials coupling
to currents. A generalization of the SMA and SPA for
TDCDFT will be derived. To give an example, we will show
results for intersubband plasmon excitations in doped
quantum wells.

∑
a′i′σ′

[δii′δaa′δσσ′ωiaσ
2 + 2√ωiaσωi′a′σ′Kiaσ,i′a′σ′]�a′i′σ′ ) ω2�aiσ

(5)

AX ) ωTDAX (6)

ωSMA
2 ) ωia

2 + 4ωiaKia,ia (7)

ωSPA ) ωia + 2Kia,ia (8)
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2. Excitation Energies of a Two-Level
Kohn-Sham System

2.1. Scalar Potential. Let us consider a two-level system
consisting of two orbitals �1(r) and �2(r) which are
eigenstates of the static Kohn-Sham Hamiltonian

where Vxc is the static XC potential, a functional of the
ground-state density n0(r). We assume that initially �1 is
doubly occupied and �2 is empty, and both orbitals are
chosen to be real. Now consider a weak perturbation λH′(r,
t) acting on the system. According to time-dependent
perturbation theory, the time evolution of the system is given
by

Let us construct the density matrix of the system as follows:

where we explicitly indicate the order of the perturbation
through orders of λ. The density matrix obeys the following
equation of motion:

Dropping terms of order λ2, this yields the time evolution
of the off-diagonal elements of the density matrix as follows:

where H11
0 ) ∫d3r �1(r)H0�1(r) and similar for all other

matrix elements of H0 and H′. Since F11 ) 1 + O(λ2) and
defining H22

0 - H11
0 ) ω21 (the bare Kohn-Sham excitation

energy), this simplifies to

Next, we make the ansatz (which will be justified later)

and similar for F21, H12′ , and H21′ . This gives

and an additional two equations for F̃12(-ω) and F̃21(-ω)
which do not contain any new information. Adding eqs 18
and 19 gives

Let us now consider the perturbing Hamiltonian:

where δn(r, ω) is the density response. From eqs 10 and
11, we have

where the factor 2 comes from the double occupancy of �(r,
t). Taking the first-order term in λ and Fourier transforming,
we get

Notice that we do not consider an external perturbation, only
the linearized Hartree and XC potentials. We are thus looking
for an “eigenmode” of the system in a steady state. This
justifies the ansatz (17) made above. We define the double
matrix element [cf. eq 3]

and eq 20 becomes

Canceling F̃12 + F̃21 on both sides results in

which gives the final result

This is the same as the “dressed” SMA, eq 7. From the point
of view of a two-level system, our derivation shows that the
SMA considers the excitation 1f 2 (absorption) as well as
the de-excitation 2f 1 (stimulated emission). The SPA, eq
8, on the other hand, only includes the excitation 1 f 2 (it
is obtained by ignoring the first pole in eq 25). In general,
the TDA (6) ignores all de-excitations.

The formalism of this section can easily be extended to
the spin-dependent case. Assuming, for simplicity, that the
ground-state is spin-unpolarized, we find

where the spin-dependent double matrix elements K12σ, 12σ′(ω)
are defined in eq 3.

2.2. Scalar Potential with Phenomenological Dissipa-
tion. In many practical situations, it is desirable to introduce
dissipation in a simple phenomenological manner.34,35

Although this sounds easy enough, it is not straightforward

H0 ) - ∇ 2

2
+ Vext(r) + ∫ d3r′

n0(r′)
|r - r′ | + Vxc[n0](r) (9)

�(r, t) ) c1(t)�1(r) + λc2(t)�2(r) (10)

F(t) ) ( F11 λF12

λF21 λ2F22
) ) ( |c1|

2 λc1c2
*

λc1
*c2 λ2|c2|

2 ) (11)

Ḟ ) -i[H, F] ) -i[H0 + λH′(t), F] (12)

Ḟ12 ) -i[(H11
0 - H22

0 )F12 - H12
′ F11] (13)

Ḟ21 ) i[(H11
0 - H22

0 )F21 - H21
′ F11] (14)

Ḟ12 ) i[ω21F12 + H12
′ ] (15)

Ḟ21 ) -i[ω21F21 + H21
′ ] (16)

F12(t) ) F̃12(ω)e-iωt + F̃12(-ω)eiωt (17)

-ωF̃12(ω) ) [ω21F̃12(ω) + H̃12
′ (ω)] (18)

-ωF̃21(ω) ) -[ω21F̃21(ω) + H̃21
′ (ω)] (19)

F̃12(ω) + F̃21(ω) ) -
H̃12

′ (ω)

ω21 + ω
-

H̃21
′ (ω)

ω21 - ω
(20)

H′(r, ω) ) ∫ d3r′[ 1
|r - r′ | + fxc(r, r′, ω)]δn(r′, ω)

(21)

δn(r, t) ) 2|�(r, t)|2 ) 2F11(t)�1(r)2 + 2λ[F12(t) +

F21(t)]�1(r)�2(r) + 2λ2F22(t)�2(r)2 (22)

δn(r, ω) ) 2�1(r)�2(r)[F̃12(ω) + F̃21(ω)] (23)

K12,12(ω) ) ∫ d3r∫ d3r′�1(r)�2(r)[ 1
|r - r′ | +

fxc(r, r′, ω)]�1(r′)�2(r′) (24)

F̃12(ω) + F̃21(ω) ) -2K12,12(ω)[F̃12(ω) + F̃21(ω)]

[ 1
ω21 + ω

+ 1
ω21 - ω] (25)

1 ) -
4ω21

ω21
2 - ω2

K12,12(ω) (26)

ω2 ) ω21
2 + 4ω21K12,12(ω) (27)

ω(
2 ) ω21

2 + 2ω21[K12σ,12σ(ω) ( K12σ,12σ̄(ω)] (28)
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at all for the time-dependent Kohn-Sham equation, but if
we work with the Kohn-Sham density matrix, all one needs
to do is simply add a relaxation term to the equation of
motion. For our two-level system, we have

where

T1 and T2 are phenomenological parameters whose physical
meaning is a population relaxation time and a dephasing time.
Fjk

0 are the equilibrium values of the density matrix; in our
case, we have F11

0 ) 1 and F12
0 ) F21

0 ) F22
0 ) 0. The relaxation

term does not introduce any difficulties in the linearization,
and eqs 15 and 16 become

where Ω21 ) ω21 + i/T2. The subsequent derivation then
goes through in the same way as in the previous section,
and the excitation energies are obtained as

The dephasing rate 1/T2 thus produces a negative imaginary
part of the excitation energy (27), i.e. a finite line width, as
expected. In the resulting spectrum, 1/T2 is the half-width at
half-maximum of the spectral line at the real part of ω. The
population relaxation time T1 does not play any role for
excitation energies but becomes important in the nonlinear
dynamics of strongly driven systems.34,35

2.3. More than Two Levels. Let us briefly sketch how
the density matrix formalism works in a subspace with more
than two levels. For example, in the case of a spin-
unpolarized three-level system, the doubly occupied time-
dependent Kohn-Sham orbital is �(r, t) ) c1(t)�1(r) +
λc2(t)�2(r) + λc3(t)�3(r), which gives the following density
matrix

extending the expressions in eqs 10 and 11. Going through
a similar procedure as in section 2.1, considering only the
first order in λ, we arrive at

The off-diagonal matrix elements K12,13 and K13,12 come in
because the first-order density response

which enters in the perturbing Hamiltonian (21) and involves
products of the first and second as well as the first and third
single-particle orbitals. This shows how the TDDFT linear-
response formalism mixes independent single-particle excita-
tions between individual Kohn-Sham levels.

We now define �12 ) (F̃12 + F̃21)/(ω21)1/2 and �13 ) (F̃13 +
F̃31)/(ω31)1/2 and end up with

This is a 2 × 2 eigenvalue problem which yields two
excitation energies, correcting the Kohn-Sham excitation
energies ω21 and ω31. Equations 38 and 39 can also be
directly obtained from the general TDDFT response equation
(5) in the case of three spin-unpolarized Kohn-Sham levels.
It is thus straightforward to see how Casida’s linear response
formalism follows from a generalization of our density matrix
formalism for N f ∞ spin-dependent levels.

3. Vector Potentials and TDCDFT

Let us now consider the case where the time-dependent
Hamiltonian has the following form:

i.e., the perturbation is given by a vector potential, with the
linear term

To obtain the excitation energies in a two-level system, we
carry out a similar density-matrix calculation as in the
previous section where we considered scalar perturbations.
After Fourier transformation, have the following matrix
element of the perturbing Hamiltonian:

The general form of the vector potential is A ) Aext + AH

+ Axc, where Aext is the external vector potential, e.g.,
associated with an electromagnetic wave, AH is the Hartree
vector potential

Ḟ ) -i[H, F] - R (29)

R ) (F11 - F11
0

T1

F12 - F12
0

T2

F21 - F21
0

T2

F22 - F22
0

T1

) (30)

Ḟ12 ) i[Ω21F12 + H12
′ ] (31)

Ḟ21 ) -i[Ω21
* F21 + H21

′ ] (32)

ω ) √ω21
2 + 4ω21K12,12(ω) - i

T2
(33)

F(t) ) ( F11 λF12 λF13

λF21 λ2F22 λ2F23

λF31 λ2F32 λ2F33
) ) ( |c1|

2 λc1c2
* λc1c3

*

λc1
*c2 λ2|c2|

2 λ2c2c3
*

λc1
*c3 λ2c2

*c3 λ2|c3|
2 )
(34)

F̃12 + F̃21 ) -
4ω21

ω21
2 - ω2

[(F̃12 + F̃21)K12,12 +

(F̃13 + F̃31)K12,13] (35)

F̃13 + F̃31 ) -
4ω31

ω31
2 - ω2

[(F̃12 + F̃21)K13,12 +

(F̃13 + F̃31)K13,13] (36)

δn(r, ω) ) 2�1(r)�2(r)(F̃12 + F̃21) +
2�1(r)�3(r)(F̃13 + F̃31) (37)

(ω21
2 + 4ω21K12,12)�12 + 4√ω21ω31K12,13�13 ) ω2�12

(38)

4√ω21ω31K13,12�12 + (ω31
2 + 4ω31K13,13)�13 ) ω2�13

(39)

H(t) ) 1
2(∇i + λ1

c
A(r, t))2

+ Vext(r) + ∫ d3r′
n0(r′)

|r - r′ | +

Vxc[n0](r) (40)

H′(t) ) 1
2ic

(∇ ·A(t) + A(t)·∇ ) (41)

H12
′ (ω) ) 1

2ic ∫ d3r A(ω)·[�1(r)∇ �2(r) - �2(r)∇ �1(r)]

(42)
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and the XC vector potential is in general given by

where fbxcb is the tensorial XC kernel of TDCDFT.
Again, we will assume that the external perturbation Aext

is absent and that we only consider eigenmodes of the
system, driven by the dynamical self-consistent vector
potentials AH and Axc. Let us now take the following explicit
form for Axc, proposed by Vignale et al.:36

where fxc
ALDA(r, r′) is the XC kernel in adiabatic local-density

approximation (ALDA)1 and the XC viscoelastic stress tensor
is defined as a function of the gradients of the velocity field
u(r, ω) ) δj(r, ω)/n0(r):

The quantities ηxc and 	xc are viscosity coefficients of the
homogeneous electron gas, defined as36

where fxc
L and fxc

T are the longitudinal and transverse XC
kernels and exc is the XC energy density of a homogeneous
electron gas of density nj. In eq 46, ηxc and 	xc are evaluated
at the local ground-state density. For our two-level system,
the current density can be expressed as

where we ignore any diamagnetic contributions to the current
since they are of higher order in the perturbation. The
derivation of this expression for δj(r, ω) proceeds along
similar lines as the derivation of δn(r, ω), eq 23. The matrix
element (42) thus becomes

where we defined Pi(r) ) �1(r)∇ i�2(r) - �2(r)∇ i�1(r). After
some straightforward manipulation involving partial integra-
tion and introducing the abbreviation

we obtain

Notice that H̃12′ ) -H̃21′ . From eq 20, we thus get (dropping
the subscripts of K and S)

and similarly

Using the abbreviation 
 ) 4/(ω21
2 - ω2), we can write this

as a system of two coupled equations:

The determinant vanishes if

which is the desired TDCDFT generalization of the SMA.
Again, it is straightforward to repeat the derivation for the
spin-dependent case. Assuming, as before, that the ground-
state is not spin-polarized, and using the spin-dependent XC
vector potential of Qian et al.,37 we find

where

AH(r, ω) ) ∇
(iω)2 ∫ d3r′ ∇′ ·δj(r′, ω)

|r - r′ | (43)

Axc(r, ω) ) ∫ d3r′ fbxcb(r, r′, ω)·δj(r′, ω) (44)

Axc,i(r, ω) ) c
iω

∇ ∫ d3r′ fxc
ALDA(r, r′)δn(r′, ω) -

c
iωn0

∑
j

∇ jσxc,ij(r, ω) (45)

σxc,ij ) ηxc(∇ jui + ∇ iuj -
2
3

∇ ·uδij) + 	xc∇ ·uδij (46)

ηxc(nj, ω) ) - nj2

iω
fxc
T (nj, ω) (47)

	xc(nj, ω) ) - nj2

iω[fxc
L(nj, ω) - 4

3
fxc

T(nj, ω) -
d2exc(nj)

dnj2 ]
(48)

δj(r, ω) ) 1
i
(F̃21(ω) - F̃12(ω))(�1(r)∇ �2(r) -

�2(r)∇ �1(r)) (49)

H′12 ) - 1
2ω ∑

i
∫ d3r(∇ i ∫ d3r′[ 1

r - r′ +

fxc
ALDA(r, r′)]δn(r′, ω) - 1

n0
∑

j

∇ jσxc,ij)Pi (50)

S12,12(ω) ) 1
4iω ∫ d3r[ηxc

2 ∑
ij

(∇ j

Pi

n0
+ ∇ i

Pj

n0
)2

+

(	xc -
2
3

	xc)(∇ ·P
n0

)2] (51)

H̃12
′ ) -2

ω21

ω
K12,12(ω)(F̃12 + F̃21) + 2S12,12(ω)(F̃12 - F̃21)

(52)

F̃12 + F̃21 ) -
-2

ω21

ω
K(F̃12 + F̃21) + 2S(F̃12 - F̃21)

ω21 + ω
-

2
ω21

ω
K(F̃12 + F̃21) - 2S(F̃12 - F̃21)

ω21 - ω
(53)

F̃12 - F̃21 ) -
-2

ω21

ω
K(F̃12 + F̃21) + 2S(F̃12 - F̃21)

ω21 + ω
+

2
ω21

ω
K(F̃12 + F̃21) - 2S(F̃12 - F̃21)

ω21 - ω
(54)

(1 + 
ω21K)(F̃12 + F̃21) - 
ωS(F̃12 - F̃21) ) 0 (55)

-
ω21

2

ω

K(F̃12 + F̃21) + (1 + 
ω21S)(F̃12 - F̃21) ) 0

(56)

ω2 ) ω21
2 + 4ω21(K12,12(ω) + S12,12(ω)) (57)

ω(
2 ) ω21

2 + 2ω21[(K12σ,12σ(ω) +
S12σ,12σ(ω)) ( (K12σ,12σ̄(ω) + S12σ,12σ̄(ω))] (58)

S12σ,12σ′(ω) ) 1
iω ∫ d3r[ηxc,σσ′

2 ∑
ij

(∇ j

Piσ

n0
+ ∇ i

Pjσ

n0
)2

+

(	xc,σσ′ -
2
3

ηxc,σσ′)(∇ ·
Pσ

n0
)2] +

2δσσ′ - 1

4iω ∫ d3r FvV|Pσ|
2 (59)
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Here, FvV(r, ω) is the so-called spin transresistivity,38 which
is a measure of the spin Coulomb drag effect.39 It affects
only the spin-density excitations.

We point out that eqs 57 and 58 had been derived earlier
in an alternative way,31,40 leading to the same result, except
that S12,12(ω) and S12σ,12σ′(ω) are multiplied with ω2/ω21

2. This
difference arises because the alternative derivation starts from
an approximation of the Kohn-Sham current-current
response function, where the prefactor ω2/ω21

2 is needed to
ensure that the formalism reduces to eq 27 in the appropriate
limit. In that sense, the present density-matrix formalism is
more consistent: once we have selected a 2-level subspace,
no further approximations are involved. Therefore, although
the prefactor ω2/ω21

2 causes only corrections to the excitation
energies of order S2 (which are usually small), eqs 57 and
58 are to be preferred.

In Table 1, we present some results to illustrate the
performance of the two-level system approximation. We
consider the lowest intersubband transition energy of an
n-doped 40 nm square GaAs/AlGaAs quantum well with
parabolic subbands and an electron concentration of 1011

cm-1, using the standard effective-mass approximation.30

Table 1 compares the KS transition energy ω21 with the
ALDA and TDCDFT results. We see that the results using
the full TDDFT response equation agree extremely well with
the simple SMA approximations, eqs 27 and 57. A more
systematic study for closed-shell atoms by Vasiliev et al.29

came to similar conclusions, although the agreement between
SMA and full TDDFT was not as close as for quantum wells.
This has to do with the structure and distribution of the
quantum well subband levels, which are much better
separated than in atoms: the level spacing is ∼n2 for the
lowest-lying levels, where n is the subband index, and there
is no Rydberg series.

For quantum wells, the finite line width Γ reflects the fact
that collective electronic excitations can decay into incoherent
single-particle excitations of the electron gas in the (infinite)
quantum well plane. Unfortunately, the same physics also
leads to a line width for excitations of finite systems such
as atoms.40 To avoid this unphysical effect, approximate XC
vector potentials based on the electron gas36,37 should be
applied to extended systems only.31,41,42
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Abstract: The optical absorption spectra of a family of four n-type conjugated oligomers,
oligoquinolines, which can be commercially used to develop high-performance light-emitting
diodes for their many desirable properties, have been recently calculated from time-depedent
density functional theory (TDDFT) within the adiabatic approximation for the dynamical exchange-
correlation potential. In this work, we investigate the optical absorption of two new family members
of the blue-light emitting oligoquinolines bearing pyrenyl and triphenyl endgroups in gas phase
and chloroform (CHCl3) solution employing the adiabatic TDDFT. The ionization potentials and
electron affinities of these two oligoquinoline molecules are also calculated with the ground-
state DFT, from which the adiabatic dynamical exchange-correlation potential is constructed.
We show that the calculated optical absorptions are in good agreement with experiments. The
ionization potentials obtained with the DFT methods agree well with the experimental estimates,
while the electron affinities are significantly underestimated in comparison with experiments. A
natural transition orbital analysis for selected excited states with the largest oscillator strengths
shows that the electronic charge is slightly redistributed in the process of electronic excitations.

I. Introduction

In recent years, n-type (electron transport) organic light-
emitting materials have been increasingly gaining popularity
in the development of high-performance organic light-
emitting diodes (OLEDs)1,2 because of their ultralow cost,
light weight, and flexibility. A common feature of these
nanoscale molecules is that they have a backbone chain with
overlapping π orbitals. On the one hand, they exhibit the
property of a semiconductor because the π orbitals form
delocalized valence-band hole and conduction-band electron.
On the other hand, these nanoscale conjugated molecules
possess several important properties that traditional inorganic
semiconductors lack. For example, they are easily deposited
on any low-cost substrates3-7 such as glass, plastic, or metal

foils. Therefore, OLED materials are particularly well suited
for large-area displays.4 Fabrication of high-resolution, full-
color, and flat-panel displays3 depends upon many factors.
Apart from the optimization of device structure for OLEDs,
A crucial step to improve the device performance is to design
and synthesize new materials with improved properties8-13

in charge conductivity, electroluminescence efficiency and
power efficiency, thermal stability, operational lifetime,
brightness, and color purity.

Jenekhe and collaborators1 have synthesized a series of
four n-type (electron transport) blue-light-emitting oligomers,
oligoquinolines. They found that these organic materials can
be used to fabricate high-efficiency light-emitting diodes.
Recently, we have performed a theoretical investigation14

of the optical absorption spectra of these molecules and
utilized the natural transition orbitals to analyze the delo-
calization properties of several selected excited states,
including the lowest one. The theoretical study has provided
a detailed understanding of experimental measurements.
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More recently, two new family members of the blue-light
emitting oligoquinolines bearing pyrenyl and triphenyl end-
groups have been synthesized and their important photo-
chemistry properties such as optical absorption and emission
as well as ionization potentials and electron affinities have
been experimentally evaluated.2 It has been found that these
new pyrenyl- and triphenyl-bearing oligoquinoline molecules,
6,6′-bis(2-(1-pyrenyl)-4-phenylquinoline) (BPYPQ) and 6,6′-
bis(2-(1-triphenyl)-4-phenylquinoline) (B3PPQ), have many
desirable properties such as excellent thermal stability, high
melt transitions, high quantum yields, and bright blue
electroluminescence with high efficiency. They are highly
emissive electron transport materials for OLEDs and have
been used as emitters in recent fabrication of OLED devices.
To get a better understanding of these experiments and to
provide a deep physical insight into these phenomena, it is
necessary to perform theoretical calculations. The method
we choose for the calculation of dynamical properties such
as optical absorption is time-dependent density functional
theory,15,16 while the ground-state density functional theory
(DFT)17 is employed to evaluate the equilibrium properties.
TDDFT and DFT techniques currently provide optimal
combination of accuracy and low computational cost for a
broad variety of large molecules.

Kohn-Sham ground-state DFT18,19 is the most popular
method in electronic structure calculations because of its high
computational efficiency. In this theory, only the exchange-
correlation (XC) energy, which includes all unknown many-
body effects, must be approximated as a functional of the
electron density. In this paper, we employ several commonly
used XC energy functionals to calculate the ionization
potentials and the electron affinities of BPYPQ and B3PPQ
molecules, whose chemical structures are shown in Figure
1. The density functionals we use here include two pure
density functionals [the local spin density approximation
(LSDA) and the Tao-Perdew-Staroverov-Scuseria (TPSS)20

meta-generalized gradient approximation (meta-GGA)] and
three hybrid functionals (TPSSh,21 B3LYP,22 and PBE0;23,24

see discussion below). Then we employ the time-dependent
DFT linear response theory25,26 to calculate the optical
absorptions of these two new family members of oligoquino-
lines, BPYPQ and B3PPQ. The dynamical XC potential is

constructed, as usual, within the adiabatic approximation.27

See refs 28-31 for the discussion of the nonadiabatic
approximation.

Previous calculations14,32-42 show that the adiabatic XC
potentials constructed from a ladder of widely used density
functionals yield excitation energies of molecules in fairly
good agreement with experiments. Hybrid functionals such
as PBE0 (a hybrid of PBE with 25% exact exchange) and
TPSSh (a hybrid of TPSS with 10% exact exchange) yield
excitation energies consistently in better agreement14,42 with
experiments than their parental nonhybrid functionals PBE
GGA43 and TPSS meta-GGA. In particular, PBE0, which
benefits from the more amount of exact exchange, gives a very
good performance in the prediction of low-lying excitations.
This excellent improvement probably is a balanced effect
between the error concellation between semilocal exchange and
semilocal correlation (no exact exchange should be mixed in)
and the improvement of the asymptotic behavior of the
exchange potential (as much as exact exchange should be mixed
in). Recently, Perdew, Staroverov, Tao, and Scuseria44 have
constructed a fourth-rung hyper-GGA, a fully nonlocal func-
tional of the density, which satisfies many additional constraints
beyond those45,46 that the TPSS meta-GGA already satisfies.
Specifically, we employ the TDDFT adiabatic PBE0 functional
to evaluate the optical absorptions of BPYPQ and B3PPQ. The
results obtained with the adiabatic LSDA, TPSS meta-GGA
and hybrid TPSSh, and three-parameter hybrid B3LYP (with
1/5 exact exchange), are also presented for comparison. To spell
out our results, a natural transition orbital analysis47 for three
selected excited states with the largest oscillator strengths is
carried out.

II. Computational Method

All calculations are performed using the GAUSSIAN 03
program.48 First we optimize the ground-state geometries of
BPYPQ and B3PPQ by performing the self-consistent
ground-state calculations with respective density functionals.
Then we evaluate the vertical excitation energies of these
two oligomers based on the optimized ground-state geom-
etries with the respective adiabatic density functionals.
Ionization potentials and electron affinities are estimated from
the ground-state DFT self-consistent calculations. For con-
sistency, the same basis set 6-31G(d) was used in all
calculations. Because the Perdew-Wang parametrization49

for the LSDA correlation energy is used as the local part in
the PBE and TPSS correlation functionals, for consistency,
this parametrization was used for all LSDA calculations. The
TDDFT calculations of BPYPQ and B3PPQ in chloroform
solvent were performed using PCM (polarizable continuum
model)50 method, which was shown14 to yield almost the
same results as CPCM (conductor-like PCM) method51-53

for the family of oligoquinoline molecules. For systems with
high dielectric constant, both methods are equivalent. See
refs 54-57 for detailed discussion of PCM method.

III. Results and Discussion

A. Ionization Potentials and Electron Affinities. Ioniza-
tion potentials are calculated as the difference in total

Figure 1. Molecular structures of the computationally studied
blue-light-emitting oligoquinolines.
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energies between the positive ion and the corresponding
neutral in their ground states (using the spin-unrestricted DFT
formalism) at their geometries optimized with respective
density functionals. The results are displayed in Table 1, and
the experimental estimates are also listed for comparison.
From Table 1, we observe that LSDA, TPSS, and TPSSh
give the IPs of BPYPQ and B3PPQ that are closest to the
experimental estimates, while B3LYP and PBE0 yield
slightly higher values, compared to the experimantal ones.

Electron affinities are calculated as the difference between
the total energies of the negative ion and the corresponding
neutral in their ground states (using the spin-unrestricted DFT
formalism) at their geometries optimized with respective
density functionals. The results are summarized in Table 1.

We observe from Table 1 that all the density functional
values are too low. The nonhybrid functionals (LSDA and
TPSS meta-GGA) yield the estimates that are closer to the
experimental values than hybrid functionals (TPSSh, B3LYP,
and PBE0). As discussed in refs 21 and 58, since negative
ions are unstable in the ground-state of semilocal local
density functionals that suffer from self-interaction error, the
ground-state energies of negative ions are estimated in
practice with the artificial stabilization by the use of finite
basis sets. That explains the large deviation of the density
functional estimates of the electron affinities from the
experimental values.

B. Optical Absorption. Tables 2 and 3 show the sum-
mary of the calculated properties of BPYPQ and B3PPQ in

Table 1. Ionization Potentials (IPs) and Electron Affinities (EAs) (In Units of eV) of BPYPQ and B3PPQ, Evaluated with the
Basis Set 6-31G(d) and Geometries Optimized on the Respective Density Functionals

exptl LSDA TPSS TPSSh B3LYP PBE0

BPYPQ IP 5.86 5.91 5.65 5.82 5.93 6.11
EA 2.66 2.00 1.75 1.66 1.54 1.59
ηa 1.60 1.96 1.95 2.08 2.20 2.26

B3PPQ IP 5.78 6.01 5.70 5.90 6.03 6.24
EA 2.58 1.96 1.70 1.59 1.46 1.51
ηa 1.60 2.03 2.00 2.16 2.29 2.37

a η is the molecular hardness defined by η )(IP - EA)/2.

Table 2. Singlet and Triplet Vertical Excitation Energies (ωS
n, ωT

n, n ) the nth excited state) in eV, the Transition Oscillator
Strength (fabs,n), and the Dipole Moment of the Ground State in Debye of BPYPQ Molecule in Gas Phase (µg) and
Chloroform Solution (µsol), Calculated Using the Five Adiabatic Density Functionals with the Basis Set 6-31G(d) and the
Geometry Optimized on the Respective Density Functionals with the Same Basis (1 eV ) 8065.5 cm- 1 ) 0.03675 hartree)a

gas gas gas gas gas gas gas bgas sol sol sol sol sol sol sol sol

ω
S
abs,1 f abs,1 ω

S
abs,4 f abs,4 ω

S
abs,14 f abs,14 ω

T
abs µg ω

S
abs,1 f abs,1 ω

S
abs,4 f abs,4 ω

S
abs,12 f abs,12 ω

T
abs µsol

LSDA 2.10 0.558 2.48 0.358 3.06 0.286 1.90 1.031 2.08 0.714 2.47 0.499 3.03 0.384 1.90 1.645
ω

S
abs,3 f abs,3 ω

S
abs,12 f abs,12 ω

S
abs,5 f abs,5 ω

S
abs,12 f abs,12

TPSS 2.21 0.473 2.58 0.392 3.17 0.334 1.85 1.112 2.19 0.610 2.56 0.536 3.15 0.400 1.86 1.761
ω

S
abs,5 f abs,5 ω

S
abs,11 f abs,11 ω

S
abs,5 f abs,5 ω

S
abs,10 f abs,10

TPSSh 2.61 0.852 3.16 0.506 3.48 0.271 1.88 1.138 2.58 1.081 3.14 0.503 3.45 0.314 1.89 1.784
ω

S
abs,5 f abs,5 ω

S
abs,9 f abs,9 ω

S
abs,5 f abs,5 ω

S
abs,7 f abs,7

B3LYP 2.89 1.275 3.44 0.501 3.64 0.092 1.98 1.122 2.85 1.998 3.42 0.513 3.61 0.122 1.98 1.744
ω

S
abs,5 f abs,5 ω

S
abs,9 f abs,9 ω

S
abs,5 f abs,5 ω

S
abs,14 f abs,14

PBE0 3.04 1.516 3.62 0.448 3.79 0.071 1.88 1.190 3.00 1.817 3.60 0.479 4.09 0.096 1.89 1.839

ω
1st
abs ω

2nd
abs ω

3rd
abs

exptl 3.26 3.60 4.34

a Experimental values measured in chloroform are obtained from ref 2.

Table 3. Singlet and Triplet Vertical Excitation Energies (ωS
n, ωT

n, n ) the nth excited state) in eV, the Transition Oscillator
Strength (fabs,n), and the Dipole Moment of the Ground State in Debye of B3PPQ Molecule in Gas Phase (µg) and
Chloroform Solution (µsol), Calculated Using the Five Adiabatic Density Functionals with the Basis Set 6-31G(d) and the
Geometry Optimized on the Respective Density Functionals with the Same Basis (1 eV ) 8065.5 cm- 1 ) 0.03675 hartree)a

gas gas gas gas gas gas gas gas sol sol sol sol sol sol sol sol

ω
S
abs,1 f abs,1 ω

S
abs,4 f abs,5 ω

S
abs,13 f abs,13 ω

T
abs µg ω

S
abs,1 f abs,1 ω

S
abs,5 f abs,5 ω

S
abs,13 f abs,13 ω

T
abs µsol

LSDA 2.34 1.235 2.78 0.598 3.27 0.575 2.09 1.137 2.31 1.421 2.75 0.721 3.26 0.593 2.09 1.457
ω

S
abs,4 f abs,4 ω

S
abs,13 f abs,13 ω

S
abs,4 f abs,4 ω

S
abs,14 f abs,14

TPSS 2.49 1.209 2.93 0.425 3.42 0.503 2.079 1.234 2.46 1.378 2.89 0.430 3.42 0.391 2.09 1.602
ω

S
abs,5 f abs,5 ω

S
abs,16 f abs,16 ω

S
abs,10 f abs,10 ω

S
abs,15 f abs,15

TPSSh 2.86 1.779 3.42 0.502 3.95 1.047 2.16 1.267 2.83 1.998 3.74 0.772 3.92 0.856 2.18 1.636
ω

S
abs,7 f abs,7 ω

S
abs,12 f abs,12 ω

S
abs,6 f abs,6 ω

S
abs,11 f abs,11

B3LYP 3.12 2.197 3.86 0.542 4.09 0.923 2.29 1.265 3.08 2.429 3.81 0.498 4.06 0.642 2.30 1.632
ω

S
abs,6 f abs,6 ω

S
abs,12 f abs,12 ω

S
abs,6 f abs,6 ω

S
abs,12 f abs,12

BPE0 3.27 2.373 4.02 0.957 4.30 0.962 2.23 1.306 3.23 2.609 4.02 0.842 4.28 1.099 2.24 1.676

ω
1st
abs ω

2nd
abs

exptl 3.32 4.04

a Experimental values measured in chloroform are obtained from ref 2.
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gas phase and in solution, respectively. These calculated
properties include the excitation energies of three singlet
states with the largest oscillator strengths in the UV-vis
region, the corresponding oscillator strengths, and the excita-
tion energy of the first triplet state, in gas phase and solution.
The ground-state dipole moments of BPYPQ and B3PPQ in
gas phase and solution are also calculated and presented in
Tables 2 and 3, respectively. The experimentally observed
excitation energies are listed for comparison. Of course, this
comparison can be made only approximately because
vibrational progression and disorder effects are not included
in our calculations. This can make a difference of up to
0.1-0.2 eV.

From Table 2, we observe that the first or lowest-frequency
peak of BPYPQ occurs at 3.00 eV (the experimental value
is 3.26 eV) with the largest oscillator strength f ) 1.82 and
that a higher-frequency peak occurs at 3.60 eV (the same as
the experimental value) with the oscillator strength f ) 0.48,
almost three times smaller than the largest oscillator strength.

The third or the highest-frequency absorption peak occurs
at about 4.09 eV (4.34 eV for the experimental measure-
ment), with a very small oscillator strength f ) 0.1. The
oscillator strength of the third absorption peak is underes-
timated significantly with the adiabatic B3LYP and PBE0
functionals. The adiabatic LSDA, TPSS, and TPSSh func-
tionals yield a more realistic oscillator strength, although it
is still too small, compared to the experimental observation,
where the experimental intensity of the third absorption band
is quite noticeable.2 This discrepancy of theory from experi-
ment for the third peak absorbance may arise from many
effects such as temperature, disorder, vibrational progression,
etc. These factors have not been taken into consideration in
our calculations. We also observe a persistent red shift for
the first two peaks from gas phase to solution. This red shift
(of about 10 meV) also occurs for the lowest triplet
excitation. The dipole moment of BPYPQ is vanishingly
small if all the atoms are in a same plane because of its high
symmetry. However, this geometry is not the ground-state
geometry. In the ground state, there are dihedral angles
between two benzene rings connected by a σ-bond. These
dihedral angles effectively reduce the symmetry of the
molecule, resulting in a large ground-state dipole moment.
While the effect of the solvent-solute interaction on the
optical absorption is small, it has a significan effect on the
ground-state dipole moment and causes the noticeable
increase of the oscillator strength in solution, compared to
that in gas phase. The absorptions calculated with other
adiabatic TDDFT functionals are in fairly good agreement
with experiments. The accuracy increases when we go from
LSDA, TPSS meta-GGA, TPSSh, and B3LYP to PBE0.

Table 3 shows that in gas phase the first two absorptions
of B3PPQ occur at 3.27 and 4.02 eV, respectively, with the
oscillator strength of the first peak being about twice that of
the second peak. Interestingly, our calculation shows that
there should be another absorption peak, which occurs at a
higher frequency 4.30 eV. The absorption intensity of the
third peak is nearly the same as the second. Since these two
peaks are located closely, they may combine to form a
broader single peak. Therefore, we may only observe two
absorption peaks in total in the experiment. In solution, the
three peaks are expected to occur at slightly lower frequency
because of the red shift, as shown in Table 3. The
solvent-solute effects on the absorption and the ground-
state moment are the same as those for BPYPQ.

To simulate the experimentally observed absorptions with
our calculated data (see Figures 2 and 3), a simple analytic
expression14 for the normalized absorption intensity or peak
magnitude is assumed as

where δm(x) is a δ-like function defined by

Here m is determined by a fit to experiments; m ) 5.0 for
BPYPQ and 7.0 for B3PPQ. This form has been used14 to

Figure 2. Normalized absorption I of eq 1 (in arbitrary units)
(right side) and oscillator strength f (left side) of BPYPQ. The
solid and dashed curves represent the normalized absorption
in gas phase and solution, while the solid and dashed “sticks”
represent the oscillator strength in gas phase and solution,
respectively.

Figure 3. Normalized absorption I of eq 1 (in arbitrary units)
(right side) and oscillator strength f (left side) of B3PPQ. The
solid and dashed curves represent the normalized absorption
in gas phase and solution, while the solid and dashed “sticks”
represent the oscillator strength in gas phase and solution,
respectively.

I(ω) ) ∑
i

f (ωi)δm(ω - ωi)/ ∑
i

f (ωi) (1)

δm(x) ) m
π

1

1 + m2x2
(2)
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simulate the optical absorption spectra of other four family
members of oligoquinoline molecules. In our simulation, we
did not employ the most commonly used Gaussian function.
These two functions59 (eq 1 and Gaussian function) have
similar properties and are equivalent in the limit of m f ∞,
but the former gives a better fit to experiments. As displayed
in Figure 2, our simulation for the absorption of BPYPQ
shows two peaks, whose locations or absorption frequencies
are close to the experimentally observed, while the third peak

is almost invisible because of a very small absorption
intensity. Figure 3 shows a large absorption peak at the
lowest frequency and other two smaller peaks at higher
frequencies, latter of which may combine to form a broader
one.

Finally, we employ the natural transition orbital represen-
tation for excited states to analyze the corresponding excited
states. The results are plotted and displayed in Tables 4 and
5, respectively. The orbitals we employ here are calculated

Table 4. TDDFT Natural Transition Orbital Analysis for the Three Excited States with the Largest Oscillator Strengths in
BPYPQ in Gas Phasea

a ∆E is the excitation energy, f is the corresponding oscillator strength, and W is the weight of the plotted orbital in the respective
transition density matrix.

Table 5. TDDFT Natural Transition Orbital Analysis for the Three Excited States with the Largest Oscillator Strengths in
B3PPQ in Gas Phasea

a ∆E is the excitation energy, f is the corresponding oscillator strength, and W is the weight of the plotted orbital in the respective
transition density matrix.
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with the adiabatic PBE0 functional, which yield the most
accurate excitation energies for the entire family of oligo-
quinoline molecules. It is clear that these low-lying excited
states arise from π-π* excitations, as illustrated by their
transition orbitals shown in Tables 4 and 5. From the weight
(W ) 92%), we can see that the lowest excited state, |1〉 ,
can be well represented by a single-pair of transition orbitals
(see Table 4). It arises from a delocalized excitation involving
the entire conjugated backbone of the BPYPQ oligomer. The
side phenyl rings do not participate substantially in this
optical excitation. Excited state |5〉 contributing to the second
absorption peak is largely delocalized in the middle section
of the molecule, compared to excited state |1〉 , while excited
state |9〉 contributing to the third absorption peak is mainly
delocalized in the endgroups of the molecule. We note that
excited states |5〉 and |9〉 are multiconfigurational, that is, they
can be represented only by several pairs of transition orbitals.
Here only the dominant ones are shown in Table 4.

The B3PPQ orbitals are slightly less delocalized, compared
to those of BPYPQ, while the molecular structure of the
former has a longer backbone. This is reflected by the higher
excitation energies of B3PPQ. The same trend for the lowest
triplet excitation is also observed by comparing Table 2 with
Table 3. The oscillator strengths of B3PPQ corresponding
to three selected excitations are much larger than those of
BPYPQ. From Table 5, we can see that, like BPYPQ, these
selected excited states also arise from π-π* excitations. The
large weight W ) 95% of the lowest excited-state suggests
that excited state |1〉 can essentially be represented by a
single-pair of transition orbitals. The side- and end-phenyl
rings do not participate in this lowest-frequency optical
excitation. Excited state |6〉 responsible for the second
absorption peak is mainly delocalized in the middle section
of the molecule, while excited state |12〉 is partly delocalized
in the middle section and partly in the ending sections.
Compared to excited states |1〉 and |6〉 , it is much more
delocalized. Table 5 also shows that there are slight charge
redistributions during the excitations, with the electronic
density flow toward the center of the molecules.

IV. Conclusion

In this paper, we have employed the adiabatic TDDFT
approach to study the optical absorption of two new family
members of the blue-light emitting oligoquinolines bearing
pyrenyl and triphenyl endgroups, BPYPQ and B3PPQ, in
gas phase and chloroform (CHCl3) solution. Ionization
potentials and electron affinities, which are important in
photochemistry, are also calculated using the ground-state
DFT. Our calculations of excitation energies are in good
agreement with the experimental measurements in chloro-
form solution, while the absorption intensity or oscillator
strength for two higher-frequency absorptions are signifi-
cantly underestimated for BPYPQ. The ionization potentials
agree well with the experimental estimates, while the electron
affinities are underestimated.

Our results show that there are two absorption peaks for
B3PPQ molecules in gas phase and solution, and the second
peak located at a higher frequency may be split into two
peaks, as experimentally observed for BPYPQ molecule. The

first absorption peak arises from the lowest singlet-singlet
transition, whereas the other arises from the multiconfigu-
rational transition. Our simulation of the experimental spectra
with the TDDFT data calculated from the adiabatic PBE0
functional shows that there are two main absorption peaks.
This prediction agrees with experiments. However, it is
questionable whether the third peak can be observed. This
discrepancy of the theory from the experimental observation
for the third peak intensity may arise from the fact that many
effects (temperature, disorder, etc.) that affect the experiment
have not been taken into account in our calculations. Our
calculations also show that the solvent effects on computed
electronic transitions are negligible. To get a detailed
understanding of these excitations, an analysis of the natural
transition orbitals corresponding to the selected excited states
has been made. We find that for both BPYPQ and B3PPQ
molecules, the low-lying optically active excited states are
π-π* excitations with varying degree of spatial delocaliza-
tion and charge transfer character.

We emphasize here that the order of accuracy of the five
adiabatic density functionals in predicting the low-lying
excitation energies of molecules, as found in our previous
studies,14,42 that is, LSDA < TPSS < TPSSh < B3LYP <
PBE0, continue to hold, as shown in Tables 2 and 3.
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Abstract: The Davydov or exciton splitting of vertical excitation energies is commonly used to
estimate the excitation energy transfer rate between chromophores. Here we investigate the
S1-S2 Davydov splitting in 2-pyridone dimer as a function of the monomer separation, R. We
assess the ability of various functionals to reproduce the Davydov splitting at finite R predicted
by the approximate coupled cluster singles doubles method CC2. While semilocal functionals
fail qualitatively because of spurious charge-transfer intruder states, global hybrids with a large
fraction of exact exchange, such as BHandH-LYP, reproduce the CC2 splittings within few
wavenumbers. We analyze our results by comparison to lowest-order intermolecular perturbation
theory in the spirit of Förster and Dexter. At equilibrium hydrogen bond distance, the
Förster-Dexter splittings are too small by up to a factor of 2.

1. Introduction

Excitation energy transfer (EET), the direct migration of
energy from a donor to an acceptor chromophore, underlies
natural and artificial light harvesting. In photosynthesis1 and
light-driven ion pumps,2 antenna chromophores transfer solar
excitation energy to a reaction center by EET. EET is also
essential in excitonic solar cells, allowing the migration of
excitons to the interface where charge-separation takes place.3

Fluorescence resonance energy transfer (FRET) has found
widespread use in biology, because the R-6 dependence of
the EET rate on the chromophore distance R may be used
as a spectroscopic ruler.4

Quantitative prediction of EET rates from first principles
is a challenge for electronic structure methods. According
to Förster theory,5 electronic excitation energy can be
transferred from one molecule to a neighboring molecule if
their excitation energies are nearly degenerate. It is generally
assumed that nuclear relaxation of the donor excited elec-

tronic state takes place on a time scale much faster than
energy transfer, so the relevant criterion for transfer is
nonzero overlap of the donor emission and the acceptor
absorption spectra. In his ground-breaking 1948 paper,5

Förster used intermolecular perturbation theory to derive his
well-known result for the EET rate

where K accounts for the vibrational density of states and
Franck-Condon factors. Here, FA(r) and FB(r) are the
transition densities of the unperturbed chromophores. V̂ is
the sum of electron-electron interactions between electrons
on opposite subsystems. Ψgs

A and Ψgs
B are the unperturbed

chromophore ground states, while Ψex
B and Ψex

B are the
excited states. The second equality is only correct at long-
range, where Dexter exchange effects become negligible. In
case of dimers, the splitting of the degenerate vertical
monomer excitation energies is called Davydov splitting,6

∆Ω. The Davydov splitting may be related to the energy
transfer rate by first-order degenerate perturbation theory
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† University of California.
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kET ) K|〈Ψgs
A Ψex

B |V̂|Ψex
A Ψgs

B 〉 |2 ) K|∫ drdr′F
A(r)FB(r′)
|r - r′ | |2

(1)
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We will consider the vertical splitting between the electronic
energy eigenvalues of the two supersystem states evaluated
at a common nuclear geometry. This splitting is also often
called exciton splitting.

According to eq 1, kET is proportional to the square of the
classical Coulomb (or Hartree) interaction of the transition
densities FA(r) and FB(r). Since the transition densities
integrate to zero, eq 1 is dominated by a transition
dipole-transition dipole (hereafter called dipole-dipole)
interaction at long-range, if the monomer excitations are
dipole-allowed

where R is the vector between the centers of the subsystems,
n ) R/|R|, and pA/B are the monomer transition dipole
moments. At shorter range, the dipole-dipole description
is incorrect, because higher-order multipole moments,7

overlap effects,8 polarization effects, and the effects of
exchange of one or more electrons among the subsystems9

no longer vanish. In intramolecular EET it may also be
difficult to uniquely define two subsystems with separate
electronic eigenstates.

An alternative route to EET rates is to extract the exciton
splitting ∆Ω from a supermolecular calculation, bypassing
the limitations of intermolecular perturbation theory. The
resulting exciton splittings are directly comparable to spec-
troscopic results. A detailed comparison of the two ap-
proaches to EET was presented by Tretiak et al.10,11

Time-dependent density-functional theory (TDDFT)12

lends itself easily both to the transition density interaction
approach and the Davydov splitting approach. It would be
beneficial to be able to use TDDFT for EET in biological
systems because of the favorable relationship between
accuracy and computational cost offered by modern TDDFT
methods.13

Förster theory has been extensively studied. Several
questions have been addressed in articles by other authors.
In addition to works mentioned above, the spatial locality
of an excitation10 and the effect of molecular bridges linking
two chromophores,7,14 and of solvents8,15 have been studied.
The Davydov-splitting approach in TDDFT has been studied
by Hsu et al.8 in a basis consisting of the subsystem
excitations. In the present paper, we will evaluate the
performance of common density functional methods in
computing the Davydov splitting using the 2-pyridone dimer
as an example. The 2-pyridone dimer is an experimentally
well-characterized16-19 representative of a large family of
hydrogen bound dimers and DNA base pairs. In section 2,
we will give a short introduction to linear response theory
in TDDFT. In section 4, we present benchmark results for
various functionals as we vary the length of the hydrogen
bond linking the two 2-pyridone monomers.

2. Introduction to Linear Response Theory
in TDDFT

From linear response theory in TDDFT within the adiabatic
approximation, the excitation energies, Ω, are given by the
solutions of the symplectic eigenvalue problem20-22

The excitation vectors

represent Kohn-Sham (KS) transition density matrices, where
X ∈ Lvirt × Locc and Y ∈ Locc × Lvirt. Here, Locc is the Hilbert
space of occupied orbitals and Lvirt the Hilbert space of
unoccupied ground-state KS-orbitals. The superoperators Λ
and ∆ are given by

where 1 is the identity matrix

The labels i and j denote occupied and a and b unoccupied
orbitals and (iaσ|jbσ′) is a two-electron repulsion integral in
Mulliken notation. fiaσjbσ′

xc is given by

Within the adiabatic approximation, the exchange-correlation
(xc) kernel fσσ′

xc is the second functional derivative of the
semilocal part of the chosen xc-functional

cx is the Hartree-Fock exchange mixing coefficient. In
TDHF, cx ) 1 and in semilocal functionals it is 0. In global
hybrids, it takes values between 0 and 1. The TDDFT-based
approach to Davydov splittings of Hsu et al.8 uses Förster’s
intermolecular interaction theory. Hsu et al.8 explore the
problem in a basis formed by the local monomer excitations
using the isolated monomer KS-eigenvalues and orbitals.
They derive their estimate of the Davydov splitting by
calculating the first-order perturbation of the excitation
energy from the interaction between the subsystems. Their
basis includes only local excitations in the monomers (as
opposed to charge-transfer excitations between monomers),
which are the relevant excitations in Förster theory. This
provides a theory correct to the level where either the KS-
eigenvalues deviate from the monomer values, the dimer
orbitals deviate from linear combinations of pairwise de-
generate monomer orbitals or the charge-transfer excitations
mix with the local excitations.

kET ≈ K
4

|∆Ω|2 (2)

kET ) K|pA ·pB - 3(n ·pA)(n ·pB)

R3 |2 + O( 1

R8) (3)

(Λ - Ω∆)|X, Y〉 ) 0 (4)

|X, Y〉 ) (X
Y ) (5)

Λ ) (A B
B A ) ∆ ) (1 0

0 -1 ) (6)

Aiaσ,jbσ′ ) (εa - εi)δijδabδσσ′ + (iaσ|jbσ′) + fiaσ,jbσ′
xc -

cxδσσ′(abσ|ijσ) (7)

Biaσ,jbσ′ ) (iaσ|jbσ′) + fiaσ,jbσ′
xc - cxδσσ′(jaσ|ibσ) (8)

fiaσ,jbσ′
xc ) ∫ drdr′φi(r)φa(r)fσσ′

xc(r, r′)φj(r′)φb(r′) (9)

fσσ′
xc(r, r′) ) δ2Exc,sl

δFσ(r)δF′σ(r)
(10)
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3. Computational Details

Ground-state structures were optimized using second-order
Møller-Plesset theory (MP2) within the resolution-of-the-
identity (RI) approximation23-25 and polarized triple-�
valence (def2-TZVPP)26 basis sets. The coordinate file is
given as Supporting Information. The structure was con-
firmed to be a minimum by a force constant calculation27,28

using PBE029 and polarized triple-� valence (def2-TZVP)26

basis sets with additional diffuse augmentation from aug-
cc-pVTZ.30 Starting from this geometry, we increased the
distance between the monomers by stretching the hydrogen
bonds by increments of 1 au and reoptimized the ground-
state geometry in C2h keeping the hydrogen bond length
fixed. For this set of geometries, vertical singlet excitation
energies were computed using the local density approxima-
tion (LDA),31-33 Perdew-Burke-Ernzerhof generalized
gradient approximation (PBE),34 B3LYP global hybrid,35-38

PBE0 global hybrid,29 and BHandH-LYP global hybrid35-37,39

functionals, as well as configuration interaction with single
excitations (CIS), time-dependent Hartree-Fock (TDHF) and
the approximate coupled cluster singles doubles method
CC2.59,60 The TDHF and CIS calculations were performed
using def2-TZVPP26 basis sets, with diffuse augmentation
from aug-cc-pVTZ,30 CC2 using an aug-cc-pVQZ basis,30

and the TD-DFT calculations using def2-TZVP26 basis sets
with diffuse augmentation from aug-cc-pVTZ.30 All calcula-
tions were performed using the TURBOMOLE package40-48

using an m4 grid for DFT calculations. Interaction matrix
elements from monomer transition densities were calculated
according to eq 1, including exchange and overlap effects
where applicable. These calculations were performed using
an implementation described in ref 7.

4. Results

4.1. 2-Pyridone Monomer. We found a monomer ground-
state structure with Cs symmetry. We computed the monomer
vertical excitation energies, transition densities and transition
dipole moments at the RI-MP2 ground-state structure. In all
computations, the HOMO is the 4a′′ orbital (Figure 1). The
5a′′ orbital (Figure 1) is the LUMO in all computations with
semilocal and hybrid density functionals. In TDHF (and
implicitly CC2 and CIS) the 22a′ (an oxygen lone pair)
orbital is the LUMO. While all hybrid functionals as well
as TDHF, CIS and CC2 yield the first A′ excitation as the
S1-state, LDA and PBE incorrectly predict the A′′ excitation
to be S1. In Table 1 we display the vertical excitation energy
and transition dipole moment of the lowest A′ excitation of
the monomer.

The π f π* transition giving rise to the lowest A′
excitation is almost a pure 4a′′f5a′′ transition in TDDFT.
In CC2, however, is it dominated by 4a′′ f 6a′′ and some
weight of 4a′′ f 7a′′ . This is in keeping with the MRCI-Q
results reported by Barbatti et al.50 With CIS and TDHF,
the 4a′′ f 5a′′ transition gets approximately the same weight
as the 4a′′ f 6a′′ transition.

The lowest A′′ excitation is dominated by the 4a′′ f 22a′
transition in TDHF and CIS. In CC2, it is dominated by 21a′
f 6a′′ with some 21a′ f 7a′. In all TDDFT computations,
the lowest A′′ excitation is almost purely 21 f 5a′′ , except
BHandH-LYP, where there is also some degree of 21a′ f
6a′′ .

4.2. 2-Pyridone Dimer Ground-State and Vertical
Excitations. The RI-MP2 ground-state structure of the
2-pyridone dimer was found to have C2h symmetry and is
displayed in Figure 2. Monomer states of A′ symmetry split
into dimer eigenstates with Ag and Bu symmetry, while the
monomer states of A′′ symmetry split into Au and Bg states.
The lowest Ag and Bu excitation energies are given in Table
2. On the basis of the monomer computations, methods
predicting the lowest monomer A′ transition to be 4a′′ f
5a′′ , should predict that the lowest Ag and Bu transitions are
transitions between the occupied states 4au and 4bg and the
virtual states 5au and 5bg. This turns out to be the case.
Likewise, the CC2 excitation is dominated by transitions
from 4au and 4bg into 6au and 6bg.

Figure 1. Monomer π (4a′′ ), n (21a′), and π* (5a′′ )-orbitals.
Molecular orbital (MO) plots were generated using a contour
value of 0.05 and PBE/aug-def2-TZVP orbitals.

Table 1. Vertical Excitation Energy, ∆E (in eV), and
Transition Dipole Moment, µ (in Debye), in the Length
Representation and the Assignment of the Lowest A′ and
A′′ Excitationsa,b

21A′ 11A′′

∆E µ assignment ∆E µ assignment

LDA 3.99 2.00 π f π* 3.53 0.09 n f π*
PBE 3.99 2.00 π f π* 3.58 0.09 n f π*
B3-LYP 4.26 2.33 π f π* 4.44 0.10 n f π*
PBE0 4.35 2.37 π f π* 4.60 0.11 n f π*
BHandH-LYP 4.58 2.67 π f π* 5.40 0.36 π f C(3s)
TDHF 4.89 3.00 π f π* 5.73 0.42 π f C(3s)
CIS 5.19 3.39 π f π* 5.74 0.43 π f C(3s)
CC2 4.36 2.50 π f π* 4.54 0.04 n f π*
CASPT2a 4.37 n/a π f π* 4.99 n/a n f π*
MRCI-Qb 4.70 n/a π f π* n/a n/a n/a

a Ref 49. b Ref 50.

Figure 2. Structure of the 2-pyridone dimer. We will use two
length scales in this article. The distance, R, between the
centers of the monomers, as defined above, and the elonga-
tion of the hydrogen bond relative to its equilibrium value (in
integer steps from 0a.u. to 8a.u.). At the equilibrium structure,
R ) 11.15 au.
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For symmetry reasons, the Ag excitations are dipole
forbidden and the transition dipole moment of the Bu state
should be roughly �2 times the transition dipole moment
of the monomer A′ excitation. As can be seen from
comparison of Tables 1 and 2, this is true for PBE0,
BHandH-LYP, TDHF, CC2, and CIS, but not for B3-LYP,
PBE, and LDA. As will be discussed below, this is due to
an admixture of charge-transfer excitations into the local
excitations in the case of B3-LYP and the incorrect ordering
of local and charge transfer excitations with semilocal
functionals.

4.3. Dimer Davydov Splittings. We will now investigate
how the design of a density functional affects the splitting
at ranges where chromophores (in this case the 2-pyridone
monomers) are separated by several au. This is an important
regime, both to real cases of energy transfer in nature and
to the application of energy transfer as a spectroscopic ruler.

The calculated Davydov splittings of the 21Ag and 11Bu

are displayed in Table 3 and Figure 3. An experimental value
for the Davydov splitting is reported for the dimer in the
gas phase. Müller et al.19 found a splitting on the order of
40-50 cm-1. This value, however, refers to a vibronically
resolved spectrum and cannot easily be related to the splitting
of vertical excitation energies, as considered here. Strong
relaxation effects seem to play a role and warrant further
investigations which are beyond the scope of the present
work. As benchmark, we use results from CC2 calculations,
which is the most accurate level of theory that is applicable
to a system of the present size. CC2 yields accurate excitation
energies for systems with single reference ground states. The

D1 diagnostic of Janssen and Nielsen51 is in the range of
0.07-0.08, indicating that CC2 should be reliable here.
Furthermore, the T2 measure for double excitations is in the
area of 8-10%. This is also indicative that we should be
able to rely on the CC2 calculations.

The global hybrid functional BHandH-LYP(cx ) 0.5)
predicts the Davydov splitting accurately within the entire
tested range. TDHF(cx ) 1) fares well at the equilibrium
hydrogen bond length but overestimates the splitting as the
hydrogen bonds are stretched. B3-LYP(cx ) 0.20) and
PBE0(cx ) 0.25) overestimate the splitting at the equilibrium
hydrogen bond length but perform better when the hydrogen
bond is stretched. One can clearly see the dependence of
the splitting on the Hartree-Fock mixing coefficient cx. As
the distance between the monomers increases to 8 au greater
than the equilibrium distance, one can observe a clear
tendency toward increased splitting with respect to cx going
from B3-LYP to PBE0, BHandH-LYP, and TDHF.

LDA and PBE, however, fail completely to predict the
correct splitting. Already at the equilibrium distance the
splitting between the lowest Ag and Bu states is significantly

Table 2. Vertical Excitation Energy, ∆E (in eV), and
Transition Dipole Moment, µ (in Debye) of the 2-Pyridone
Dimera

21Ag 11Bu

∆E µ ∆E µ

LDA 3.348 0.00 3.382 0.65
PBE 3.371 0.00 3.403 0.62
B3-LYP 4.176 0.00 4.333 0.70
PBE0 4.328 0.00 4.511 3.05
BHandH-LYP 4.616 0.00 4.752 3.47
TDHF 4.936 0.00 5.062 3.89
CIS 5.226 0.00 5.375 4.44
CC2 4.290 0.00 4.426 3.23

a All excitations have π f π* character.

Table 3. Davydov Splitting between the Lowest Singlet Ag

Excitation and the Lowest Singlet Bu Excitation at Different
Values of the Elongation of the Hydrogen Bondsa

method 0 au 1 au 2 au 3 au 4 au 5 au 6 au 7 au 8 au

LDA 278 53 10 2 0 0 0 0 0
PBE 259 50 9 2 0 0 0 0 0
B3-LYP 1266 629 423 291 209 159 125 100 82
PBE0 1480 727 428 292 214 164 130 104 85
BHandH-LYP 1101 716 493 356 267 208 165 134 110
TDHF 1019 745 544 408 314 248 200 163 135
CIS 1205 897 662 500 387 306 247 202 167
CC2 1099 682 456 323 239 183 144 115 93

a Distances in a.u. relative to the equilibrium bond length. Note
that the lowest singlet excited states for LDA and PBE are charge
transfer states, not the localized excitations we are studying. All
splittings in cm-1.

Figure 3. Decay of the Davydov splitting calculated by
different methods. Splittings in cm-1. R is the distance
between the centers of the two monomers, the equilibrium
distance is 11.15 au.

Figure 4. Decay of the first splitting calculated by PBE and
PBE0 in cm-1. One sees that while the PBE dimer excitation
energies are far away from the PBE monomer first excitation
energy, the PBE0 dimer excitation energy tends to its
monomer excitation energy as the range increases. This
indicates that the lowest PBE0 excitation is local while that of
PBE is a charge-transfer excitation. LDA (not displayed) has
the same behavior as PBE.
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less than for the other functionals, and from there the splitting
rapidly falls off to zero as the hydrogen bond length is
stretched.

The reason for this discrepancy is that the first excited-
state in the LDA and PBE calculations is not the localized
excitation, but rather the corresponding charge-transfer (CT)
excitation. It is well-known52,53 that both Hartree-Fock,
semilocal density functionals and their hybrids will estimate
the energy of CT excitations to be the Kohn-Sham gap
εLUMO - εHOMO at large R, while the correct excitation energy
in the large R limit is the monomer excitation energy. For
semilocal functionals, the Kohn-Sham gap is generally
lower than the actual charge transfer excitation energy.54 The
PBE HOMO-LUMO gap at 8 au is 3.27 eV and the LDA
gap is 3.24 eV, which coincides with the excitation energies
of the 21Ag and 11Bu states given in Table 4. Both for LDA
and PBE, the excitation energy of the 31Ag state is 3.99 eV
and that of the 21Bu state is 4.00 eV, close or identical to
the monomer excitation energies reported in Table 1. Also,
the oscillator strength of a long-range charge-transfer excita-
tion is negligible because of the vanishing overlap between
eigenstates centered on opposite systems. We observe that
for LDA and PBE, the oscillator strength for the transition
to 11Bu is close to zero, while that of the transition to 21Bu

is not. In contrast, for PBE0 the excitation energy of the
21Ag and 11Bu states equal the vertical excitation energy to
the 21A′ state of the monomer and the oscillator strength of
the 11Bu transition is not small. We conclude that in LDA
and PBE, the first pair of excitations are spurious charge
transfer excitations, while the local excitations relevant to
our investigation is the second pair of excitations. Table 5
displays the splitting of the second pair of excited states,
showing the relevant Davydov splitting predicted by LDA
and PBE.

However, even in the case of B3-LYP and PBE0, there is
significant admixture of the CT excitations into the lowest
excitations at short-range. At long-range, the dimer molecular

orbitals are linear combinations of pairs of degenerate
monomer orbitals, and

Here, |a′′ A/B〉 denotes a monomer orbital in the a′′ irreducible
representation (IRREP) of Cs and |au〉 and |bg〉 are the
corresponding dimer orbitals in the au and bg IRREPs of C2h.
If the monomer S0fS1 excitation is a pure 4a′′ f 5a′′
transition, the TDDFT excitation vector for the resulting Ag

dimer state has the form

for a local excitation and

for a CT excitation. This is similar for the Bu states. Thus,
the local and CT excitations are plus and minus linear
combinations of two dimer configurations with 50% weight
each. The deviation of the weight of the dimer configurations
from 50% thus implies the admixture of CT character into
the local excitation and vice versa.

In Figure 5 and Figure 6 we have plotted the weight of
the dominant configuration in the excitations into the 21Ag

and 11Bu states, respectively. The graphs for PBE and LDA
stay close to 50% at all ranges. This means that the
excitations into their 21Ag and 11Bu states have pure charge
transfer character at all ranges. Likewise, the graphs for
BHandH-LYP display the same behavior. However, in this
case the excitations into the 21Ag and 11Bu states have purely
local character. The behavior of PBE0 and B3-LYP is
different. In the case of the excitation into 21Ag, a single
configuration has a large weight in PBE0 and yet more so
in B3-LYP when the monomers are not too far apart,
indicating a large admixture of CT character. As the distance

Table 4. Oscillator Strength f (Length Representation) and
Excitation Energy ∆E (in eV) for the Two Lowest Pairs of
Singlet Excited States Evaluated When the Hydrogen Bond
Has Been Stretched by 8 au

f ∆E

excitation LDA PBE PBE0 LDA PBE PBE0

21Ag 0 0 0 3.24 3.27 4.35
31Ag 0 0 0 3.99 3.99 4.75
11Bu 5 × 10-8 7 × 10-8 0.18 3.24 3.27 4.36
21Bu 0.12 0.12 4 × 10-7 4.00 4.00 4.75

Table 5. Energy of 21Bu Minus the Energy of the 31Ag in
cm-1a

method 0 au 1 au 2 au 3 au 4 au 5 au 6 au 7 au 8 au

LDA 260 364 286 208 153 116 90 71 58
PBE 291 368 286 207 153 116 91 72 58
PBE0 -678 -155 -28 -5 -1 0 0 0 0

a This is the LDA and PBE predictions for the Davydov splitting
between the localized excited states. The PBE0 states shown are
charge transfer excitations. The splitting for PBE at 4 au failed to
converge.

Figure 5. Weight of the dominant configuration in the 21Ag

excitation as a function of the distance, R, between the centers
of the monomers.

|a''A/B〉 ) 1

√2
(〈au〉 ( 〈bg〉) (11)

|1Ag〉 loc )
1

√2
(|4aA

′′〉〈 5aA
′′|+ |4aB

′′〉〈 5aB
′′|)

)
1

√2
(|4au〉〈 5au|+ |4bg〉〈 5bg|)

(12)

|1Ag〉CT )
1

√2
(|4aA

′′〉〈 5aB
′′|+ |4aB

′′〉〈 5aA
′′|)

)
1

√2
(|4au〉〈 5au|- |4bg〉〈 5bg|)

(13)
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between the monomers increases, they fall off to 50%,
meaning that the transition has acquired almost purely local
character. For PBE0 the excitation into 11Bu appears to be
purely local at all ranges based in Figure 6. However, the
B3-LYP curve starts at close to 60% at the equilibrium
distance, then jumps up to close to 100% when the monomers
have been pulled 2a.u. apart and then returns to 50%. This
avoided crossing behavior might indicate that the excitation
into 11Bu at the dimer equilibrium structure is incorrectly
predicted to be a charge transfer state by B3-LYP. This is
also supported by the low dimer transition dipole moment
11Bu reported for B3-LYP in Table 2. As the monomers are
pulled apart, it then appears that an even admixture of charge
transfer and local excitations arises. At long-range, the local
excitation is below the charge transfer excitation. In particular
for B3-LYP, the excitations into 21Ag and 11Bu do not have
corresponding weights of local excitations before the hy-
drogen bond has been stretched approximately 4 au For
PBE0, both excitations become purely local at smaller range.
The different extent of configuration mixing in PBE0 and
B3-LYP rationalizes the bump in the B3-LYP graph in Figure
3 for values of R between 11 au and 13 au.

4.4. Intermolecular Perturbation Theory. Förster’s
dipole-dipole expression goes as 1/R6, with the separation
distance R between the chromophores. This is not so at
shorter range, however, where higher order transition mul-
tipole interactions (which give terms which go as 1/R8, 1/R10,
etc.) and Dexter exchange start playing a role. Fückel et al.7

found for another system that the dipole-dipole approxima-
tion was accurate for distances in excess of approximately
50 Å. The Davydov splitting approach also predicts the same
1/R6 long-range decay since the splitting goes like 1/R3 at
long-range. Figure 3 shows the splitting of each method
relative to the distance between the centers of the two
monomers. Using eq 1, we have calculated the full Coulomb
interaction between the monomer transition densities, V12

AB,
at the equilibrium hydrogen bond length (Table 7) and when
it has been stretched 8 au (Table 6). Even when the hydrogen
bonds are 8 au longer than their equilibrium length, one
observes a significant discrepancy (approximately a factor
2/3) between the splitting calculated from the dipole-dipole
interaction and the splitting from the supermolecular calcula-
tion. Hence, the dipole-dipole term is insufficient at this
range. This is in keeping with the findings of Fückel et al.7

However, the splitting appears to be very well described by
the full Coulomb interaction of monomer transition densities,
while Dexter exchange does not appear to play any signifi-
cant role at this range. Hence, using the interaction of
transition densities appears sufficient at this range. This also
implies that, at this range, the ability of a functional to
correctly predict the Davydov splitting is determined exclu-
sively by its ability to correctly reproduce the monomer
transition density.

As we can see from Table 7, however, at equilibrium
distance there is a dramatic discrepancy between the splitting
as predicted by the transition densities of the monomers and
the splitting from the supermolecular calculations. This is a
regime where exact exchange in the functional matters, so
it is reasonable that including exchange would improve the
splittings from the monomer calculations. However, Dexter
exchange makes the already-too-small splitting even smaller.
It would seem reasonable to assume that since the monomer
geometry does not change much as one stretches the
hydrogen bond, this is not due to a qualitative change in the
ability of functionals to predict the transition densities.
Likely, first-order perturbation theory is insufficient at the
dimer equlibrium structure. Higher-order effects, such as
induction, begin to play a role, as well as nonvanishing
overlap of the monomer wave functions. Accounting for all
these effects is cumbersome, and convergence of the
perturbation series is not guaranteed. The breakdown of
intermolecular perturbation theory calls into question the
equivalence between the exciton splitting method and För-

Figure 6. Weight of the dominant configuration in the 11Bu

excitation as a function of R.

Table 6. Splitting, ∆Ω (cm-1), at 8 au from our TDDFT
Calculations Compared to Twice the Full Transition Density
Interaction (V12

AB, Calculated Using Eq 1) and Twice the
Dipole-Dipole Interaction (Labeled dip-dip)a

method ∆Ω
2V12

AB

(Coul+exch)
2V12

AB

(Coul only) 2 dip-dip
monomer

dipole

LDA 58 n/a n/a 34 0.784
PBE 58 n/a n/a 35 0.784
B3LYP 82 81 81 51 0.914
PBE0 85 84 84 53 0.931
BHandH-LYP 110 109 109 70 1.049
TDHF 134 135 135 89 1.177

a The column labeled (Coul only) contains only the Coulomb
interaction between the transition densities. The (Coul+exch)
column contains also the exchange part. Also displayed is the size
of the monomer transition dipole moment in au.

Table 7. Splitting, ∆Ω (cm-1), at 0 au from our TDDFT
Calculations Compared to Twice the Full Transition Density
Interaction (V12

AB, Calculated Using Eq 1) and Twice the
Dipole-Dipole Interaction (Labeled dip-dip)a

method ∆Ω
2V12

AB

(Coul+exch)
2V12

AB

(Coul only) 2 dip-dip
monomer

dipole

LDA 260 n/a n/a 169 0.734
PBE 291 n/a n/a 170 0.733
B3LYP 1266 566 636 252 0.877
PBE0 1480 596 668 264 0.897
BHandH-LYP 1101 769 856 348 1.031
TDHF 1019 909 992 451 1.175

a The column labeled (Coul only) contains only the Coulomb
interaction between the transition densities. The (Coul+exch)
column contains also the exchange part. Also displayed is the size
of the monomer transition dipole moment in au.
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ster’s transition density interaction at a more fundamental
level than the mere insufficiency of the dipole-dipole
interaction or the neglect of exchange. Thus, even in the
hydrogen-bonded pyridone dimer, the chromophore interac-
tion is too strong for a perturbative treatment in Förster’s
spirit.

Fink et al.55 have studied EET between two benzene
molecules. They found that TD-DFT with B3-LYP suffered
from the same problem of intruder charge-transfer excitation
states as we found in our computations only with LDA and
PBE. The conclusion of ref 55 was thus that TDDFT was
unreliable for EET calculations and that TDHF was the
preferable choice. Our present results suggest that this is an
overly pessimistic view: Although B3-LYP fails, global
hybrid functionals with a larger fraction of exact exchange
perform well, while TDHF overestimates the monomer
transition dipole moment leading to spuriously large cou-
plings at long-range.

5. Conclusion

We have tested the ability of various modern functionals to
correctly predict the Davydov splitting. Semilocal functionals
seem unsuitable for routine treatments of the Davydov
splitting at realistic chromophore separations because of
charge-transfer intruder states, in line with previous obser-
vations.52,55,56 The global hybrid functional BHandH-LYP
is in good agreement with splittings calculated with CC2
over the investigated range. We conclude that the method
of choice for larger applications is hybrid TDDFT with a
large fraction of exact exchange, calibrated by higher level
methods such as CC2. Whether range-separated hybrid
functionals57,58 improve on the BHandH-LYP results further
remains to be investigated.

There is an observable breakdown of the equivalence
between the exciton splitting method and Förster’s pertur-
bative approach at equilibrium distance even for the hydrogen-
bonded 2-pyridone dimer. We attribute this to the breakdown
of first-order degenerate perturbation theory when the
coupling becomes too strong. More effort is necessary to
develop methods that accurately predict EET rates over the
full range of chromophore separations.
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(41) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem.
Phys. Lett. 1989, 162, 165.

(42) Hättig, C.; Weigend, F. J. Chem. Phys. 2000, 113, 5154.
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(46) Köhn, A.; Hättig, C. J. Chem. Phys. 2003, 119, 5021.

(47) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor.
Chem. Acc. 1997, 97, 119.

(48) Weigend, F.; Häser, M. Theor. Chem. Acc. 1997, 97, 331.

(49) Sobolewski, A. L.; Adamowicz, L. J. Phys. Chem. 1996, 100,
3933.

(50) Barbatti, M.; Aquino, A. J. A.; Lischka, H. Chem. Phys. 2008,
349, 278.

(51) Janssen, C. L.; Nielsen, I. M. B. Chem. Phys. Lett. 1998,
290, 423.

(52) Dreuw, A.; Weisman, J. L.; Head-Gordon, M. J. Chem. Phys.
2003, 119, 2943.

(53) Hieringer, W.; Görling, A. Chem. Phys. Lett. 2006, 419, 557.

(54) Tozer, D. J. J. Chem. Phys. 2003, 119, 12697.

(55) Fink, R. F.; Pfister, J.; Zhao, H. M.; Engels, B. Chem. Phys.
2008, 346, 275.

(56) Dreuw, A.; Fleming, G. R.; Head-Gordon, M. Phys. Chem.
Chem. Phys. 2003, 5, 3247.

(57) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004,
393, 51.

(58) Vydrov, O. A.; Scuseria, G. E. J. Chem. Phys. 2006, 125,
234109.

(59) Christiansen, O.; Koch, H.; Jörgensen, P. Chem. Phys. Lett.
1995, 243, 409.

(60) Hättig, C. J. Chem. Phys. 2003, 118, 7751.

CT800551G

880 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Sagvolden et al.



Calculation of Quasi-Particle Energies of Aromatic
Self-Assembled Monolayers on Au(111)

Yan Li,* Deyu Lu, and Giulia Galli

Chemistry Department, UniVersity of California, DaVis, California 95616

Received October 31, 2008

Abstract: We present many-body perturbation theory calculations of the electronic properties
of phenylene diisocyanide self-assembled monolayers (SAMs) on a gold surface. Using structural
models obtained within density functional theory (DFT), we have investigated how the SAM
molecular energies are modified by self-energy corrections and how they are affected by the
presence of the surface. We have employed a combination of GW (G ) Green’s function; W )
screened Coulomb interaction) calculations of the SAM quasi-particle energies and a semiclas-
sical image potential model to account for surface polarization effects. We find that it is essential
to include both quasi-particle corrections and surface screening in order to provide a reasonable
estimate of the energy level alignment at a SAM-metal interface. In particular, our results show
that within the GW approximation the energy distance between phenylene diisocyanide SAM
energy levels and the gold surface Fermi level is much larger than that found within DFT, e.g.,
more than double in the case of low packing densities of the SAM.

1. Introduction

The study of the self-assembly of molecular monolayers of
materials and their applications for electronic and optical
devices has been an active field of research for the past 2
decades.1 In particular, aromatic self-assembled monolayers
(SAMs) have been proposed to be promising candidates for
electron-transport applications because of the delocalized
nature of their π electrons and the relatively small energy
gap between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO), which
may give rise to low barriers for electron or hole transport.
In order to predict such barriers and thus the performance
of SAM-metal devices, it is essential to understand, at the
microscopic level, the structural and electronic properties of
the molecule-electrode interfaces.

Density functional theory (DFT) has been widely used to
study these properties, and usually the structure and energet-
ics of SAM-metal interfaces are reasonably well described,
as compared, e.g., to experimental findings. On the other
hand, the deficiencies of DFT in describing energy levels in
small molecules are well-known: the Kohn-Sham energy
eigenvalues are usually not a good representation of mo-

lecular orbital energies, and the predicted HOMO-LUMO
gap is in most cases underestimated with respect to the
experimentally measured difference of electron removal and
addition energies. As a consequence, the conductance of
electrons or holes estimated using |EF - EHOMO| or |EF -
ELUMO| is often seriously overestimated (EF is the Fermi
level). Moreover, the electrostatic polarization from the metal
substrate, partly missing in conventional DFT calculations,
may also significantly affect the values of electron removal
and addition energies. For example, it was recently reported
that the computed conductance of single-molecule benzene-
diamine-gold junctions as obtained within DFT is about 7
times larger than that in experiment2 and the self-energy
correction and surface polarization effect were estimated to
shift the HOMO level by -3 and +1 eV, respectively.

In order to gain insight into the alignment of SAM-
metal energy levels beyond semilocal DFT approximations,
we have carried out calculations of SAM quasi-particle
energies using many-body perturbation theory within the GW
approximation (G ) Green’s function; W ) screened
Coulomb interaction). We have also included surface po-
larization effects by using a semiclassical image potential
model, which was proposed and successfully employed in
several recent studies of organics-metal interfaces or* Corresponding author e-mail: ynli@ucdavis.edu.
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junctions.2,3 In particular, we have studied SAMs of 1,4-
phenylene diisocyanide (PDI) on Au(111), and we have
considered different surface coverages. The energetic, elec-
tronic, and vibrational properties of PDI SAMs adsorbed on
the Au(111) surface have been reported in an earlier work,4

and here we use the structural model determined in ref 4 to
investigate the energy level alignment at the interface.

It has been suggested that aromatic isocyanides may have
promising transport properties: the presence of a triple bond
in the isocyanide group (-NC) may effectively connect pπ
orbitals residing on the aromatic moiety and the dπ orbitals
pointing out of the gold surface, thus providing a good
network of delocalized electrons and thereby lowering the
barrier for charge injection from the metal into the organic
semiconductor.5 However, no consensus has been reached
about the performance of such systems from electrical
conductivity measurements.6-11 For example, the study of
Chu et al. on the conductance of alkanes and biphenyl- and
diphenylacetylene bridges with thiol and isocyanide terminals
suggested that the conductivity is enhanced by an order of
magnitude when the thiol-gold linkage is replaced with an
isocyanide-gold linkage,11 while the opposite trend was
reported by other groups.10

Most of the existing theoretical investigations of transport
properties of isocyanide molecules have been based on DFT
in the local density (LDA) or generalized-gradient-corrected
(GGA) approximations and on nonequilibrium Green func-
tion calculations.12,13 One of these studies12 reported that in
a system comprising a single PDI molecule sandwiched
between two gold electrodes the gold Fermi level (EF) is in
near-resonance with the delocalized LUMO state of the PDI
molecule, leading to a large zero-bias conductance (45.8 µS)
that is much higher than that of benzenedithiol (4.8 µS)
calculated using the same method.14 Similarly, a moderate
electron barrier |ELUMO - EF| ∼ 0.7 eV was obtained within
DFT for the low-density PDI SAM adsorbed on the Au(111)
surface.4 These predictions appear to be consistent with the
experimental findings of Chu et al.11 However, as was
already mentioned, transport calculations using energy levels
obtained using DFT within LDA or GGA usually overesti-
mate conductance values, because they underestimate energy
barriers for charge transport.15,16 Therefore, it is important
to explore ways to obtain the relative position of the SAM
and metal surface energy levels, beyond local and semilocal
DFT approximations.

The rest of the paper is organized as follows: in section
2, we describe the method and geometrical models used in
our calculation. In section 3, we present the GW self-energy
calculations and compare them to the DFT results. In section
4, we describe the semiclassical model for the polarization
effect from the metal substrate. Section 5 concludes the
paper.

2. Methods

Because of the complexity and large computational cost of
quasi-particle energy calculations of a system comprising a
SAM and a metal, we have split our calculation into two
parts: the self-energy corrections for a free-standing PDI
SAM were first obtained through a GW self-energy calcula-

tion, and we assume that this correction term remains the
same after the slight structural relaxation of the SAM upon
adsorption on the metal surface. Surface polarization effects
were then included as an external perturbation to the orbitals
of the adsorbed SAM through a semiclassical image potential
model.

The free-standing PDI SAMs were arranged in (�3 × �3)
or (3 × 3) unit cells, which correspond to high (Θ ) 1) and
low coverage (Θ ) 1/3), respectively. The nearest-neighbor
distances, dNN, are 5.10 and 8.83 Å for the two packing
densities, assuming a lattice constant of 4.16 Å for the
underlying Au(111) surface in the adsorbate system, as
determined from DFT calculations for bulk gold.4 The two-
dimensional periodic SAM was then placed in a supercell
with a 10 Å vacuum separation between SAMs in neighbor-
ing supercells in the self-consistent ground-state calculations.
The Brillouin zone was sampled with a 6 × 6 × 1
Monkhorst-Park grid of k points for high coverage and a 3
× 3 × 1 grid for the low-coverage structure. The SAM band
structures were generated by non-self-consistent calculations
along the edges of the irreducible Brillouin zone.

Both DFT and GW calculations were performed using the
ABINIT code.17,18 Geometries of the free-standing PDI
SAMs were first fully relaxed, and their ground-state
properties were evaluated by performing plane-wave pseudo-
potential calculations within DFT, in the Perdew-Burke-
Ernzerhof (PBE) GGA.19 We employed norm-conserving
pseudopotentials generated with the PBE exchange and
correlation functionals, and details can be found in ref 4.
Wave functions were expanded in plane waves with an
energy cutoff of 50 Ry. DFT energy eigenvalues and wave
functions were then used to construct the inverse dielectric
matrix εG,G′

-1 (G and G′ indicate the reciprocal lattice vectors)
and evaluate the self-energy operator Σ in the GW ap-
proximation. The frequency dependence of the dielectric
matrix was approximated by the plasmon-pole model (PPM)
proposed by Godby and Needs.20 The self-energy correction
for orbital i was then estimated as ∆Ei ) 〈Ψi|Σ - Vxc|Ψi〉 ,
where Vxc is the DFT exchange-correlation (xc) potential and
|Ψi〉 is the DFT wave function of orbital i. In the high-
coverage case (Θ ) 1), the matrix elements of the self-energy
operator were evaluated with a 25 Ry energy cutoff for the
exchange part Σx and a 15 Ry energy cutoff for the
correlation part Σc; a total of 400 conduction bands (∼60
eV above EHOMO) were included. In the low-coverage case
(Θ ) 1/3), a 25 Ry cutoff for Σx, a 10 Ry cutoff for Σc, and
700 conduction bands (∼45 eV above EHOMO) were used.
Further increasing the energy cutoffs or the number of
conduction bands has little influence on the magnitude of
the quasi-particle gap, while both HOMO and LUMO are
slightly shifted to lower energies.

For finite (nonperiodic) systems, one needs to eliminate
spurious interactions between different supercells, when one
evaluates the electron removal and addition energies. In order
to do so in our GW calculations, we used the two-
dimensional Coulomb cutoff technique proposed in ref 21,
For high-density PDI SAMs, the differences between quasi-
particle energies computed with or without a Coulomb cutoff
are on the order of 0.1-0.2 eV.
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3. Quasi-Particle Energies of PDI SAMs

The PDI molecule contains an aromatic ring and two
isocyanide groups. The molecular orbitals can be separated
into two groups: those derived from the benzene molecular
orbitals and those mainly localized on the isocyanide groups.
The HOMO-1, HOMO, LUMO, and LUMO+1 states of
gas-phase PDI and the corresponding DFT orbital energies
are shown in Figure 1: these are derived from the doubly
degenerate HOMOs and LUMOs of benzene. The degen-
eracy present in benzene is now lifted in the HOMO and
LUMO of the PDI molecule, defined as πP and πP

*; the π
orbitals on the benzene ring couple to those on the isocyanide
groups, and their energy levels are drawn closer, with a gap
of 3.8 eV. At the same time, the HOMO-1 and LUMO+1
states remain the same as those in benzene, and they are
thus defined as πB and πB

* . The energy difference between
πB and πB

* (∼5.1 eV) is close to the corresponding one of
the benzene molecule computed within DFT.3 The GW
quasi-particle gap of gas-phase benzene is estimated to be
about 10.5 eV, i.e., ∆Eg ()Eg

GW - Eg
DFT) ∼ 5 eV, and one

expects a similar ∆Eg for gas-phase PDI. Indeed, the total
energy differences of the neutral molecule and corresponding
cation-anion yield EHOMO ) -9.5 eV and ELUMO ) -0.9
eV (Eg ) 8.6 eV). These energy levels were obtained using
Gaussian03,22 DFT/PBE with a aug-cc-pvTZ basis set.

When PDI molecules are arranged into a periodic SAM
structure, the molecular energy levels broaden and shift with
respect to those of the isolated molecule because of
intermolecular interactions within the SAM. Figure 2a plots
the DFT band structure of the (3 × 3) PDI SAM. The
occupied bands are nearly dispersionless and so are the lower
unoccupied bands. Other bands higher in energies show
moderate dispersion. In contrast, for the (�3 × �3) high-
density SAM (Figure 2b), the dispersion within the bands
becomes more pronounced. In addition, the energy bands
are found to shift down by about 1 eV relative to those of
the low-density SAM. This is caused by the local charge
polarization effect between the aromatic moiety and the two
isocyanide groups because of the strong acceptor nature of
the latter. At high density, the molecules experience a deeper
potential well formed by the two local dipole layers at the
SAM edges, and therefore the energy levels shift down with
respect to the vacuum level. For the same reason, πB and πB

*

are located at lower energy in PDI than in benzene, even in
the gas phase. An opposite trend is found when the -NC
group is replaced by the -NH 2 group, which is a strong
electron donor.

Next, we calculate the GW self-energy corrections to the
DFT energy bands. At low coverage, because the bands are
mostly dispersionless, the corrections are expected to be
similar at different k points. Indeed, the GW corrections at,
for example, Γ and K differ by only a few tens of
millielectronvolts. Table 1 shows the DFT Kohn-Sham
orbital energies EDFT and GW quasi-particle energies EGW

at Γ ) (0, 0, 0). The states labeled as σ( correspond to σ
orbitals localized on the isocyanide groups with even or odd
horizontal mirror symmetry, respectively. Although DFT
energies of σ( states are nearly degenerate with that of the
πB state, self-energy corrections are larger for these localized
states and the GW quasi-particle energies turned out to be
about 0.6 eV below that of πB. All energies here have been
adjusted relative to the vacuum energy level, which is taken
as the plane-averaged Hartree potential (containing both
electronic and ionic contributions) in the middle of the
vacuum region.

Figure 1. Isosurface plots of HOMO-1, HOMO, LUMO, and LUMO+1 states of the PDI molecule in the gas phase, as obtained
within DFT/PBE. The corresponding orbital energies are -7.6, -6.9, -3.1, and -2.5 eV, from left to right.

Figure 2. DFT/PBE band structure of PDI SAMs at low and
high packing densities (see the text). Inset: irreducible Brillouin
zone in the x-y plane. All energies have been adjusted to
the vacuum energy level.
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A few observations from Table 1: first, the energy levels
of occupied states shift down and those of unoccupied state
shift up when GW corrections are added to the DFT
eigenvalues. This shift is not symmetric. For example, the
energies of the πP and πB orbitals are shifted by -1.50 and
-1.40 eV, while those of the πP

* and πB
* orbitals are shifted

by 3.06 and 2.98 eV, respectively. Second, self-energy
corrections are strongly dependent on the localization of the
single-particle wave functions. For more localized states such
as σ(, the correction is about 0.7 eV larger than that for
delocalized πP and πB states. Third, the quasi-particle gap is
8.3 eV, much larger than the DFT/PBE, HOMO-LUMO
gap, but it is still smaller than the quasi-particle gap of the
gas-phase PDI molecule (8.6 eV). The energy distance
between πB and πB

* also increases from 5.1 to 9.6 eV, and it
is close to that of the gas-phase benzene molecule (10.5 eV)
estimated within GW.3 The fact that the energy separations
are smaller in the SAM than in the isolated molecule
indicates that even at low density there exists a weak
screening within the SAM that reduces the separation
between HOMO and LUMO, in comparison with the case
of an isolated molecule.

Similarly, one expects the GW gap of SAMs to further
decrease as the packing density increases. This is indeed the
case for the high-density SAM, as shown in Table 2. Self-
energy corrections are presented at different k points: Γ, K1,
and M2. One finds that although the dispersion of the DFT
bands can be as large as 1-1.5 eV (see also Figure 2b) the
GW corrections (∆E) for different k points amount to a shift
that is almost rigid. The vertical gaps between πP and πP

*

are 7.9, 7.3, and 7.2 eV at the three k points shown in Table
2, obviously smaller than the corresponding values at low
packing density.

Although a direct comparison with the experiment is not
available for the energy levels of the PDI molecule and PDI
SAM, we can estimate possible inaccuracies of our GW
approach by comparing it with the experimental results
obtained for the benzene molecule. We carried out quasi-
particle calculations for benzene using a face-centered-cubic
supercell of lattice constant a ) 18.5 Å. Electronic wave
functions were obtained from DFT/LDA ground-state cal-
culations and expanded in plane waves with an energy cutoff
of 50 Ry. GW corrections were evaluated with energy cutoffs
of 20 and 10 Ry for the exchange and correlation parts,
respectively, and with a total of 1000 conduction bands (∼50

eV above EHOMO). Using the PPM by Godby and Needs, we
found quasi-particle energies of the HOMO (-8.35 eV) and
LUMO (1.85 eV) levels of benzene in good agreement with
those obtained by Niehaus et al., who carried out GW
calculations with Gaussian-type orbitals.23 However, both
energies are shifted by about 1 eV compared with values
obtained from experiments24,25 and by doing total energy
differences within LDA. There are several factors contribut-
ing to this energy shift: (1) As mentioned earlier in section
2, we found that the GW-corrected orbital energies always
shift downward when one increases the plane-wave energy
cutoff for the self-energy operator or includes more conduc-
tion bands for the dielectric matrix calculation. The conver-
gence on the latter was found to be rather slow. The
asymptotic limit of the quasi-particle energies was obtained
by varying the energy cutoff of the sum over conduction
bands measured from the HOMO level (defined as Ec),
similar to the procedure of Umari et al.26 By extrapolating
the GW corrections to Ec f ∞, we found EHOMO

∞ ) -8.65
eV and ELUMO

∞ ) 1.46 eV. (2) Another possible source of
error is the use of a PPM instead of explicit energy
integration over the frequency dependence of the dielectric
function. It has been demonstrated earlier that GW calcula-
tions with PPM yield reasonable results for the ionization
potential and electron affinity of selected isolated systems.27

Yet, the influence of PPM on aromatic systems such as PDI
SAMs is not clear. Furthermore, we found that that using
different PPMs such as those proposed by Godby and
Needs20 and by von der Linden and Horsch,28 the GW energy
corrections can differ by about 0.3-0.4 eV. (3) Additional
corrections may be obtained by performing self-consistent
GW calculation and/or by going beyond the random-phase
approximation for the dielectric matrix. For the sake of
completeness, we note that the GW results on the benzene
molecule reported by Tiago and Chelikowsky29 are in good
agreement with experiment. Several numerical approxima-
tions different from those used here were adopted in ref 29,
and the origin of the discrepancy between our and ref 23
results and Tiago and Chelikowsky’s results is not fully
understood. Overall, it is not unreasonable to expect that the
position of the HOMO and LUMO levels of the PDI
molecule and of the SAMs computed here may be rigidly
shifted upward with respect to experiment by approximately
the same amount.

In summary, we found that through application of GW
self-energy corrections to the Kohn-Sham energy levels of
PDI SAM structures the HOMO-LUMO gap is significantly
increased, with the occupied and unoccupied bands shifted
in opposite directions. The magnitude of the shift depends
on the localization of the orbitals, but it only varies slightly
within the same band. At high packing density, screening
among neighboring molecules decreases the HOMO-LUMO
gap by about 1 eV. Because it was found that low coverage
of PDI SAM is energetically more favorable on the Au(111)
surface,4 we will focus on the (3 × 3) structure in the
following and apply the GW energy corrections computed
above to the adsorbed SAM structure. However, before doing
so, we discuss the surface polarization in the next section.

Table 1. DFT/PBE Single-Particle Energies and GW
Quasi-Particle Energies (in eV) of Orbitals of the (3 × 3)
PDI SAM Structure at the Γ Pointa

EDFT Vxc
DFT Σx Σc(EDFT) ∆E EGW

πB -8.34 -13.06 -15.57 0.67 -1.50 -9.84
σ+ -8.27 -13.58 -18.68 2.21 -2.20 -10.47
σ- -8.23 -13.65 -18.71 2.20 -2.19 -10.42
πP -7.60 -13.98 -16.00 0.33 -1.40 -9.01
πP

* -3.81 -13.09 -8.31 -1.13 3.06 -0.75
πB

* -3.19 -12.49 -7.45 -1.48 2.98 -0.21

a Vxc
DFT, Σx, and Σc(EDFT) correspond to the expectation values of

the DFT xc potential and the exchange and correlation parts
(evaluated with DFT energies) of the self-energy operator,
respectively. EGW ) EDFT + ∆E ) EDFT + [Σ(EGW) - Vxc

DFT], in which
Σ(EGW) is obtained from Σx and Σc(EDFT) by linear expansion.
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4. Polarization from the Metal Substrate

It is well-known that in DFT the xc potential within local or
semilocal approximations fails to reproduce the asymptotic
image potential tail shape of a metal surface.30,31 Long-range
many-body effects, absent in most conventional DFT ap-
proximations, are expected to screen the Coulomb potential
experienced by an added hole or electron and thus effectively
decrease the HOMO-LUMO gap of the isolated SAM. In
principle, this effect can be captured by performing GW
calculations for the whole SAM-on-metal system (see, e.g.,
ref 3). Because of the complexity and huge computational
cost to carry out such calculations on a large metallic system,
here we adopt a semiempirical treatment. To account for this
polarization effect from the metal substrate, we add the
following correction term to the quasi-particle energy level
EGW(j) calculated for a given SAM molecular orbital j:

∆Psurface(j))∫z>z1
dr [Vim(r)-Vxc

Au(111)(r)]Fj
SAM(r) (1)

Vim(r)) - e2

4|z- z0|
(2)

where Vim(r) and Vxc
Au(111)(r) are the image potential and the

DFT xc potential of a clean Au(111) surface, respectively;
Fj

SAM(r) is the electron density of orbital j of the SAM. To
evaluate Vxc

Au(111) and Fj
SAM, DFT calculations were carried

out separately for the two subsystems, adopting the atomic
positions determined in the optimized SAM-Au(111) sys-
tem.4 z0 is the image plane position, and z1 is the where
Vxc

Au(111)(r) starts to deviate from the effective local quasi-
particle xc potential, assuming that the latter crosses smoothly
from Vxc

Au(111)(r) to Vim(r) at z1. z0 and z1 were therefore
determined by computing the intersection of the plane-
averaged potentials Vxc

Au(111)(z) and Vim(z), as shown in Figure
3. This approximation is consistent with GW calculations
for Al surfaces;30,31 our fitted mirror-plane position is about
1.0 Å above the first layer of gold atoms, which compares
well with the corresponding values adopted for graphite3 and
gold2 surfaces in similar instances.

We note that in order to treat surface polarization effects
as an external perturbation the adsorbate orbitals are required
to be well separated from the metal substrate. This is true,
for example, in the case of benzene molecules physisorbed
on the graphite surface.3 Although the PDI molecules are
chemisorbed on Au(111), with a binding energy of about
0.5 eV,4 the LUMO-like adsorbate orbitals are found to be
only weakly coupled to the metal surface. Indeed, for these
states, approximately 90% of the wave function is localized
on the SAM itself. Therefore, the use of eq 1 is justified. By

application of the correction in eq 1, the energy levels of
LUMO-like states are lowered by about 0.5 eV. When this
term is combined with the self-energy correction obtained
for the isolated SAM, the LUMO level is predicted to shift
up by about 1.5-2 eV from the DFT values. This means
that the value of the electron barrier is at least more than
doubled with respect to those found in DFT. On the other
hand, the HOMO-like states are more strongly coupled to
the metal substrate than the LUMO-like states, and the
perturbation approach used here to evaluate surface polariza-
tion effects may no longer be appropriate. However, because
the GGA calculation already yielded a rather large lower
bound for EF - EH (3 eV), these states will not contribute
to the low bias conductance.

Although the self-energy correction and surface polariza-
tion have opposite effects on the energy levels of the
adsorbate orbitals, the balance of these two effects depends
on the details of the molecular nature of the adsorbate and
the interaction at the molecule-metal interface, which may
vary from system to system. However, our results clearly
indicate that it is important to go beyond a DFT treatment
to obtain a realistic energy alignment at the interface,
especially when considering transport properties. For ex-
ample, functionalized diamondoid molecules adsorbed on the
Au(111) surface were found to have a negative electron
affinity from electron photoemission experiments,32 while
LDA calculations on similar systems predicted a LUMO level
below the vacuum level.33 A more realistic picture could be
obtained when both the self-energy correction and screening

Table 2. DFT/PBE and GW Energies (in eV) of Orbitals of the (�3 × �3) PDI SAM Structure at Three Different k Points

Γ ) (0, 0, 0) K1 ) (1/3, 1/3, 0) M2 ) (1/2, -1/2, 0)

EDFT ∆E EGW EDFT ∆E EGW EDFT ∆E EGW

πB -10.44 -1.36 -11.80 πB -9.27 -1.12 -10.39 σ+ -9.19 -2.06 -11.24
σ+ -9.26 -2.08 -11.34 σ+ -9.18 -2.06 -11.23 σ- -9.16 -2.04 -11.20
σ- -9.23 -2.06 -11.29 σ- -9.15 -2.04 -11.19 πP -8.99 -1.23 -10.21
πP -8.76 -1.16 -9.92 πP -8.96 -1.22 -10.18 πB -8.96 -1.05 -10.01
πB

* -5.31 2.17 -3.14 πP
* -5.26 2.38 -2.88 πP

* -5.39 2.34 -3.06
πP

* -4.61 2.60 -2.00 πB
* -4.14 2.41 -1.73 πB

* -3.72 2.53 -1.19

Figure 3. Plane-averaged DFT/PBE xc potential (Vxc) cal-
culated from a clean Au(111) slab and a classical image
potential Vim ) -1/4|z - z0|. The origin is set at the first layer
of gold atoms, and z0 and z1 were fitted by setting the
intersection of the two curves at z1.
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effects were included, in agreement with quantum Monte
Carlo results.34

5. Conclusion

In summary, we have carried out ab initio calculations of
the electronic properties of aromatic isocyanide SAMs
adsorbed on the Au(111) surface. By combining many-body
perturbation theory under the GW approximation and a
classical image potential model, we have investigated energy
level alignments at the molecule-metal interface, beyond
the DFT/LDA or GGA, commonly used in the literature to
study SAMs on gold. In particular, the LUMO-like states of
the SAMs were found to shift upward by about 1.5-2 eV
from the corresponding DFT energies, when both self-energy
corrections and surface polarization effects are taken into
account. In the future, additional systematic GW calculations
on aromatic molecules, including benzene, are needed to
establish the correct position of the LUMO level of PDI and
the LUMO-like levels of the SAMs and thus determine
quantitatively the upward shift compared to DFT. However,
even when using the lower bound of our estimate of the
LUMO-like level position (|EF - ELUMO| ∼ 2 eV), we find
a rather high barrier for electron transport for PDI SAMs.
This finding is qualitatively different from that inferred from
DFT results, predicting a LUMO level at near-resonance with
the metal Fermi level.12 Experimentally, there exist a wide
range of measured conductance for aromatic isocyanide
monolayers sandwiched between gold electrodes,6,7,10,11 with
no definitive answer about the position of the molecular
HOMO and LUMO levels relative to the metal Fermi level.
Our results indicate that PDI SAMs may not be very
promising materials for electron transport compared to, e.g.,
thiolate or other SAMs.
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Abstract: We compare results for water obtained with the AM05 exchange-correlation density
functional (Armiento, R.; Mattsson, A. E. Phys. Rev. B 2005, 72, 085108) with those obtained
with five other pure functionals: LDA, PBE, PBEsol, RPBE, and BLYP. For liquid water, AM05
yields an O-O pair correlation function that is more structured than the ones of PBE and BLYP,
which, in turn, are more structured than the one of RPBE. However, LDA and PBEsol yields
more structured water than AM05. We show that AM05 yields a H2O dimer binding energy of
4.9 kcal/mol. The result is thus within 0.15 kcal/mol of CCSD(T) level theory (5.02 ( 0.05 kcal/
mol). We confirm that accuracy in the water dimer binding energy is not a strong indicator for
the fidelity of the resulting structure of liquid water.

1. Introduction

Quantitative results for a broad range of systems in combina-
tion with a relatively low computational cost has made
density functional theory (DFT)1,2 the foundation of most
large-scale quantum mechanical simulations. The limiting
factor for the accuracy of the calculations is the approxima-
tion for the exchange-correlation (XC) functional. While the
local density approximation (LDA) functional, proposed in
early DFT works, gives resonably accurate properties for
solid-state systems, the application of DFT to systems of
interest in chemistry did not emerge until more advanced
functionals were constructed, work where John Perdew and
co-workers have been instrumental. Today, for single
character systems, like bulk solids or strictly molecular
systems, the wide use of DFT is a testament to the theory’s
advantages. The use of XC functionals is, however, largely
divided depending on the application. In fact, only a few
functionals, among them the Perdew-Burke-Ernzerhof
(PBE) functional,3 are extensively used for both solid and
molecular systems. The quest for even more accurate

functionals has been most vigorously pursued for chemistry
applications, and for high accuracy in molecular systems the
use of hybrid functionals is now considered vital. For solids,
local and semilocal functionals, such as LDA and different
general gradient approximations (GGAs), such as PBE, are
mostly employed even though, also here, more accurate
functionals have been developed lately.

For some time,4 it has been evident that one of the largest
challenges in the field resides in developing a functional that
can bridge the gap between molecular and solid systems.
Thus, the performance of several hybrid functionals have
recently been investigated for solid-state systems (see for
example refs 5 and 6), sometimes with very good results.
However, in addition to accuracy, the speed of the calculation
has emerged as an additional major consideration: DFT is
increasingly being employed for larger systems and for
longer molecular dynamics (MD) simulations, both applica-
tions requiring as fast functional evaluations as possible.
While some hybrids are accurate for solid-state systems, the
computational overhead compared to a GGA type functional
is prohibiting for these applications. In a recent study,7 we
showed that the Armiento and Mattsson functional of 2005
(AM05),8 while being of the fast GGA type preferred in large
calculations, is as accurate as the best hybrids for solid-state
systems.
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There is thus ample motivation to investigate the perfor-
mance of the AM05 functional8 for molecules and liquids.
Our focus here is on the structure of liquid water. We also
calculate the structure and binding energy of the water dimer
because it explores the hydrogen bonding pertinent to the
liquid water structure. The chemical bonding in the water
molecule is only explored via the structure; a more extensive
study of molecules using AM05 will be published elsewhere.9

We, in addition to AM05, for benchmarking purposes
include three GGA type functionals commonly used in
studies of molecular systems in general and water in
particular: BLYP,10,11 RPBE,12 and PBE.3 These functionals
are shown to not perform as well as AM05 for solids,7 but
they have reasonable performace for molecular systems and
are thus the preferred functionals for applications, such as
liquid water, requiring a fast functional.

Although not normally used for water, we also include
LDA in the comparisons. First, LDA plays an important role
in elucidating the differences between functionals. For
example, AM05 is a subsystem functional; it is made to
reproduce the exact combined XC energy for two reference
systems, the uniform electron gas and the jellium surface.
AM05 thus shares one of its reference systems, the uniform
electron gas, with LDA. A main conclusion of this work is
that AM05 does not share the deficiencies of LDA for
molecular systems. Second, LDA performs very well for a
number of heavy transition metals; see for example ref 7.
When studying the interface between molecules and solids,
it is important that the properties of both the solid and the
molecular components are taken into account accurately.
When deciding on which functional to use for heterogeneous
systems, it is important to know not only how well a
functional performs for one component (LDA describes Pt
well) but also how poorly it performs for the other (LDA
overbinds molecules significantly).

The recently constructed PBEsol13 functional yields almost
exactly the same lattice constants and bulk moduli as AM05,
for important and large classes of solids.14-16 Results also
agree for other properties,17 but sometimes differences have
been shown.18 Despite mostly giving the same results as
AM05, PBEsol is constructed according to very different
principles than AM05. In particular, PBEsol is not expected
to give good molecular properties.13 In contrast, nothing in
the construction of AM05 would prevent it from performing
well also for molecules. It is thus interesting to compare the
performance of PBEsol to that of AM05 also for systems of
less solid-state character, and we therefore include PBEsol
in this comparison.

Another functional that we would have liked to compare
results with for the studied systems is the meta-GGA
functional of Tao, Perdew, Staroverov, and Scuseria19

(TPSS). However, TPSS is not available in the code we use
and is not readily implemented in it. But others have used
TPSS in studies20,21 comparable to ours. Even though it is
not advisable to compare too closely results obtained by very
different codes, some information can be extracted by relating
results for the common functionals (in this case PBE and
BLYP) in two studies to the functional of interest (here

TPSS). We are thus able to, to some extent, relate results
otained by others with TPSS to those obtained here using
AM05.

In this study we focus on pure functionals. However, in
the chemistry community there is a considerable interest in
hybrid functionals in general and the B3LYP functional in
particular. In the same way as we are able to compare TPSS
results by others to our results for pure functionals, as
described above, we are also able to compare B3LYP results
obtained by others for the water dimer. Liquid water radial
distrubution functions have been calculated using hybrid
functionals (see for example ref 27), but we have not found
a B3LYP study that can be compared to ours. We also note
that B3LYP performs slightly worse than PBE for solids.6

2. Method

First-principles simulations involve a number of approxima-
tions, fundamental as well as technical. Because the purpose
of functional development is to improve the fundamental
accuracy of the theory, it is particularly important to maintain
the best possible technical precision in calculations for the
purpose of functional development. The accuracy of con-
temporary exchange-correlation functionals has raised the
requirements for overall precision.

2.1. XC Functionals. In the Kohn-Sham DFT compu-
tational scheme2 the ground-state electron energy is obtained
via the solution of the Kohn-Sham (KS) equations. Although
all many-body effects can formally be accounted for within
the XC functional, the crucial question is how good the
approximation of this quantity is.

As discussed above, PBE3 gives reasonable accuracy for
both molecular and solid-state systems, and it has been tested
and used extensively in calculations for large classes of
different materials and properties. Even though there are
more accurate functionals for specific materials, it appears
to be the functional with most broad range performance. In
contrast, the BLYP and RPBE functionals show unsatisfac-
tory performance for solid-state systems7 while they perform
well for molecular systems. PBE and BLYP are both used
extensively for water,20,22-30 and RPBE has been suggested
to give a water structure in good agreement with experimental
results.23 While the performance of LDA lies between that
of the PBE and the BLYP/RPBE functionals for solid-state
systems,7 LDA is well-known to give too structured water.
AM05 and PBEsol perform very well for solid-state systems,
but they have not previously been tested for water. A brief
review of the functionals used in this study was presented
in ref 7. Here we only discuss AM05 because it is the main
topic of this paper.

Kohn and Mattsson discussed the creation of an XC
functional from a surface-oriented model system and its
possible combination with another treatment where this
model was unsuitable.31,32 The approach was formalized and
generalized in the subsystem functional scheme by Armiento
and Mattsson.33 The fundamental idea is to create several
separate subsystem functionals, each accurately describing
a specific model system, and then use an interpolation
function34 that based on the nature of the real system in each
point determines how much of each subsystem functional
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to use in this point. Because LDA is based on the uniform
electron gas model system, it is a subsystem functional and
can be easily incorporated in the subsystem functional
scheme. The ideas of the subsystem functional scheme were
made concrete in the AM05 functional.8 Subsystem func-
tionals based on two model systems are used: the LDA
functional based on the uniform electron gas and a surface
functional derived from the Airy gas31 in combination with
the jellium surfaces.35 The interpolation function is based
on the magnitude of the dimensionless gradient:8 If the
dimensionless gradient of the real system is large, the system
in this point is surface-like, while if it is small, the system
is more uniform electron gas like.

The AM05 surface exchange functional is a parametriza-
tion of the Airy electron gas data.31 For correlation, Armiento
and Mattsson derived a semicompatible surface correlation
from the XC data available for jellium surface models, based
on the idea that both the Airy gas and jellium surface models
are related to similar surface physics.

Note that AM05 stems from a completely different
theoretical framework than functionals originally referred to
as GGAs. The subsystem functional scheme is not based on
gradient expansions, and thus AM05 is “not a GGA” in the
theoretical sense. However, it is of the same form as a GGA
and can be easily implemented in a code using the same
input quantities as, e.g., PBE does.16

The AM05 functional is the first functional constructed
according to the subsystem functional scheme. It can be seen
as a consistent theoretical improvement over LDA because
it reproduces the exact XC energy for two types of model
systems, the uniform electron gas and the jellium surfaces,
describing two situations with fundamentally different phys-
ics. The subsystem functional scheme offers a promising
alternative approach to further improved functionals, by
exploiting exact XC model systems and adding them to the
ones already reproduced.

Applying AM05 to water in the current work (see Table
2), we see how this formal theoretical improvement over
LDA translates into significantly improved numerical results
for molecular systems. Because AM05 and traditional GGA
functionals are constructed according to such different
philosophies, traditional theoretical comparisons are hard to
make.13,14 Performanace assessments of AM05 compared to
other GGA functionals have to be based on results from high-
precision calculations.

2.2. Numerical Precision. While the XC functional
determines the fundamental accuracy of the calculation, there
is a second source of errors, the numerical precision in
solving the Kohn-Sham equations. The numerical precision
is determined by implementation-related approximations,
such as choice of basis sets, pseudopotential quality, ap-
proximate matrix diagonalization methods, plane-wave cutoff
energies, etc. (see ref 36). In general, the precision can be
successively improved by increasing the computational
expense (i.e., by converging the calculations).

The concept of precision is particularly important in the
area of functional development. When the differences
between functionals are small,37 the precision of the calcula-
tions has to be high enough to resolve them.

In this study we use the pseudopotential, plane-wave
VASP 5.1 code,5,38-40 with projected augmented wave
(PAW) core potentials,41,40 ported to the Cray platform.42

In a recent publication,28 it was shown that with appropriate
settings, VASP yields high precision MD results for water.

The PAW implementation in VASP 5.1 allows use of
multiple XC functionals on the same set of core potentials40

while retaining high precision. The difference in AM05
results using existing LDA or PBE core potentials in VASP
5.1 has been carefully studied7 and shown to be minimal. In
this study we use PBE core potentials for all functionals
except LDA, where the LDA core potentials are used instead.

Pseudopotentials should reproduce the results of all-
electron calculations. The VASP PAW core potentials have
been extensively evaluated (see for example refs 5 and 7)
and are of high quality. However, because we want to have
good control over numerical errors in this study, we
nevertheless consider transferability errors. Transferability
can be improved by using a harder core potential, requiring
a larger plane wave basis (cutoff). To investigate the effect
of potential hardness, we used two types of PAW core
potentials, one softer (nominally needing a 400 eV cutoff)
and one harder (nominally needing a 700 eV cutoff), for a
subset of the functionals tested, in the molecule and dimer
calculations. For the more demanding MD calculations, we
used the 400 eV potentials. Because the dimer binding
energies differ a mere 0.2 kcal/mol between the 400 and 700
potentials, as seen in Table 2, they are unlikely to yield
different results for the liquid structure. The water structures
resulting from the two different core potentials are indeed
very similar, as shown in ref 28.

In order to minimize the possibility that numerical errors
obscure the differences between functionals, we use more
stringent than normal settings in all our calculations. To
minimize interactions with periodic copies, a cubic cell with
12 Å sides is used for the molecule and the dimer calcula-
tions. In the self-consistent loop, the convergence criterium
is set to at least 1.0 × 10-5 eV. All calculations are gamma
point only, and a 500 eV cutoff is used for the 400 eV
potentials while the harder 700 eV potential calculations are
done with a 1000 eV cutoff.

In order to minimize effects of system size, we study a
cell of 64 water molecules. The simulations are performed
in the NVT ensemble using a Nose thermostat,44 deuterium
mass, and the velocity verlet algorithm with a 0.5 fs time
step. Because the average temperature is fixed, the energy
shift due to time integration errors is absorbed in the
thermostat degreee of freedom. The energy absorbed by the
thermostat is of the order 1K/ps, see ref 28 for a more
extensive discussion on basis set convergence, energy drift,
and thermalization between hydrogen and oxygen degrees
of freedom. The MD simulations are between 15 and 50 ps
long, depending on temperature/rate of thermalization for
the different functionals. As shown in Figure 4, the different
functionals yield highly different structures for liquid water
at 300 K. For example, while RPBE-water is liquid with
rather rapid thermalization behavior already at 300 K, PBE
and AM05-water are glassy with significant structure and
long thermalization time. RPBE gives a pair correlation
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function similar to ones extracted from experiments.45-48

However, as will be discussed later, important effects not
included in traditional DFT-MD simulations, like ours, call
into question the relevance of direct comparisons to experi-
mental findings.

We furthermore investigated the influence of initial state
for AM05 and BLYP by annealing from structures equili-
brated at higher temperature. The AM05-water was ther-
malized at 500 K and annealed to 300 K, followed by
equilibration at 300 K. No significant difference in final
structure was detected between this run and one continued
from a PBE simulation. For BLYP, we went even further
and investigated three different 400 K geometries followed
by anneal to 300 K and 28, 22, and 24 ps simulations at 300
K. All three annealed runs eventually reached a structure
similar to that of a BLYP run continued from a PBE final
geometry as well as the PBE structure itself. Finally, the
PBEsol simulations were continued from the corresponding
final AM05 geometry. For all temperatures, the change to
PBEsol resulted in a slightly more structured geometry.

3. Results

3.1. Water Monomer and Dimer. The results for mo-
lecular properties of water and the water dimer are presented
in Table 1 and Table 2.

For the water monomer, the differences in results obtained
with different functionals are small. AM05 lies between LDA
and PBE, as is mostly the case for geometric properties like
lattice constants.7 The only significant difference is that LDA
yields a slightly larger bond angle than the semilocal
functionals. Overall, LDA performs as well for the water
monomer as any of the semilocal functionals. However, none
of the functionals tested here acheive the accuracy of hybrid
functionals, that generally display a shorter OH distance,
closer to the ‘best ab initio’ value.

Our results for the water dimer (see Figure 1) binding
energies for PBE, BLYP, and LDA agree to within 0.1 kcal/
mol to the energies reported by Xu and Goddard.43 For the
water dimer, LDA and PBEsol give a dimer binding energy

that is significantly too large, while BLYP and RPBE give
that which is too small. AM05 and PBE both give dimer
binding energies close to that of the best ab initio. That
AM05 yields results close to those of PBE for this molecular
system is interesting. A common view is that a functional
constructed to perform well for solids, such as AM05 and
PBEsol, would work less well than PBE for molecular
systems.13 The results for the water dimer clearly show that
while this might be the case for PBEsol, this reasoning
applies less well to functionals such as AM05, constructed
according to the subsystem functional approach. It is also
interesting to note that while AM05 gives geometrical dimer
properties in between LDA and PBE, this is not the case for
the binding energy of the dimer, where AM05 binds even
less hard than PBE.

Water dimer binding energies and distances between
oxygen atoms are calculated with several functionals in ref
21 among them TPSS, BLYP, and PBE. Our results for the
binding energies for PBE and BLYP agree well with those
results and we can thus conclude that the TPSS binding
energy of 4.53 kcal/mol can be directly compared to our
results, placing it slightly below the AM05 and PBE results.
The agreement between the O-O distances calculated by
us and in ref 21 is also good, and we can thus place the
TPSS value of approximately 2.900 Å very close to the PBE
value. Similar considerations place B3LYP results presented
in ref 43 at 4.57 kcal/mol and 2.926 Å.

Figure 2 shows a summary of Table 2 and the TPSS results
from ref 21 and the B3LYP results of ref 43, and AM05
and TPSS falls outside of trends drawn from the other pure
functionals. For TPSS this is not too surprising because it is
a meta-GGA and thus already by construction different from
GGAs. That AM05 also falls outside of trends might be more
surprising but is probably reflecting its very different
theoretical foundation in the subsystem functional scheme.
Figure 2 also shows the dramatic improvement AM05 gives
compared to LDA for molecular systems, which is encourag-
ing for using the subsystem functionals scheme, that relates
LDA and AM05, for developing an even more accurate and
generally applicable functional in the future.

3.2. Structure of Water. The importance of water as
ubiquitous actor in the chemistry and biology of life can
hardly be overestimated. An improved understanding of the
interaction between water and ions, proteins, and solid

Table 1. Properties of the Water Molecule, the OH
Distance (ROH), and the HOH Angle (∠ HOH), As Obtained
with Six Functionals: AM05, PBE, LDA, PBEsol, BLYP, and
RPBE, Compared to ‘Best ab Initio’49 (CCSD(T)), As
Described in Ref 43a

ROH (Å) ∠ HOH (deg)

functional
PAW

400 eV
PAW

700 eV
PAW

400 eV
PAW

700 eV

AM05 0.974 0.971 104.8 104.4
PBE 0.972 0.969 104.5 104.2
LDA 0.974 0.971 105.3 105.0
PBEsol 0.973 104.7
BLYP 0.973 104.8
RPBE 0.973 104.2
best ab initio49 0.959 104.2

a For AM05, LDA, and PBE, results using two different sets of
PAW core functions (labeled by their nominal energy cutoffs of
400 resp 700 eV, see text) are shown. The differences in results
between the two sets is at the level of 0.3%, demonstrating that
the softer potentials, employed in the MD simulations, also are of
high fidelity.

Figure 1. The water dimer. The ROO value in Table 2 is the
distance between the two oxygen atoms. ∆ROH is the elonga-
tion of the O-H bond of the hydrogen binding hydrogen (the
hydrogen atom between the two oxygens) compared to the
O-H bond length in the monomer.
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surfaces is hence highly sought. However, water is not only
of importance in biochemistry, nanotechnology, and surface
science/catalysis, but the structural and thermophysical
properties of water under high energy-density conditions51-54

largely determine the gravitational properties of water-rich
giant planets like Neptune.55 It is therefore not surprising
that the structure of liquid water has been subject to intense
theoretical efforts over the past few years.20,23-30 The amount
of recent work also suggests that the definitive consensus
regarding first-principles simulation of water has not yet
emerged.

For several reasons, liquid water is a particularly difficult
system to study computationally. First, the low mass of the
hydrogen (deuterium) atoms limits the molecular dynamics
time step, making simulations over several tens of picosec-
onds computationally very demanding. Second, the mass ratio
between oxygen and hydrogen atoms and the strong O-H
bonds, in comparison to the weak hydrogen bonds, yields
normal modes of very different frequencies, in turn, resulting
in slow thermalization and sensitivity with respect to
thermostats and equilibration times. Third, both hydrogen

and deuterium atoms are light enough to be influenced by
quantum nuclei effects.24,29 Fourth, long-range van der
Waals/dispersion forces can be important in dense systems
like liquid water.30 None of the functionals included in this
study is constructed with van der Waals/dispersion properties
as a focus.

Taken together, there are thus good reasons to aVoid liquid
water as a system for benchmarking XC functionals.
However, given the fundamental importance of liquid water,
it is necessary to assess functional performance despite the
technical challenges.

Our main result for AM05, the O-O pair correlation
function, is presented in Figure 3. Just like PBE and LDA,
AM05 yields overstructured liquid water at 300 K. As
expected, the structure becomes less ordered with increased
temperature. The overstructuring compared to experiment,
however, remains also for higher temperatures.

Although the results for AM05 are the main focus of the
paper, it is important to directly compare the functional’s
behavior to that of other functionals. The numerical chal-
lenges mentioned above limits the reliability of conclusions
based only on comparisons with literature results. One
example is the spread in average temperature resulting from
NVE simulations; when changes in temperature of a few tens
of Kelvin change the liquid structure, it is difficult to compare
results with high confidence. In order to make as direct
comparisons as possible, we therefore performed extensive
additional simulations with other functionals using the same
thermostats, timesteps, convergence criteria, etc.

In Figure 4, we compare the O-O pair-correlation function
(radial distribution function) at 300 K for six different
exchange-correlation functionals: AM05, PBE, LDA, PBE-
sol, BLYP, and RPBE. The overall relative results for PBE,
BLYP, and RPBE are in agreement with most previous
simulations, for example those of refs 23, 24, and 20. In ref
20 O-O radial distribution function results are given for,
among others, TPSS, BLYP, and PBE. While the differences
between radial distribution functions obtained with the
different functionals is suppressed by the different tempera-
tures obtained in the NVE runs, it is clear that TPSS gives
more structured water than PBE and BLYP. In the compari-
son in Figure 4, the O-O radial distribution function

Figure 2. Dimer binding energy versus oxygen-oxygen
distance, calculated with eight different functionals and com-
pared to best ab initio (solid symbols). The TPSS results are
taken from ref 21 and the B3LYP results from ref 43 For AM05
and PBE the calculations have also been performed with a
harder PAW potential; those results are shown with open
symbols. The numerical precision is significantly higher than
the differences between functionals. Trends obtained by
comparing LDA, PBEsol, PBE, BLYP, and RPBE cannot be
applied to TPSS and AM05.

Table 2. Properties of the Water Dimer for Six
Functionals: AM05, PBE, LDA, PBEsol, BLYP, and RPBEa

Edim, kcal/mol ROO, Å ∆ROH, Å

best ab initio50 5.02 2.912 0.006
AM05 (400) 5.08 2.842 0.013
AM05 (700) 4.89 2.846 0.013
PBE (400) 5.33 2.882 0.011
PBE (700) 5.15 2.893 0.011
LDA (400) 9.05 2.716 0.019
PBEsol (400) 6.36 2.803 0.015
BLYP (400) 4.19 2.982 0.008
RPBE (400) 3.99 3.010 0.007

a The properties are the dimer binding energy (Edim), distance
between the oxygen atoms (ROO), and elongation of the
hydrogen-oxygen bond compared to the water monomer (∆ROH),
and they are compared to ‘best ab initio’50 (CCSD(T)), according
to ref 43.

Figure 3. Oxygen-oxygen radial distribution function for
AM05 as a function of temperature: 300 K (black), 400 K (blue
dashed), 450 K (green dashed), and 500 K (red dashed).
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obtained with TPSS would end up between the PBE and the
AM05 ones.

From the perspective of applying DFT as a first-principles
theory, the results in Figure 4 can readily be interpreted as
negative and even discouraging:56 is there a reason to trust
a theory where one can dial the answer for a property like
the O-O pair correlation function simply by changing the
XC functional? However, from a more fundamental point
of view, the results are stimulating: which properties of the
different functionals are responsible for their markedly
different behavior, and how can one improve upon them?

It is clear from Figure 4 that the maximum peak heights
are inversly proportional to the radial positions of the peaks.
If the functionals only differed in their preference for a
certain nearest neighbor distance, thus this trend being a pure
geometrical effect, the number of atoms in the first hydration
shell obtained from integrating over the first peak would
remain constant. As no significant broadening of the peak
would be associated with such a geometrical effect, a good
measure would be a constant value of gmaxRmax

2 . In Figure 5
we show this measure versus the position of the peak. The
difference in radial distribution function obtained by LDA
and PBEsol, and by PBE and BLYP, lends itself to such an
interpretation because no significant broadening of these
peaks is seen in Figure 4. If the difference between AM05
and TPSS is also a pure geometrical effect, it is harder to
determine because we do not have a direct comparison
between these radial distribution functions. However, because
TPSS and AM05 also give very similar dimer binding
energies (see Figure 2), it is plausible that the difference is
indeed purely geomerical. On the other hand, the differences
between (LDA, PBEsol), (PBE, BLYP), (AM05, TPSS), and
RPBE are not purely geometrical, and other effects must also
play a role. It is, for example, evident that the RPBE peak
has a significant broadening compared to the other func-
tionals. It also appears that the differences in peak heights
between TPSS and PBE, and between PBEsol and AM05,

are not pure geometrical effects because they have almost
the same peak position but not the same peak heights.

We can make a number of observations by comparing the
results from properties of dimer binding in Table 2 with that
of the structure of liquid water. For water at 300 K, AM05
and PBE yield similarly overstructured, glassy water. Inter-
estingly, the difference in liquid water structure between
RPBE and PBE is larger than the difference between AM05
and PBE.

The glassy character of water for both AM05 and PBE is
intriguing because AM05 and PBE give similar, correct
binding energy for the water dimer (see Table 2). RPBE
behaves differently; it significantly underestimates the water
dimer binding energy while it was shown by Astaghiri, Pratt,
and Kress23 to give a liquid structure at normal conditions
relatively close to that of experiments.45-48 While we
confirm that RPBE yields a significantly less ordered liquid
structure than that from BLYP, PBE, and AM05, the
disparity in results between dimer binding energy and liquid
structure for several functionals suggests that the structure
of liquid water is not determined by the fundamental building
block: the hydrogen bond between two water molecules.

The importance of quantum effects on liquid water has
been a subject of much work in the past using empirical
potentials as well as DFT, resulting in a wide range of
conclusions. Although a comprehensive review of past work
on this topic is significantly beyond the scope of the present
work, we would like to mention that very recent large-scale
DFT path-integral simulations have concluded that quantum
effects reduce the structuring of liquid water29 compared to
BLYP simulations using classical hydrogens, a possibility
raised by Schwegler et al.24 as an explanation for the
overstructuring of BLYP and PBE water. It has also been
demonstrated that inclusion of van der Waals forces reduces
the structuring compared to BLYP without dispersion cor-
rections.30 With quantum and van der Waals effects inde-
pendently resulting in qualitative changes in structure,
simulations where the hydrogen atoms are treated as classical
particles performed with traditional functionals lacking well

Figure 4. Oxygen-oxygen radial distribution function at 300
K for six functionals, in order of maximum peak height: LDA
(blue dashed), PBEsol (green dashed), AM05 (black), PBE
(red dashed), BLYP (turqoise dashed), and RPBE (purple
dashed). The TPSS radial distribution function from Figure 8
of ref 20 would fall between AM05 and PBE. The structure of
DFT water at 300 K thus ranges from very glassy (LDA) to
liquid (RPBE) depending on the exchange-correlation func-
tional used.

Figure 5. A measure related to the number of atoms in the
first hydration shell versus the position of the maximum of
the first peak (Rmax, gmax is the maximum peak height). gmax

and Rmax for TPSS are estimated by comparing the TPSS,
PBE, and BLYP radial distribution function from Figure 8 of
ref 20 to the radial distribution functions for PBE and BLYP
in Figure 4.
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defined van der Waals contributions should not yield water
structure in agreement with experiments at normal conditions.
While quantum nuclear effects seems to only affect the peak
height, inclusion of van der Waals contributions also seems
to affect the first peak position. Further studies are thus
needed in order to determine more accurately which of the
pure functionals studied here that yields the best results if
quantum nuclear and van der Waals effects are both taken
into account self-consistently.

4. Summary and Discussion

Problems involving both molecules and solids remain one
of the main challenges for DFT. PBE3 is one of very few
functionals extensively used for both solid and molecular
systems, a strong testament to its versatility. The work of
John Perdew and co-workers have thus created a framework
within which a considerable range of systems can be
analyzed with confidence. Directly related to confidence is
a question of increasing importance: how to make quantita-
tive estimations of the systematic uncertainties of DFT for
a particular problem. This task is in practice often approached
by performing calculations with multiple XC functionals. The
broad use of PBE makes it an obvious functional to employ
for this purpose; the remaining question is which additional
functionals to include in a suite of calculations in order to
gain the most information of the limitations of DFT.

The subsystem functional AM05 is based on two exact
reference systems: the uniform electron gas and the surface
jellium. AM05 hence constitutes a systematic improvement
upon LDA by adding a description of physics derived from
a surface model system to the physics derived from the
uniform electron gas model system already well described
by LDA. The functional’s systematic improvement upon
LDA has already been demonstrated for solid-state systems7

and is established here for hydrogen bonded molecular
systems by the results for the water dimer in Figure 2 and
the liquid water in Figure 4. This substantial and consistent
improvement over LDA supports the subsystem functional
approach as a sound theoretical basis for further development.
Furthermore, the AM05 functional performs as well as PBE3

for water dimer binding energy and is slightly more
structured than PBE for liquid water.

When combined with AM05’s previously demonstrated
high accuracy for solids,7 these results suggest AM05 as a
promising candidate to describe the physics and chemistry
of solid-molecular interfaces and other mixed systems. As
a functional developed on a foundation different from
traditionals GGAs, AM05 brings different strenghts and
weaknesses and does not follow the same trends as other
functionals, as evident from Figure 2, Figure 4, and Figure
5. We suggest AM05 as a valuable additional functional to
include in the analysis, in particular when experimental data
is either scarce or unavailable, and it is important to estimate
the systematic errors in a DFT calculation.
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Abstract: We present a detailed study of the coupling-constant-averaged exchange-correlation
hole density at a jellium surface, which we obtain in the random-phase approximation of many-
body theory. We report contour plots of the exchange-only and exchange-correlation hole
densities, the integration of the exchange-correlation hole density over the surface plane, the
on-top correlation hole, and the energy density. We find that the on-top correlation hole is
accurately described by local and semilocal density-functional approximations. We also find
that for electrons that are localized far outside the surface the main part of the corresponding
exchange-correlation hole is localized at the image plane.

I. Introduction

The exchange-correlation (xc) energy of a many-electron
system is the only density functional that has to be ap-
proximated in the Kohn-Sham (KS) formalism of density
functional theory (DFT).1 It is formally defined by the
following equation derived from the Hellmann-Feynman
theorem:2

where n(r) is the density of a spin-unpolarized system of N
electrons, U[n] ) (1/2) ∫ dr n(r)n(r′)/|r - r′| is the Hartree
energy, and F2

λ(r′, r) is the reduced two-particle density matrix

Here, Ψλ(r1σ1,..., rNσN) is the antisymmetric wave function
that yields the density n(r) and minimizes the expectation

value of T̂ + λV̂ee, where T̂)-Σi)1
N ∇ i

2/2 and V̂ee ) (1/2)Σi ·
Σj+i (1/|ri-rj|) are the kinetic energy and the electron-electron
interaction operators. Equation 2 shows that F2

λ(r′, r) dr′ dr
is the joint probability of finding an electron of arbitrary spin
in dr′ at r′ and an electron of arbitrary spin in dr at r,
assuming that the Coulombic interaction is λ/|r - r′|. In the
case of noninteracting KS electrons (i.e., λ)0), F2

λ)0(r′, r)
is the exchange-only reduced two-particle density matrix that
is expressible in terms of KS orbitals. (Unless otherwise
stated, atomic units are used throughout, that is, e2 ) p )
me ) 1.)

Hence, the xc energy can be expressed as the electrostatic
interaction between individual electrons and the correspond-
ing (and surrounding) coupling-constant-averaged xc hole
density njxc([n]; r, r′), as follows

where (see eqs 1 and 3):

and exc(r) is the xc energy density. The xc hole density
nxc([n]; r, r′) is the result of three effects: self-interaction
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Exc[n] ) 1
2 ∫ dr∫ dr′ ∫0

1
dλ

F2
λ(r′, r)

|r - r′ | - U[n] (1)

F2
λ(r′, r) ) N(N - 1) ∑

σ,σ′,...,σN

∫ dr3...drN ×

|Ψλ(r′σ′, rσ, r3σ3,...,rNσN)|2 (2)
Exc[n] ) ∫ dr exc(r) ) 1

2 ∫ dr∫ dr′
n(r)njxc([n];r, r′)

|r - r′ |
(3)

njxc([n];r, r′) ) 1
n(r) ∫0

1
dλ F2

λ(r′, r) - n(r′) (4)
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correction to the Hartree approximation, Pauli exclusion
principle, and the electron correlation due to Coulombic
repulsion between electrons.

The adiabatic-connection fluctuation-dissipation theorem
provides an elegant path to the exact coupling-constant-
averaged xc hole density,3-6 which can be written as follows7

where �λ(r, r′; ω) is the density-response function of the
interacting system at coupling strength λ and satisfies, in the
framework of time-dependent density-functional theory
(TDDFT), the following exact Dyson-type equation8

Here, �0(r, r′; ω) is the density-response function of nonin-
teracting KS electrons (which is exactly known in terms of
KS orbitals),9 and fxc,λ[n](r, r′; ω) is the Fourier trans-
form with respect to time [fxc,λ[n](r, r′; ω) )
∫-∞

∞ dt eiωtfxc,λ[n](r, t, r′, 0)] of the unknown λ-dependent xc
kernel, formally defined by

where Vxc
λ [n](r, t) is the exact time-dependent xc potential

of TDDFT. When fxc,λ[n](r, r′; ω) is taken to be zero, eq 6
reduces to the random phase approximation (RPA). If the
interacting density response function �λ(r, r′; ω) is replaced
by the noninteracting KS density-response function
�0(r, r′; ω), then eq 5 yields the exchange-only hole density.

The scaling relation of the correlation hole density at
coupling constant λ10,11 leads to the following equation for
the coupling-constant-averaged correlation hole density:

where 0 < w , 1 is a fixed constant, and nγ(r) ) γ3n(γr) is
a uniformly scaled density.12 Equation 8 shows that the whole
many-body problem is equivalent to the knowledge of the
universal correlation hole density at a small, fixed coupling
strength w.

There is a “Jacob’s ladder”13 classification (in RPA and
beyond RPA) of nonempirical approximations to the angle-
averaged xc hole density

where dΩ is the differential solid angle around the direction
of u ) r′ - r. The simplest rung of the ladder is the local
spin density approximation (LSDA) of the xc hole density
njxc(nv, nV; u) that has as ingredients only the spin densities.
(For the RPA-based LSDA xc hole and for the LSDA xc
hole, see refs 14 and 15 and refs 14, 16, and 17 respectively.)

The next rung is the generalized gradient approximation
(GGA) xc hole density njxc(nv, nV,∇ nv,∇ nV, u) (see ref 14 for
the smoothed GGA exchange hole model, ref 18 for the PBE-
GGA19 correlation hole, and ref 15 for the RPA-based GGA
hole model. For a GGA xc hole constructed for solids, see
ref 20). The third rung on this ladder is the nonempirical
meta-GGA xc hole density21 njxc(nv, nV,∇ nv,∇ nV, τv, τV, u) that
depends on spin densities and their gradients, as well as the
positive KS kinetic energy densities τv and τV, and that was
constructed to satisfy many exact constraints (for an RPA-
based meta-GGA xc hole model, see also ref 21).

Jellium is a simple model of a simple metal, in which the
ion cores are replaced by a uniform positive background of
density nj ) 3/4πrs

3 ) kF
3/3π2 and the valence electrons in

the spin-unpolarized bulk neutralize this background. rs is
the bulk density parameter, and kF is the magnitude of the
bulk Fermi wavevector. At a jellium surface, the plane z )
0 separates the uniform positive background (z > 0) from
the vacuum (z < 0), and the electrons can leak out into the
vacuum. This electron system is translationally invariant in
the plane of the surface.

The exchange hole at a jellium surface was studied in ref
22 (using a finite linear-potential model23) and in refs 24
and 25 (using the infinite barrier model (IBM)26). The
behavior of the xc hole at a jellium surface was investigated
at the RPA level using IBM orbitals.27 Hence, existing
calculations of the exchange-only and xc hole at a jellium
surface invoke either a finite linear-potential model or the
IBM for the description of single-particle orbitals. An
exception is a self-consistent calculation of the RPA xc hole
density reported briefly in refs 28 and 29 in which accurate
LSDA single-particle orbitals were employed.

In this article, we present extensive self-consistent calcula-
tions of the exact-exchange hole and the RPA xc hole at a
jellium surface. We report contour plots of the corresponding
hole densities, the integration of the xc hole density over
the surface plane, and the on-top correlation hole. We find
that the on-top RPA correlation hole njc([n ]; r, r) is accurately
described by the on-top RPA-based LSDA hole, in accord
with the work of Perdew et al.5,30,31

II. Exact-Exchange Hole and the RPA xc Hole
at a Jellium Surface

Let us consider a jellium surface with the surface plane at z
) 0. Using its translational invariance in a plane perpen-
dicular to the z axis, we can write the coupling-constant-
averaged xc hole density of eq 5 as follows29

where r ) |r|| - r||′|, and q|| is a two-dimensional (2D)
wavevector. �λ(q||, z, z′, ω) represents the 2D Fourier trans-
form of the interacting density response function of eq 6,
which in the RPA is obtained by neglecting the xc kernel
fxc. The exact-exchange hole density is obtained by simply

njxc([n];r, r′) ) 1
n(r)[- 1

π ∫0

∞
dω∫0

1
dλ �λ(r, r′ ;ω) -

n(r)δ(r - r′)] (5)

�λ(r, r′ ;ω) ) �0(r, r′ ;ω) + ∫ dr1 dr2 �0(r, r1;ω) ×

{ λ
|r1 - r2|

+ fxc,λ[n](r1, r2;ω)} �λ(r2, r′ ;ω) (6)

fxc,λ[n](r, t, r′, t') )
δVxc

λ [n](r, t)

δn(r′, t')
(7)

njc([n];r, r′) ) ∫0

1
dλ( λ

w)3
nc

w([nw/λ],
λ
w

r,
λ
w

r′) (8)

njxc([n];r, u) ) 1
4π ∫ dΩ njxc([n];r, r′ ) (9)

njxc([n];r, z, z') ) - 1
2π ∫0

∞
dq|| q||J0(q||r) ×

[ 1
πn(z) ∫0

1
dλ ∫0

∞
dω × �λ(q||, z, z', ω) - δ(z - z')] (10)
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replacing in eq 10 �λ(q||, z, z′, ω) by the corresponding KS
noninteracting density response function �0(q||, z, z′, ω).

For the evaluation of eq 10, we follow the method
described in ref 7. We consider a jellium slab, and we assume
that the electron density n(z) vanishes at a distance z0 ) 2λF

(λF ) 2π/kF is the bulk Fermi wavelength) from either jellium
edge.32 We expand the single-particle wave functions enter-
ing the evaluation of �0(q||, z, z′, ω) in a sine Fourier
representation, and the density-response functions
�0(q||, z, z′, ω) and �λ(z, z′; q|, ω) in a double-cosine Fourier
representation. We also expand the Dirac delta function
entering eq 10 in a double-cosine representation (see eq A2
of ref 7). We take all the occupied and unoccupied single-
particle orbitals and energies to be the LSDA eigenfunctions
and eigenvalues of a KS Hamiltonian, as obtained by using
the Perdew-Wang parametrization33 of the Ceperley-Alder
xc energy of the uniform electron gas.34

In the calculations presented below, we considered jellium
slabs with several bulk parameters rs and a thickness a )
2.23λF for the positive background. For rs ) 2.07, such a
slab corresponds to about four atomic layers of Al(100) and
it was used in the wavevector analysis of the RPA35 and
beyond-RPA20,36 xc surface energy.

In Figures 1 and 2, we show contour plots for the exact-
exchange hole density and the self-consistent RPA xc hole
density, respectively. In the bulk, both the exchange-only
hole and the xc hole are spherical and the xc hole is more
localized, as in the case of a uniform electron gas. Near the
surface, both the exchange-only hole and the xc hole happen
to be distorted, the center of gravity being closer to the
surface when correlation is included. For an electron that is
localized far outside the surface, the corresponding exchange-
only hole and xc hole remain localized near the surface;
Figures 1 and 2 show that the introduction of correlation
results in a flatter hole, which in the case of an electron that
is infinitely far from the surface becomes completely
localized at a plane parallel to the surface. This is the image
plane. We recall that the RPA xc hole density is exact in
the limit of large separations (where u ) |r - r′| f ∞) and
yields therefore the exact location of the image plane.

The integration of the xc hole density over the whole
surface plane,

represents a quantity of interest for a variety of theoretical
and experimental situations (see, for example, refs 37 and
38). Below we show that bxc([n]; z, z′) represents a suitable
quantity to describe the behavior of the xc hole corresponding
to a given electron located at an arbitrary distance from the
surface. In Figure 3, we plot this quantity, versus z′, for rs

) 2.07 and a given electron located at z ) 0.5λF, z ) 0, z )
-0.5λF, and z ) -1.5λF. We see from this figure that (i)
correlation damps out the oscillations that the exchange hole
exhibits in the bulk part of the surface, and (ii) in the case
of a given electron located far from the surface into the
vacuum the main part of the exchange-only and the xc hole
is found to be near the surface (see also Figures 1 and 2),
although the exchange-only hole appears to be much more
delocalized with a considerable weight within the bulk.

Let us now focus on the on-top xc hole. The LSDA
accurately accounts for short wavelength contributions to the
xc energy;30 thus, all the nonempirical approximations of
the xc hole have been constructed to recover the LSDA on-

bxc([n], z, z') ) ∫0

∞
dr njxc([n];r, z, z') (11)

Figure 1. Contour plots of the exchange hole density
njx(r||, z, z′) for several fixed values of the electron position: z
) 0.5λF (inside the bulk), z ) 0 (on the surface), z ) -0.5λF

(in the vacuum), and z ) -1.5λF (far outside the surface in
the vacuum). The bulk parameter is rs ) 2.07, the jellium
surface is at z ) 0, and r|| ) (|r|| - r||′|.
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top xc hole njxc
LSDA(r, r). The slowly varying electron gas was

treated within RPA by Langreth and Perdew.5 For a spin-

unpolarized system, the gradient correction to the LSDA on-
top correlation hole density is31

In Figure 4, we show the on-top correlation hole for the exact
RPA, the RPA-based LSDA (see ref 15) and the RPA-based
GEA of eq 12. We see that for a jellium surface the RPA-
based LSDA on-top correlation hole nearly coincides with

Figure 2. Contour plots of the RPA coupling-constant-
averaged xc hole density njx(r||, z, z′) for several fixed values
of the electron position: z ) 0.5λF (inside the bulk), z ) 0 (on
the surface), z ) -0.5λF (in the vacuum), and z ) -1.5λF

(far outside the surface in the vacuum). The bulk parameter
is rs ) 2.07, the jellium surface is at z ) 0, and r|| ) (|r|| -
r||′|. See also Figure 1 of ref 29.

Figure 3. bxc(z, z′) of eq 11 versus z′/λF for the same positions
of the electron as in Figures 1 and 2. The bulk parameter is
rs ) 2.07, and the jellium surface is at z ) 0.

njc
GEA(r, r) ) njc

LSDA(r, r) +
|∇ n|2

72π3n2
(12)
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the corresponding exact RPA on-top correlation hole; this
is in contrast with the case of strong inhomogeneous systems
(e.g., Hooke’s atom).30 The gradient correction of eq 12
improves the already accurate RPA-based LSDA on-top
correlation hole in the slowly varying density region but is
inaccurate in the tail of the density. Figure 4 also shows that
the integrated bc(z, z) of eq 11 is more (less) negative in the
vacuum (bulk) than the actual on-top correlation hole.

At this point, we would like to emphasize that, while the
RPA on-top correlation hole in the bulk is too negative but
finite, the on-top correlation hole diverges in the bulk within
a TDDFT scheme that uses a wavevector and frequency-
independent xc kernel like in the adiabatic local-density
approximation (ALDA)

or the energy-optimized local-density approximation of ref
39 (see the discussion after eq 3.9 of ref 39). Here, Vxc

λ,unif[n(r)]
is the xc potential of a uniform electron gas of density n(r).
An xc kernel borrowed from a uniform gas xc kernel that
has the correct large-wavevector behavior (see, for example,
the xc kernels of refs 40-42) would yield a finite on-top
correlation hole. Figure 5 shows the integrated correlation
hole of eq 11 for an electron at the vacuum side of the
surface, at the position z ) -0.5λF and for several values of
the electron-density parameter rs ) 1.5, 2.07, 3, 4, 5, and 6.

In the bulk, the correlation hole exhibits damped oscillations
with rs-dependent amplitude and a period that does not
depend on the electron density and is close to the period
(∼0.56λF) of the corresponding oscillations exhibited by the
exchange-only hole.

Finally, we look at the xc energy density exc defined in eq
3. We note that adding to the actual exc of eq 3 an arbitrary
function of the position r that integrates to zero yields the
same total xc energy.43 The Laplacian of the density ∇ 2n
integrates to zero for finite systems, it plays an important
role in the gradient expansion of the kinetic-energy
density,44-46 and it is an important ingredient in the
construction of density-functional approximations for the
kinetic energy density44,45 and the xc energy.45

We define the simplest possible Laplacian-level RPA-
based LSDA (the RPA-based L-LSDA) xc energy density:

where C is a constant parameter that we find by minimizing
the difference between exc

RPA-L-LSDA and exc
RPA. We find C )

0.3 for a jellium slab with rs ) 2.07, and its value gets larger
as rs increases.

In Figure 6, we show ∆exc(z) ) exc
RPA(z) - exc

approx(z) versus
z/λF for a jellium slab with rs ) 2.07 and several RPA-based
approximations for exc

approx(z). The RPA-based PBE15 improves
considerably the behavior of the RPA-based LDA. The
ARPA-GGA47 is a GGA functional that fits the RPA xc
energy density of the airy gas and is remarkably accurate
for jellium surfaces. The RPA-based GGA++ is the RPA
version of the GGA++ of ref 38 (exc

RPA-GGA++ )
exc

RPA-LSDAFxc(l), where l ) rs
2∇ 2n/n is a reduced Laplacian

and Fxc(l) is defined in eq 3 of ref 38). Although the GGA++
functional was constructed for the Si crystal, we observe that
the RPA-based GGA++ improves over the RPA-based
LSDA in the bulk near the jellium surface, showing that it
can be a good approximation for systems with small
oscillations. (In the bulk, close to the jellium surface, there
are Friedel oscillations as well as quantum oscillations due
to the finite thickness of the jellium slab.) We note finally
that exc

RPA-L-LSDA significantly reduces the local error of the

Figure 4. On-top coupling-constant-averaged correlation hole
njc(r, r) at a jellium surface. Also shown is bc(z, z) of eq 11.
The bulk parameter is rs ) 2.07, and the jellium surface is at
z ) 0.

Figure 5. Correlation hole bc(z, z′) of an electron at position
z )-0.5λF for several values of the bulk parameter rs ) 2.07,
3, 4, 5, and 6. The jellium surface is at z ) 0.

fxc,λ
ALDA[n](r, r′, ω) )

dVxc
λ,unif[n(r)]

dn(r)
δ(r - r′) (13)

Figure 6. ∆exc(z) ) exc
RPA(z) - exc

approx(z) versus z/λF at a
surface of a jellium slab, for several xc approximations: RPA-
based LSDA,15 RPA-based PBE,15 ARPA-GGA,47 RPA-
based GGA++,38 and RPA-based L-LSDA (eq 14 with C )
0.3). The bulk parameter is rs ) 2.07, and the edge of the
positive background is at z ) 0.

exc
L-LSDA-RPA(r) ) exc

LSDA-RPA(r) - C∇ 2n(r) (14)
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RPA-based LSDA near the jellium surface, although by
construction Exc

RPA-L-LSDA ) Exc
RPA-LSDA.

III. Conclusions

We presented extensive self-consistent calculations of the
exact-exchange hole and the RPA xc hole at a jellium
surface.

We presented a detailed study of the RPA xc hole density
at a metal surface. When the electron is in the vacuum, its
hole remains localized near the surface (its minimum is on
the image plane) and has damped oscillations in the bulk.
We find that the on-top correlation hole is accurately
described by local and semilocal density-functional ap-
proximations, as expected from ref 5. We also find that for
an electron that is localized far outside the surface the main
part of the corresponding xc hole is completely localized at
a plane parallel to the surface, which is the image plane.

Because of an integration by parts that occurs in the
underlying gradient expansion, a GGA (or meta-GGA) hole
is meaningful only after averaging over the electron density
n(r).18,20 This average smooths the sharp cutoffs used in the
construction of the angle-averaged GGA xc hole density. The
wavevector analysis of the jelium xc surface energy is an
important and hard test for the LSDA, GGA, and meta-GGA
angle-averaged xc hole densities, showing not only the
accuracy of the xc hole but also the error cancellation
between their exchange and correlation contributions. Thus,
refs 20, 21, and 35 showed that the TPSS meta-GGA21 and
the PBEsol GGA20 xc hole densities improve considerably
the accuracy of their LSDA and PBE counterparts at jellium
surfaces, both within RPA and beyond RPA.48

The exchange energy density does not have a gradient
expansion,49 as does the kinetic energy density. However,
the existence of gradient expansion of the xc energy density
is still an open problem. We use our RPA xc hole density to
compare the xc energy densities of several approximations.
The most accurate ones are ARPA-GGA of ref 47 and RPA-
based L-LSDA of eq 14.
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Abstract: Some fundamental issues in ground-state density functional theory are discussed
without equations: (1) The standard Hohenberg-Kohn and Kohn-Sham theorems were proven
for a Hamiltonian that is not quite exact for real atoms, molecules, and solids. (2) The density
functional for the exchange-correlation energy, which must be approximated, arises from the
tendency of electrons to avoid one another as they move through the electron density. (3) In
the absence of a magnetic field, either spin densities or total electron density can be used,
although the former choice is better for approximations. (4) “Spin contamination” of the
determinant of Kohn-Sham orbitals for an open-shell system is not wrong but right. (5) Only to
the extent that symmetries of the interacting wave function are reflected in the spin densities
should those symmetries be respected by the Kohn-Sham noninteracting or determinantal wave
function. Functionals below the highest level of approximations should however sometimes break
even those symmetries, for good physical reasons. (6) Simple and commonly used semilocal
(lower-level) approximations for the exchange-correlation energy as a functional of the density
can be accurate for closed systems near equilibrium and yet fail for open systems of fluctuating
electron number. (7) The exact Kohn-Sham noninteracting state need not be a single
determinant, but common approximations can fail when it is not. (8) Over an open system of
fluctuating electron number, connected to another such system by stretched bonds, semilocal
approximations make the exchange-correlation energy and hole-density sum rule too negative.
(9) The gap in the exact Kohn-Sham band structure of a crystal underestimates the real
fundamental gap but may approximate the first exciton energy in the large-gap limit. (10) Density
functional theory is not really a mean-field theory, although it looks like one. The exact functional
includes strong correlation, and semilocal approximations often overestimate the strength of
static correlation through their semilocal exchange contributions. (11) Only under rare conditions
can excited states arise directly from a ground-state theory.

I. Introduction

The pleasure of doing density functional theory (DFT) arises
from (1) the deep fundamental and intellectual challenge that
it presents, (2) the great practical utility and importance of

the subject, which is now central to most electronic structure
calculations in quantum chemistry and condensed matter
physics, and (3) the opportunity to work or communicate
with a good company of others who share this interest or
passion.

This short article contains no equation, table, or new result.
Instead it reviews some fundamental issues in DFT. Nearly
all the answers it presents can be found in the literature (and
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even the given references are sketchy and incomplete), yet
some of the answers are unknown to or forgotten by the users
and even the developers of this theory. These answers, to
the extent that they are not quite right or complete, will be
corrected, refined, and extended in future work.

II. What Is the Hamiltonian?

The magic of Kohn-Sham density functional theory1-7 is
that it transforms a computationally heavy many-electron
problem into a computationally more tractable problem of
noninteracting electrons moving in a self-consistent field, in
a way that is exact in principle for the ground-state energy
and density. This theory tells us much that we wish to know
about what atoms, molecules, nanostructures, and solids can
exist, with what geometries and other properties, and how
much energy is needed to break bonds or remove electrons,
etc.

The standard Hohenberg-Kohn (HK)1 and Kohn-Sham
(KS)2 theorems that undergird DFT were proven for an
electronic ground-state of a particular Hamiltonian of an
N-electron system: the sum of the nonrelativistic kinetic
energy of the electrons, the interaction of the electrons with
a static scalar external potential which is a function of
electron position (typically but not exclusively arising from
Coulomb attraction to the nuclei), and the instantaneous
Coulomb repulsion among pairs of electrons. For this
Hamiltonian, the HK theorem asserts that the Hamiltonian
itself (and in particular its ground-state wave function and
energy) is determined in principle by the ground-state
electron density; degeneracy is not a problem.3

The KS theorem asserts that the ground-state density can
be found by solving exact self-consistent one-electron
Schrödinger equations for Kohn-Sham orbitals with oc-
cupation numbers 1 or 0. The density is found by sum-
ming the squares of the occupied orbitals. The total energy
is the sum of the kinetic energy of the occupied orbitals, the
interaction of the density with the external potential, the
Hartree electrostatic energy of the density interacting with
itself, and the exchange-correlation energy. The multiplicative
effective potential seen by a Kohn-Sham orbital arises from
the external potential, the Hartree electrostatic potential due
to the density, and a multiplicative position-dependent
exchange-correlation potential which is the functional deriva-
tive of the exchange-correlation energy. The Kohn-Sham
orbitals themselves are manifestly functionals of the density.

In the simplest version of spin-density functional theory,8

the interacting Hamiltonian also includes the interaction of
the electron spins with a position-dependent external mag-
netic field pointing along a fixed z-axis. Then the exchange-
correlation energy becomes a functional of the separate up-
and down-spin densities, and the exchange-correlation
potentials for the up- and down-spin electrons can differ.
Even in the absence of an external magnetic field, this spin-
density version is the one that is almost always used in
electronic-structure calculations.

The underlying interacting Hamiltonian is realistic but not
exact for the real atoms, molecules, nanostructures, and solids
that need to be described. First there are relativistic

corrections,5,6,9 which can be treated rigorously in a covariant
reformulation of the theory that also takes into account
electron currents. When the relativistic effects are not too
large, they can also be treated perturbatively for all the
electrons or fully for core electrons and perturbatively for
the valence electrons. Second, the nuclei are not really
sources of a static external potential, because they move.
The ground-state problem can be reformulated using a
multicomponent DFT4,5,10 employing also the densities of
the various kinds of nuclei, or, if the nuclei are sufficiently
massive (i.e., classical), then the effect of their motions on
the electrons can be accounted for using the standard
Born-Oppenheimer adiabatic approximation.4,5

III. What Is the Exchange-Correlation
Energy?

Thanks to the work of Levy,3 the exact density functional
for the exchange-correlation energy can be defined from a
search over many-electron wave functions constrained to
yield a given density. Thus many exact conditions (con-
straints which this functional must satisfy)7 can be derived,
but actually implementing the search (directly or indirectly11)
would be harder than the already-very-hard traditional
N-electron wave function approaches (which are impractical
for the large-N case that is often of interest). So, simplifying
approximations need to be made.

Fortunately the exchange-correlation energy is a relatively
small part of the total energy of a typical system, although
it is by far the largest part of “nature’s glue” that binds atoms
together.12 It arises because the electrons do not move
randomly through the density but avoid one another, an effect
that lowers the expectation value of the electron-electron
Coulomb interaction (and more so when the electrons are
closer together). The exchange-correlation energy consists
of three contributions. The first is the potential energy of
exchange (the Fock integral of the Kohn-Sham orbitals,
including the self-exchange or self-interaction correction).
The second is the potential energy of correlation (due to the
effect of Coulomb repulsion on the interacting wave func-
tion). Both potential energies are negative because the
expectation value of the repulsive electron-electron Cou-
lomb interaction is thereby reduced. The third is a smaller
positive kinetic energy of correlation (due to the extra
swerving motion of the electrons as they avoid one another).

The motion of the electrons through the density (Figure
1) is like the motion of shoppers through a crowded mall.13

Each shopper is surrounded by his or her “personal space”,
and each electron is surrounded by its exchange-correlation
hole density. Just as a shopper never bumps into himself or
herself, an electron never interacts with itself. Thus the exact
exchange-correlation energy provides a self-interaction cor-
rection to the Hartree electrostatic energy.

IV. Spin Densities or Total Density?

When the external magnetic field tends to zero, the exact
spin-density functional theory8 does not reduce to the exact
total-density functional theory,2 except in spin-unpolarized
systems. While both theories should deliver the same ground-
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state energy and total density in this limit, only the former
should deliver the separate exact densities of spin-up and
spin-down electrons. When the exchange-correlation energy
is approximated, even the energy and total density will
typically differ (with better results14 from the spin-density
functional calculation, since its inputs are richer and more
detailed).

V. Is Spin Contamination Bad for Us?

The underlying interacting Hamiltonian of DFT, in a uniform
or zero magnetic field, commutes with the square of the total
electron spin and with its z-component. Then the real
interacting ground-state wave function can be chosen as an
eigenstate of both spin operators.

In open-shell systems, the wave function of the noninter-
acting Kohn-Sham system (typically and preferably a single
Slater determinant of orbitals, as discussed in section VIII)
is often not an eigenfunction of the square of total spin. This
has been called “spin contamination”,15 and “restricted open-
shell Kohn-Sham”16 methods have been developed to avoid
it. But it is a contamination only to one who regards the
Kohn-Sham wave function as an approximation to the true
wave function. The more correct interpretation is that the
Kohn-Sham determinant is an auxiliary quantity that gener-
ates the true ground-state spin densities. It comes from a
spin-dependent Kohn-Sham potential and thus from a
noninteracting Hamiltonian which does not commute with
the square of the total spin. In some cases, this is the only
way to generate the interacting ground-state spin densities
in a noninteracting system.17 Kohn-Sham theory is only
designed to yield the ground-state total energy and spin
densities and not unrelated observables.

The exact exchange-correlation energy can be written18,19

as an average over the electron-electron coupling constant

that continuously connects the Kohn-Sham noninteracting
system to the real interacting one, while holding the spin
densities fixed. If the real interacting wave function is not a
spin singlet (S)0), then the wave functions in this “adiabatic
connection” may not be eigenfunctions of the square of the
total spin, except at full or physical coupling strength.

VI. Can Symmetries Break?

As discussed in the preceding section, the Kohn-Sham
noninteracting wave function need not display the symmetries
of the interacting wave function. But of course it must
produce the correct spin densities, which are influenced by
symmetry. For example, the exact ground-state of the H2

molecule is a spin singlet (S)0) at any bond length and thus
is spin-unpolarized, with equal up- and down-spin densities.
Semilocal approximations typically produce a spin-unpolar-
ized density out to a critical bond length and then break
symmetry by gradually localizing an up-spin electron on one
nucleus and a down-spin electron on the other.19 While this
leads to an incorrect spin-density, it still leads to the correct
dissociation limit for the energy, with an intuitive picture of
separate atoms at dissociation. The lower-level functionals
can then be regarded20 as faithful approximations to a theory
in which the basic objects are not the up- and down-spin
densities but the total density and on-top pair density.
Probably functionals on the first four rungs of the ladder of
approximations (as defined in section VII) require spin-
symmetry breaking, while those on the fifth rung seem more
properly to describe static correlation (sections IX and XI)
without spin-symmetry breaking.21

VII. Are All Approximations Created Equal?

The exchange-correlation energy can be written as the
integral over all space of a position-dependent exchange-
correlation energy density (which is not unique, although
its integral is). The approximation is said to be semilocal if
this energy density depends only on the electron density and
orbitals in an infinitesimal neighborhood of the given
position, and otherwise it is said to be fully nonlocal. On
the ladder22 of density functional approximations (Figure 2),
the first rung or local spin-density approximation2,8 employs
only the local spin densities, the second rung or generalized
gradient approximation (GGA) [e.g., refs 23 and 24] adds
the gradients of the local spin densities, and the third rung
or meta-GGA adds the positive orbital kinetic energy density
[e.g., refs 25-28] (or, almost equivalently,29 the Laplacians
of the spin densities). Such semilocal functionals often work
because of proper accuracy for a slowly varying density or
because of error cancelation between exchange and correla-
tion over “normal” regions of space in which such a
cancelation is expected.30 When the semilocal exchange and
correlation holes satisfy the same sum rules as the exact holes
(section IX), error cancelation can occur because the exact
exchange-correlation hole is usually more localized around
its electron (and thus more semilocal) than the exact
exchange hole. The “abnormal” regions in which no error
cancelation is expected include one-electron, nonuniform
high-density, and rapidly varying regions (in which exchange

Figure 1. Electrons moving through the density swerve to
avoid one another, like shoppers in a mall. The resulting
reduction of the potential energy of mutual Coulomb repulsion
is the main contribution to the negative exchange-correlation
energy. The swerving motion also makes a small positive
kinetic energy contribution to the correlation energy.
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dominates correlation). A second class of abnormal systems
includes the open systems of fluctuating electron number
discussed in sections IX and XI (over which the semilocal
holes do not satisfy the exact sum rules).

There are also two fully nonlocal rungs: the fourth rung
or hyper-GGA [e.g., ref 30], which adds the exact exchange
energy density, and the fifth rung or generalized random
phase approximation [e.g., ref 31], which adds the unoc-
cupied orbitals. Climbing up the ladder, the approximations
become more complicated, more sophisticated, and typically
more accurate. Computation times increase modestly from
the first to the third rungs and much more steeply after that.
The added ingredients on each higher rung of the ladder can
be used to satisfy more exact constraints (nonempirical
approach32), or to better fit data (semiempirical approach),
or both. The first three rungs and the fifth require no fitting,
but empiricism seems unavoidable30 on the fourth rung. The
ladder classification is not an exclusive one. Although it
finally brings in van der Waals interaction on the fifth rung,
there are simpler ways to do that, some involving an
approximation for the exchange-correlation energy as a
double integral of a function of the densities and their
gradients at two points in space.33

Mel Levy has stressed that, when an investigator reports
a “failure of density functional theory”, he or she is typically
reporting the failure of a given density functional approxima-
tion and should say that. Users should also report results on
several different rungs, where possible, both as a check on
consistency and as guidance for functional developers.

It appears that the densities and energies (if not the
Kohn-Sham potentials) of most atoms, and of most mol-
ecules and solids close to equilibrium, can be evaluated with
increasingly satisfactory accuracy by climbing the first three

or semilocal rungs of the ladder.26-28 But, wherever stretched
bonds connect open subsystems of fluctuating electron
number,34-38 full nonlocality may be unavoidably needed,
as discussed in sections IX and XI.

Readers who still ask “Which functional should I choose?”
could consult ref 39.

VIII. Is One Slater Determinant Enough?

Starting from the Levy constrained search,3 many different
formally exact Kohn-Sham theories can be constructed.40

In all of them, a search is made over a class of simple objects
(of given electron number N) that all yield a given ground-
state density (or spin densities), to find the one that minimizes
the expectation value of the kinetic energy. The various
components of the total energy are then defined for this
density, and the total energy is minimized over all N-electron
densities. The class might be all single Slater determinants,
all fermion wave functions, or most generally all ensembles.
The minimizing object then represents the state of the
Kohn-Sham noninteracting system of that density; it is either
a single determinant, or a linear combination of a few
determinants, or an ensemble of such wave functions. The
more this class is restricted, the greater the chance that it
may be an empty set for the interacting ground-state density
of interest. In other words, the desired interacting ground-
state density may not be “noninteracting v-representable”41

over a restricted class, in which case even the “exact”
Kohn-Sham theory will fail. Even if a minimizing Slater
determinant exists for a given density, it might be an excited
state (not a ground state) of the Kohn-Sham noninteracting
system.

It seems likely that, for most but perhaps not all real
ground-state systems of interest, one can find a Kohn-Sham
noninteracting system that is in its ground-state and described
by a single Slater determinant. The commonly used density
functional approximations are only expected to be reliably
accurate when a single Slater determinant can be found.
These approximations, whether nonempirical or semiempiri-
cal, are all based on general properties of or fits to systems
in which the Kohn-Sham wave function is a single Slater
determinant (and thus the orbital occupation numbers are
integers). In particular, semilocal functionals are accurate in
part because they model an on-top hole density that is exact
for exchange42 and often accurate for correlation.43 If one
Slater determinant is not enough, then these approximations
cannot be reliably accurate. In other words, if energy-
minimized self-consistent calculations with an approximate
functional and broken symmetry do not lead to integer
occupation numbers for all the orbitals, be careful.

IX. Are Open Systems Different from Closed
Ones?

A closed system is one with a fixed number of electrons. It
can be composed of several open subsystems among which
the electron numbers fluctuate (Figure 3). Since correlation
suppresses fluctuation,44 the fluctuation between subsystems
at the noninteracting or Kohn-Sham level is expected to be
greater than or equal to that in the real interacting system.

Figure 2. The Jacob’s ladder of density functional ap-
proximations to the exchange-correlation energy adds local
ingredients successively, leading up in five steps from the
Hartree world (Exc ) 0) of weak or no chemical bonding to
the heaven of chemical accuracy (with errors in energy
differences of order 1 kcal/mol)0.0434 eV).
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When fluctuation occurs, some occupied Kohn-Sham orbit-
als share an electron between the two open subsystems,
equivalent to a noninteger occupation number (section VIII)
in each. If these open systems are sufficiently separated
(connected by stretched bonds), then semilocal functionals
can make serious errors not only in their separate exchange
and correlation energies but also in the sum of the two,34-38

whose magnitude can be greatly overestimated. These errors
can be related directly to the sum rules on the exact
exchange38 and exchange-correlation35 hole densities around
an electron, which integrate to -1 over a closed system but
to a value between 0 and -1 over an open system of
fluctuating electron number.

It is known34,35 that the exact energy of an isolated open
system varies linearly as a function of its average electron
number between adjacent integer numbers. This result
follows from both the exact ensemble approach to the open
subsystem34 and the exact wave function approach to the
combined closed system.35 The semilocal functionals make
the energy variation concave upward34,35,38 over this range.
(In contrast, the exact-exchange-only or Hartree-Fock
approximation makes it concave downward38 and thus
requires a strong negative static correlation correction at
noninteger average electron number in order to recover the
correct straight-line behavior.)

The resulting “many-electron self-interaction error”37,45

(or “delocalization error”46) of semilocal functionals produces
some striking failures thereof: (a) Many asymmetric mol-
ecules AB dissociate not to neutral atoms A and B but
improperly to fractionally charged fragments A+q...B-q.36-38

(b) Radical symmetric molecules A2
+1 at infinite bond length

have the correct charge state A+0.5...A+0.5 but thereby energies
far below the proper energy of A...A+1 [e.g., ref 37]. (c)
Long-range charge transfers are overestimated.47 (d) Because
the transition states of chemical reactions have long stretched

bonds, the energy barriers that control the reaction rates are
underestimated or even absent [e.g., ref 30].

The exact energy of an isolated open system has a
derivative discontinuity at integer average electron number,
where one straight line meets another.34 As a result, the exact
Kohn-Sham potential (and specifically the functional de-
rivative of the exchange-correlation energy) jumps discon-
tinuously by an additive constant at each integer.34,35,48-50

This is counterintuitive to one who regards the Kohn-Sham
potential as a physical object, but not to one who recalls
that it is a mathematical object that acts on a nonphysical
system of noninteracting electrons.

X. Is the Kohn-Sham Band Gap Wrong?

The jump of the Kohn-Sham potential (discussed in the last
paragraph of section IX) also explains51-54,46 how the
fundamental band gap of an insulator (ionization energy
minus electron affinity) can be larger than the gap in the
exact Kohn-Sham band structure. (Note that accurate
fundamental gaps for semiconductors are predicted not by
the band structure of the Kohn-Sham potential but by that
of a hybrid of the multiplicative Kohn-Sham and nonmul-
tiplicative Hartree-Fock potentials.55) Since in an atom the
first excitation energy is often approximated by the difference
between the lowest unoccupied and highest occupied exact
Kohn-Sham orbital energies,56 it follows that in a large-
gap insulator the gap in the exact Kohn-Sham band structure
approximates the first exciton energy (the least energy to
create an electron-hole pair localized on one atom), which
is smaller than the fundamental gap. The fundamental gap
(if it is direct or optical one) is however the limit of a
Rydberg series of exciton energies.

XI. Can DFT Describe Strong Correlations?

Some practitioners of “strong correlation” define it as
“anything not described by DFT” but probably mean by that
“some things not described correctly by the common
semilocal density functional approximations”. “Strong cor-
relation” has two different meanings: (1) It can refer for
example to the correlations present in a superconductor or a
Luttinger liquid, which may have a small effect on bonding
energies but are qualitatively different from the correlations
given by low-order perturbation theory or by the random
phase approximation. (2) It can refer to static correlations57

that arise from near- or exact degeneracies at the Kohn-Sham
level and are especially important when there are stretched
bonds between open systems of fluctuating electron num-
ber34-38 (section IX). (In the limit of infinite stretch, there
is degeneracy between the bonding and unoccupied anti-
bonding molecular orbitals that are shared between two open
subsystems, each of fluctuating electron number.) These static
correlations can be large and important on the scale of
bonding energies. Even in equilibrium, they can perhaps arise
from subsystems composed of localized d-electrons (as in
some transition-metal oxides) or f-electrons (as in some
lanthanides and actinides).38 Static correlation, also known
as electron localization or the suppression of electron
fluctuation, can occur in both molecules and solids.

Figure 3. Weakly correlated electrons can fluctuate between
the moon (an isolated open system of fluctuating electron
number) and the earth (a reservoir). But strongly correlated
electrons can localize and thus not fluctuate. The Hartree-Fock
approximation neglects correlation, while semilocal approxi-
mations often overestimate it.

906 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Perdew et al.



It is often said that DFT (at least in semilocal approxima-
tions) is a “mean field approximation” (like Hartree-Fock
theory) which “does not include strong correlation”. Neither
of these statements is really correct. DFT solves mean-field-
like equations but includes in principle all correlations via
the exact exchange-correlation functional. Semilocal ap-
proximations account for static correlation not in the cor-
relation term but in the exchange term.57 In the case of
stretched bonds between open systems of fluctuating electron
number (section VIII), they typically oVerestimate the
magnitude of the sum of exact exchange and exact correlation
(including static correlation).38 This error is often reduced
in hybrid functionals that mix a fraction a≈0.2558 of exact
exchange with a fraction 1-a of semilocal exchange plus full
semilocal correlation. But in other cases (e.g., stretched spin-
restricted singlet H2) they somewhat underestimate the
magnitude of the static correlation, and in these cases the
hybrid functionals can be worse than the semilocal ones.
Accurate description of these strong correlations seems to
require fully nonlocal (fourth- or even fifth-rung) functionals.

Strong correlations of type (2) above are often treated with
a “DFT+U” approach, where the positive empirical param-
eter U can be understood59,38 as an energy penalty for
fractional occupation that corrects the semilocal DFT error
described in sections IX and XI.

XII. Do Excited States Arise Directly from a
Ground-State Theory?

In principle, the ground-state density in the absence of a
magnetic field determines the Hamiltonian and thus all
excited states and their energies. But solutions of the exact
Kohn-Sham equations do not predict exact excited-state
energies and densities, except under special circumstances.60,61

If the ground-state density functional for the energy has
extrema lying above the minimum, those extrema predict
the energies and densities of excited states. In particular, self-
consistent solutions of the exact Kohn-Sham equations in
which all spin-orbitals have occupations 1 below (or at)
and 0 above a Fermi level represent either ground or excited
states.

In principle and in practice, excited-state energies can be
found from time-dependent DFT or from excited-state
DFT.4-6

Note Added after ASAP Publication. This article
was released ASAP on March 2, 2009. On March 3, 2009
additional information was added to ref 24. Additional
information was added to ref 63 on March 17, 2009. The
correct version was posted on March 18, 2009.
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Abstract: A practical approach that enables one to calculate the standard free energy of binding
from a one-dimensional potential of mean force (PMF) is proposed. Umbrella sampling and the
weighted histogram analysis method are used to generate a PMF along the reaction coordinate
of binding. At each point, a restraint is applied orthogonal to the reaction coordinate to make
possible the determination of the volume sampled by the ligand. The free energy of binding
from an arbitrary unbound volume to the restrained bound form is calculated from the ratio of
the PMF integrated over the bound region to that of the unbound. Adding the free energy changes
from the standard-state volume to the unbound volume and from the restrained to the
unrestrained bound state gives the standard free energy of binding. Exploration of the best
choice of binding paths is also made. This approach is first demonstrated on a model binding
system and then tested on the benzamidine-trypsin system for which reasonable agreement
with experiment is found. A comparison is made with other methods to obtain the standard free
energy of binding from the PMF.

Introduction

The binding free energy is a fundamental property of many
molecular systems1-9 such as those encountered in drug design,
catalysis, and self-assembly. Consequently, the development of
free energy methods plays a pivotal role in research. Typically,
these methods can be used either to calculate the free energy
of the bound and unbound states separately, in approaches
such as the MM/PBSA10-12 and LIE1,13methods, or to
evaluate the free energy difference between bound and unbound
states. Free energy difference methods proceed through decou-
pling the interactions between the ligand and its receptor, giving
a nonphysical pathway8,10,14,15 or by displacing the ligand along
a physical pathway of binding.10,12,16-21Although the decou-
pling free energy methods are commonly used to calculate
the binding free energy, the pathway methods also provide
mechanistic and kinetic information on the real process of
binding. The immediate output of a binding-pathway free
energy method is not a free energy difference but a potential

of mean force (PMF), which is defined as the negative
logarithm of the probability of being at a given value of a
specified reaction coordinate. Sampling realistic binding
pathways is an ongoing challenge, and the path usually has
to be selected and biased to achieve converged sampling,
an exception to this being transition path sampling.22Many
different pathway methods have been developed. These include
umbrella sampling,23 adaptive force bias,24 the Jarzynski
method,25 and metadynamics.26 While newer methods such as
the adaptive force bias method should be more efficient,
umbrella sampling has been one of the most widely used
methods to study binding in solution.12,16-20,27-30

For protein-ligand systems, the relationship between the
standard free energy of binding ∆G° and the change in the
PMF on binding, hereafter referred to as the PMF depth,
∆WR, is controversial, and they are often assumed to be
equivalent.31-34 Even in the few studies that examine that
relationship, there are differing formulations.10,12,18,21,30,35-37

In the simple case of spherical symmetry, the association
force constant can be calculated by integrating the PMF over
the bound region and by accounting for the radial Jacobian
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and standard-state concentration.10,30,35-37 In protein-ligand
systems, there are two major problems. First, there is no such
symmetry due to the complex shapes of the proteins. Second,
there are limitations on sampling since the ligand would need
to sample all the space around the protein. This makes
necessary more general formulations. Gilson and co-work-
ers10 suggest calculating the standard free energy of binding
from the PMF by defining wb as the average PMF depth in
the bound region and adding to it a term that accounts for
the change in the ligand’s translational and rotational volumes
upon binding. Their PMF is a six-dimensional function of
the ligand’s position and orientation. The problem with using
a PMF of such high dimensionality is that the extensive
sampling required makes it difficult to calculate. A similar
approach was employed by Lee and Olson,12,18 but they use
wmin, the minimum of the PMF, instead of wb and their PMF
is a function of a one-dimensional reaction coordinate. Woo
and Roux21 have a different approach in which they apply
multiple restraints to the ligand, determine a radial one-
dimensional PMF, and then remove the restraints. The
standard free energy of binding is then obtained from the
equilibrium binding constant using a complex derivation that
involves calculating a surface area integral for the ligand at
a large distance from the receptor and multiplying this by
terms to add and remove the restraints, by the PMF integral
over the bound state, and by the standard concentration.
Information about the PMF depth is contained implicitly in
the PMF integral.

In this work, a strategy is described to obtain the standard
free energy of binding from a one-dimensional PMF. Our
approach is similar to Woo and Roux’s21 but is constructed
in a simpler manner that permits an easier implementation
and physical interpretation of the terms involved. The choice
of reaction coordinate is important in formulating the method
and achieving converged sampling. The PMF is obtained
along a one-dimensional z-component reaction coordinate

between the protein and the ligand while applying restraints
orthogonal to this reaction coordinate. The protein is oriented
so that the z-axis points directly out of the binding site. The
orthogonal restraints serve a dual purpose: they make it
possible to calculate the area sampled by ligand orthogonal
to the reaction coordinate and they limit the sampling
required in each window. The use of a z-component rather
than a radial reaction coordinate r is illustrated in Figure 1a
and 1b and ensures that the configurational areas at each
point along the reaction coordinate are similar in size rather
than increasing as 4πr2. Small, constant areas are easier to
sample than areas that increase in size. An extra term
accounting for the 4πr2 increase in area as the ligand unbinds
would be required if a flat PMF is desired in the bulk
solvent.36,38,39 Computing the ratio of the integrated PMF
over the bound and unbound regions leads to the free energy
of binding from a specified unbound volume to a bound
restrained state. The orthogonal restraint permits the calcula-
tion of the unbound volume. Adding the free energy changes
from the standard volume to this unbound volume and from
the restrained to the unrestrained bound state determines the
standard free energy of binding. The approach is used on a
model system to demonstrate its performance. It is then
applied to calculate the standard Gibbs free energy of binding
of trypsin to benzamidine along a suitably chosen binding
path and then compared with experiment.

Methods

Standard Free Energy of Binding from the PMF. The
reaction coordinate of the PMF is chosen to be the
z-component.40,41 Orthogonal harmonic restraints are applied
along the x and y axes to restrict the ligand to an area that
is easily determined and capable of being sampled for the
length of the simulations. The free energy change of binding
∆GPMF between the bound and unbound sections of the PMF

Figure 1. (a) z-Component reaction coordinate and (b) the distance r reaction coordinate between the protein on the left and
the ligand on the right. (c) The three-dimensional PMF of the model binding site. (d) The z-component and the distance r reaction
coordinates between the carboxylate of Asp 189 and the amidine carbon of benzamidine.
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is given by

where Qb,R and Qu,R are the partition functions for the bound
and unbound regions, respectively, and the subscript R
denotes the use of orthogonal restraints. Their ratio is
computed by integrating the PMF over the bound and
unbound regions using the following equation:

where WR(z) is the PMF as a function of z and defined to be
zero at its lowest point when the ligand is bound. The cutoff
between the bound and unbound regions is chosen to be the
value of z where the PMF becomes constant within statistical
noise and the ligand is in the bulk. The unbound region is
defined up to an arbitrary upper limit that cancels in the full
expression for ∆G° given below. The PMF depth ∆WR is
defined as the lowest point, zero, minus the exponential
average of the PMF over the entire unbound region, giving

The bound and unbound lengths, lb and lu, are configurational
integrals of the PMF

which are both independent of the orthogonal restraints. The
definition of ∆WR ensures that lu equals the length of the
reaction coordinate in the unbound region. The lowest values
for W(z) in the binding site contribute the most to the
integrals and make the calculations of the ratio of the partition
functions insensitive to the cutoff.42 To determine the
standard free energy of binding ∆G°, the free energy ∆GV

for changing from the standard-state volume V° ) 1661 Å3,
which corresponds to a 1 M concentration, to the sampled
unbound volume and the free energy ∆GR to remove the
orthogonal restraints when the ligand is bound are included
to give the expression

These three free energy terms are depicted in Figure 2. The
second term of eq 6, ∆GV, is the ratio of the sampled
unbound volume Vu,R to the standard-state volume V° and
can be written as

The unbound volume Vu,R is determined from the distances
that the ligand samples along the x, y, and z directions. In
the x and y directions, the area Au,R for the unbound ligand
is obtained from the partition function of the orthogonal
restraint potential, which is given by

The reaction coordinate distance spanning the unbound
region in the z direction equals lu. Vu,R is simply the distance
lu multiplied by the area in the x and y directions

∆GR is calculated using a free energy perturbation approach
from the exponential average of turning on the harmonic
restraint as follows:

where ∆x and ∆y are the displacements relative to the
restraint minimum for the simulation without orthogonal
restraints. The perturbation is carried out using the simulation
without restraints as the reference state because the configu-
ration space sampled will include all the important subset
of states when the restraint is applied. A perturbation in the
reverse direction would not sample all the important states
when the restraint is removed. Substituting ∆GPMF and ∆GV

from eqs 1, 2, 7, and 9 into eq 6 gives a clear relationship
between the standard free energy of binding and the PMF
depth as

which is independent of length lu. The equivalent binding
equilibrium constant, Ka, is

Equation 12 has the following interpretation: ∆WR does not
contain the integration of the PMF over the bound length so
this must be included in the form of lb; it does contain

∆GPMF ) -RT ln(Qb,R

Qu,R
) (1)

Qb,R

Qu,R
)

∫bound
exp(-WR(z)

RT ) dz

∫unbound
exp(-WR(z)

RT ) dz

)
lb

lu
exp(-∆WR

RT ) (2)

∆WR ) RT ln[ ∫unbound
exp(-WR(z)

RT ) dz/ ∫unbound
dz] (3)

lb ) ∫bound
exp(-WR(z)

RT ) dz (4)

lu ) ∫unbound
exp(-(WR(z) + ∆WR)

RT ) dz ) ∫unbound
dz

(5)

∆G° ) ∆GPMF + ∆GV + ∆GR (6)

∆GV ) -RT ln(Vu,R

V° ) (7)

Figure 2. Schematic showing the decomposition of the
standard Gibbs free energy of binding ∆G° into the volume
reduction term ∆GV, the potential of mean force term ∆GPMF,
and the term for the removal of the orthogonal restraints ∆GR.
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integration over Au,R so this must be removed by multiplica-
tion by Au,R (division by 1/Au,R) since it concerns the unbound
state; it does not contain integration over V° when unbound
so this must be included by dividing by V°; it contains
integration over the orthogonal restraints when bound so this
contribution is removed by multiplying by exp(∆GR/RT).
Defining ∆GR in terms of the ratio of orthogonal areas, we
have

where Ab,R and Ab are the bound areas available to the ligand
with and without the orthogonal restraints, and setting Vb )
lbAb leads to the insightful relationship

If the PMF is three-dimensional in x, y, and z, then an
analogous expression can be derived for ∆G° as

where ∆W3D is the minimum in the three-dimensional PMF
obtained by integrating over all system coordinates except
x, y, and z of the ligand. Equating eqs 14 and 15 yields the
relationship

Model Binding Site. The approach is first applied to a
model binding site. The three-dimensional PMF, as shown
in Figure 1c, is harmonic in the x and y directions with a
force constant kb of 20 kcal mol-1 Å-2 and a step function
in z with a length lb of 0.5 Å. ∆W3D is chosen to be -10
kcal mol-1. Equation 16 is used to calculate the value of
∆WR. Equation 8 gives the required areas Au,R and Ab,R and
the force constant when bound equals kxy + kb. Five
orthogonal force constants kxy are tested: 0, 1, 5, 10, and 50
kcal mol-1 Å-2.

Trypsin-Benzamidine Setup and Molecular Dynam-
ics Protocol. The protein-ligand system examined is the
inhibitor benzamidine binding to the enzyme bovine trypsin
(PDB code 3PTB) whose function is to degrade dietary
proteins. This system has commonly been used as a
benchmark for computational methods.33,43-46 The same five
orthogonal force constants kxy are tested: 0, 1, 5, 10, and 50
kcal mol-1 Å-2. The protein is modeled with the AMBER
99 force field47 and solvated with 9284 TIP3P48 water
molecules using the leap module of AMBER 9.49 Nine Cl-

ions are added to neutralize the system. The ligand, benza-
midine, is modeled with the GAFF force field,50 and its
charges are derived using the RESP method.51 This setup
results in a system comprising 31 100 atoms in a box of size
66 × 62 × 75 Å3.

The energy minimization and molecular dynamics simula-
tions are performed with the Sander module of AMBER 9.
Periodic boundary conditions and the particle mesh Ewald

method are used with a nonbonded cutoff of 9 Å. The system
is first energy-minimized using 1000 steps of each of the
steepest descent and conjugate gradient methods. It is then
heated at constant volume to 298 K in a 50-ps molecular
dynamics simulation with Langevin temperature regulation.
Bonds involving hydrogen atoms are constrained using the
SHAKE algorithm allowing a 2-fs integration time step.
Subsequently, the system is switched to a constant pressure
of 1 bar and further equilibrated for 1 ns.

Umbrella Sampling. Umbrella sampling is adopted to
determine the PMF from the binding site to solution in water,
whereby a harmonic restraint is placed at successive points
along the reaction coordinate � and probabilities at each point
are accumulated. The restraining potential employed has the
harmonic form

where �0 is the target distance and k is the force constant.
The weighted histogram analysis method52,53 is used to
convert the probabilities into the PMF along the reaction
coordinate. The reaction coordinate here is defined as either
the z-component of the distance between the C7 atom of
benzamidine and the Cγ atom of ASP 189, as shown in
Figure 1d, or the radial distance r. The radial distance when
the ligand is bound is ∼3.8 Å. The path extends linearly out
of the binding site and is divided into 28 windows at 1 Å
intervals, with each window having the ligand placed at the
desired value of the reaction coordinate, starting from 4 to
31 Å, remaining well within the simulation box. The restraint
force constant of the umbrella potential is set to 1 kcal mol-1

Å-2. Each window is simulated for 1 ns.
Choice of the Binding Path. A suitable linear path, to

which this approach is applied, was chosen by performing
short umbrella sampling simulations along 17 different
linear paths at different orientations from the binding
pocket to the bulk as illustrated in Figure 3. One of these
trajectories is along the central z-axis, which coincides
with the long axis of the ligand when bound. The other
trajectories are chosen with combinations of four different
polar angles θ (5°, 10°, 15°, and 20°) and four different
azimuthal angles � (0°, 90°, 180°, and 270°). The radial
distance reaction coordinate is employed. Each window
on every path is simulated for only 50 ps to offset the
expense of simulating the larger number of paths. An
alternative approach where each window is started from
the last configuration of the preceding window to create
a nonlinear path was also examined but was found to be
dissatisfactory, as reported in the results.

Results

Standard Free Energy of Binding of the Model System.
Figure 4 shows the PMFs for the model system with four
different orthogonal restraints. The PMF depths ∆WR are seen
to decrease with smaller orthogonal force constant kxy and
tend to negative infinity in the limit of kxy ) 0 when the
unbound ligand samples an infinite volume. Using the
arbitrary unbound length lu of 10 Å, Table 1 summarizes lb,

∆GR ) -RT ln(Ab,R

Ab
) (13)

∆G° ) ∆WR - RT ln(Vb

V°
Au,R

Ab,R
) (14)

∆G° ) ∆W3D - RT ln(Vb

V°) (15)

∆W3D ) ∆WR - RT ln(Au,R

Ab,R
) (16)

V(�) ) 1
2

k(� - �0)
2 (17)
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Au,R, ∆WR, ∆GPMF, ∆GV, ∆GR, and ∆G° for different values
of kxy. The unbound area Au,R orthogonal to the reaction
coordinate decreases with larger kxy, and ∆WR and ∆GPMF

become more favorable as would be expected since the ligand
is binding from a smaller unbound volume. The unbound
volumes Vu,R range from 37 Å3 for kxy ) 1 kcal mol-1 Å-2

to 0.74 Å3 for kxy ) 50 kcal mol-1 Å-2. Consequently, the
free energy change ∆GV for contracting from the standard-
state volume to the unbound volume increases from 2.2 to
4.5 kcal mol-1. The free energy change ∆GR for turning off
the restraints in the binding site decreases from 0.0 to -0.7
kcal mol-1 with larger kxy. The same value is obtained for
the standard free energy of binding ∆G° ) -4.2 kcal mol-1,
regardless of kxy. This value is consistent with that predicted
by eq 15 using Vb ) 0.092 Å3 as determined by an analogue
of eq 9. It would also be independent of lu because this
cancels between ∆GPMF and ∆GV.

Standard Free Energy of Binding of Trypsin-Benz-
amidine. Figure 5a-e shows the PMFs obtained using a
z-component reaction coordinate with orthogonal restraints
of 0, 1, 5, 10, and 50 kcal mol-1 Å-2, respectively, for
different sampling times for the trypsin-benzamidine system.
The central path was used for this run since it is one of the
most favorable paths. If the other five most favorable paths
are extended to 1-ns sampling per window, similar ∆WR

results are found, confirming the choice of the central path.
A more detailed examination of the alternative paths is

Figure 3. Seventeen paths considered for umbrella sampling that connect the binding site to the bulk in the (a) yz plane and
(b) xz plane. Each path is labeled by its azimuthal and polar angles relative to the central path. Asp 189 and benzamidine are
in black. Paths are colored according to their PMF depths, ∆WR, with blue the deepest and red the shallowest.

Figure 4. PMFs along the z-component reaction coordinate
for the model binding system with orthogonal force constants
of 1, 5, 10, and 50 kcal mol-1 Å-2.
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provided below. The PMFs with orthogonal restraints of 5
and 50 kcal mol-1 Å-2 are seen to converge slightly better
than those at 0, 1, and 10 kcal mol-1 Å-2. We might expect

that the convergence would be worse for weaker restraints
since the ligand has to sample a greater volume. In the limit
of zero force constant, this volume would be infinite.

Table 1. Standard Free Energy of Binding ∆G° and Its Components for Different Orthogonal Restraints kxy for the Model
System

kxy/(kcal mol-1 Å-2) lb/(Å) Au,R/(Å2) ∆WR/(kcal mol-1) ∆GPMF/(kcal mol-1) ∆GV/(kcal mol-1) ∆GR/(kcal mol-1) ∆G°/(kcal mol-1)

0 0.5 +∞ +∞ +∞ -∞ 0.0
1 0.5 3.7 -8.2 -6.4 2.2 -0.0 -4.2
5 0.5 0.74 -9.0 -7.3 3.2 -0.1 -4.2
10 0.5 0.37 -9.3 -7.6 3.6 -0.2 -4.2
50 0.5 0.074 -9.8 -8.0 4.5 -0.7 -4.2

Figure 5. PMFs from umbrella sampling for trypsin-benzamidine using the z-component reaction coordinate with an orthogonal
force constant kxy (kcal mol-1 Å-2) of (a) 0, (b) 1, (c) 5, (d) 10, and (e) 50. (f) PMF using the radial reaction coordinate and the
nonlinear path, for which each window starts from the last frame of the preceding one. PMFs are shown averaged over 250-ps
intervals (magenta, red, green, blue) and over the full 1 ns (black).
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However, for the 1-ns trajectories run here, a significant
difference is not observed.

Table 2 summarizes lb, Au,R, ∆WR, ∆GPMF, ∆GV, ∆GR, and
∆G° for different values of kxy. The cutoff between the bound
and unbound regions of the PMF is chosen to be 17 Å and
the maximum value of the reaction coordinate is chosen to
be 31 Å, so the length lu in the unbound region equals 14 Å.
The bound length lb is similar for different orthogonal
restraints. The unbound area Au,R is unchanged from the
model system. ∆WR and ∆GPMF again become more favor-
able with larger kxy, with the exception of a less favorable
value of ∆WR for kxy ) 50 kcal mol-1 Å-2. ∆GV increases
from 2.0 to 4.4 kcal mol-1, while ∆GR decreases from -1.2
to -3.2 kcal mol-1 for the same range of kxy. These values
of ∆GR are larger than those in the model system, presumably
because the minimum of the orthogonal restraint in the
trypsin-benzamidine system no longer matches up with the
effective minimum of the binding site as it was assumed to
do in the model system. The final standard free energies of
binding ∆G° range from -5.5 to -9.0 kcal mol-1, comparing
reasonably well with the experimental value54,55 of -6.3 kcal
mol-1. Our estimates of the standard errors of the mean free
energy differences ∆WR are given in parentheses in Table 2
and utilize the four 250-ps time frames (Figure 5) to estimate
errors due to inadequate sampling. The errors on lb are
estimated in the same manner and are found to be negligible
compared to ∆WR; standard errors in ∆GR are also taken
over the 250-ps time periods. The final errors on ∆G° are

found to lie between 0.5 and 1.0 kcal mol-1. Other errors
arising from the force field accuracy and possible incomplete
sampling cannot be reliably estimated.

Other Linear and Nonlinear Paths. The PMF along the
nonlinear radial path for trypsin-benzamidine is displayed
in Figure 5f, averaged over different time slices of the
simulations. There are two clear problems with this PMF:
the first is that it is not converged and decreases with time;
the second is that the PMF does not become constant at long
range as would be expected once the ligand is fully solvated.
This is because the ligand never actually leaves the protein
surface over the entire 25 Å reaction coordinate. Although
such paths are possibly more realistic in describing binding,
such an approach was not pursued further due to the
excessively long reaction coordinate, poor convergence, and
difficulty in defining the unbound volume.

For the linear paths approach, the PMF values of all 17
paths are color-coded and displayed in Figure 6. In principle,
all PMFs should produce the same ∆WR; however, in
practice, they do not due to convergence problems arising
from the short simulation timescales and steric clashes
between the ligand and protein. The PMFs of all paths are
plotted in Figure 6 at 1 Å intervals with a common reference
point in the bulk solvent. The lowest values of the PMFs
are colored blue and the highest are colored red. The plot
shows that paths with � ) 180° all have favorable PMFs
with large binding energies, and Figure 3b indicates that this

Table 2. Standard Free Energy of Binding ∆G° and Its Components for Different Orthogonal Restraints kxy for the
Trypsin-Benzamidine System

kxy/(kcal mol-1 Å-2) lb/(Å) Au,R/(Å2) ∆WR/(kcal mol-1) ∆GPMF/(kcal mol-1) ∆GV/(kcal mol-1) ∆GR/(kcal mol-1) ∆G°/(kcal mol-1)

0 0.54 -8.3 (1.0) -6.4
1 0.41 3.7 -9.6 (0.8) -7.5 2.0 -1.2 (0.4) -6.7 (0.9)
5 0.59 0.74 -11.9 (0.1) -10.0 3.0 -2.0 (0.5) -9.0 (0.5)
10 0.53 0.37 -11.9 (0.8) -10.0 3.4 -2.3 (0.6) -8.9 (1.0)
50 0.49 0.074 -8.7 (0.4) -6.7 4.4 -3.2 (0.6) -5.5 (0.7)

Figure 6. Color-coded PMFs along the distance reaction coordinate for each of the 17 linear paths in the (�, θ) notation. The
points with the blue color have the lowest value of W(z) and those with red the highest.
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is the open end of the protein where fewer residues occupy
the path of the ligand. Other favorable paths include (-, 0°),
(90°, 10°), (180°, 5°), and (270°, 5°). Most paths give
conventional binding PMFs in that there is a minimum at
the bound state and the PMF curve flattens off in the unbound
region. However, for paths having � ) 0° and θ ) 10°,
15°, or 20°, a tryptophan residue (Trp 192 in Figure 3) blocks
the way of the ligand. This forces it away from these paths,
resulting in unreasonable PMFs for the short timescale of
simulation used.

Discussion

In this work, we show how to obtain the standard free energy
of binding ∆G° from a one-dimensional PMF and apply it
to a model binding system and the trypsin-benzamidine
system. The PMF along the z-component of the reaction
coordinate is calculated by applying restraints to the ligand
orthogonal to the reaction coordinate. We calculate the ratio
of the partition functions of the bound and unbound states
from the PMF. The sampled unbound volume is computed
from the volume spanned within the orthogonal restraint
along the unbound section of the PMF. ∆G° is obtained from
the free energy of contraction from the standard volume to
the unbound volume, then to the bound state with restraints,
and then to the bound state. Our approach gives reasonable
results in comparison with experiment for the trypsin-benz-
amidine system,54,55 and the results are reasonably indepen-
dent of the size of the orthogonal restraint. The main
exception appears to be for kxy ) 50 kcal mol-1 Å-2 for
which a less favorable value of ∆G° is obtained. This may
arise because the larger force constant is constraining the
ligand too tightly to a linear path, bringing it too close to
the protein, and leading to a nonconverged PMF.

It is clear that ∆G° is not ∆WR as is often assumed.31-34

Nor is it always obtained by augmenting ∆WR with the
change in free energy from the standard volume to the bound
volume. Because the one-dimensional PMF includes averag-
ing over the ligand’s orthogonal coordinates x and y, one
must know the xy area sampled in the unbound region to
work out the volume sampled in the unbound region and
therefore determine the free energy for scaling to it from
the standard volume. Equation 14 for ∆G° becomes equiva-
lent to that of Lee and Olson12,18 when Au,R ) Ab,R. This
equality will hold in the limit of an infinitely large orthogonal
force constant, when confinement by the protein would be
negligible, or when sampling is very short. Usually Au,R

would exceed Ab,R because the binding site also confines the
ligand, and so omitting this term would overestimate ∆G°
and make it less favorable. Short sampling may not allow
the ligand to adequately explore the larger Au,R. It is curious
to note that the ∆G° values obtained do not differ substan-
tially from ∆WR obtained without an orthogonal restraint or
any consideration of the standard-state concentration. This
is purely coincidental. If a different standard-state concentra-
tion were used, ∆G° would change but ∆WR would not. Use
of a three-dimensional PMF and eq 15 to get ∆G° would
avoid the need to define an orthogonal restraint. However,
this suffers from the disadvantage in the case of umbrella
sampling that many more umbrella potentials would be

required to span the three-dimensional space. Similar issues
apply to the rotational entropy. If an angular restraint were
to be applied to sample smaller angular volumes, the free
energy change from 8π2 in solution to the unbound angular
volume would be required. The change in rotational entropy
here is assumed to be included in ∆WR.

Comparing the approach of Woo and Roux,21 their
derivation includes the calculation of a surface area integral
at the unbound state and a PMF integral over the bound
region. They apply translational, rotational, and conforma-
tional restraints on the large ligand used in that study. Their
partition function ratio is made up of four terms: S*, a surface
area integral over what is effectively a patch of a sphere of
arbitrary radius 40 Å, and I*, the integral of the PMF over
the bound region up to this radius, and free energy terms
for turning on and off the restraints. S* corresponds to our
Au,R and I* to our lb exp(-∆WR/RT). Our method is a simpler
formulation expressed in terms that have a clear physical
interpretation. The use of a z-component versus a radial
reaction coordinate leads to a number of advantages: there
is a simple expression for the unbound area Au,R independent
of the cutoff; there is no need for a Jacobian, which results
in a flat PMF in the unbound region; the area to be sampled
is roughly constant at each value of the reaction coordinate;
and ∆WR is exponentially averaged over the entire unbound
region, reducing its statistical error. The interdependence of
I* and S* on the cutoff and the dependence of the PMF on
the radial Jacobian make it difficult to consider more than
one radial point in the unbound region. Combining these
attributes of the method gives a simple relationship between
∆G° and ∆WR (eq 11 or 14).

The trypsin-benzamidine system has been previously
studied using umbrella sampling and grand canonical simula-
tions by Resat et al.45 They obtained a rather different PMF
with a depth of -25 kcal mol-1 and a pronounced barrier of
10 kcal mol-1 at a reaction coordinate distance of ∼5 Å.
The larger PMF depth could be due to less equilibration and
a rigid protein. Gervasio et al.33 studied the same system
with metadynamics using a two-dimensional reaction coor-
dinate made up of a distance and a ligand orientation. They
found good agreement with experiment although it should
be noted that they do not include the standard-state depen-
dence in their comparison.

We also examined multiple unbinding pathways of ben-
zamidine from trypsin. One protocol that involves no
assumption of the unbinding pathway uses a nonlinear radial
trajectory, similar to the approach of Hajjar et al.56 Having
a nonlinear umbrella-sampling trajectory would give more
realistic information on the binding mechanism; however,
this approach has a number of shortcomings: it results in
deep, unconverged PMFs and would require a long reaction
coordinate to the bulk since the ligand remains bound to the
protein surface even at large distances. Serial simulations
are also required since each window is started from the
preceding one. Despite all the disadvantages of this protocol,
it may more accurately represent the binding mechanism
whereby the ligand may first bind to the protein somewhere
on the surface at a distance from the binding site rather then
directly into the binding site from solution. Calculating the
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PMF of the ligand along linear pathways avoids the problem
in the nonlinear protocol because the ligand reaches the bulk
solvent along a much shorter reaction coordinate and each
window, being independent of the previous one, can be run
in parallel. Multiple trajectories were also used by Karplus
and van der Vaart57 but to obtain a PMF in targeted MD
calculations. Hajjar et al.56 use multiple trajectory umbrella
sampling in addition to nonlinear paths. The linear paths
method allows us to identify the most favorable binding paths
that the ligand can follow. It also generates an approximate
free energy landscape of the ligand near the protein’s binding
site. This landscape tells us the expected result that PMF is
governed by sterics so that the lowest and most converged
PMFs span regions that are least occupied by the protein.
One path is then chosen to estimate the standard free energy
of binding using the z-component reaction coordinate and
orthogonal restraints as discussed earlier. Although the PMFs
may appear barrierless, they represent an average over many
configurations and do not necessarily imply that individual
binding or unbinding trajectories have no barriers.

Conclusions

We introduce an approach to calculate the standard free
energy of binding ∆G° from a one-dimensional potential of
mean force. The PMF is calculated using a z-component
reaction coordinate with orthogonal restraints. The ratio of
the bound and unbound partition functions is calculated from
the PMF, and the standard-state concentration is accounted
for by determining the unbound volume sampled by the
ligand through application of restraining potentials. The final
expression for ∆G° depends on the bound length along the
reaction coordinate, the unbound area orthogonal to the
reaction coordinate, the standard volume, the orthogonal
restraining potential, and the PMF depth ∆WR. We demon-
strate how to get ∆G° from the PMF for a model binding
system and go on to apply it to the PMF of benzamidine
binding to trypsin to predict ∆G° to range from -5.5 to -9.0
kcal mol-1, in good agreement with experiment at -6.3 kcal
mol-1. We emphasize how the formulation is simpler when
using a z-component reaction coordinate rather than a radial
one and make clear how the formulation depends on the
dimensionality of the PMF.
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Computations of Absolute Solvation Free Energies of Small
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Abstract: Accurate determination of absolute solvation free energy plays a critical role in
numerous areas of biomolecular modeling and drug discovery. A quantitative representation of
ligand and receptor desolvation, in particular, is an essential component of current docking and
scoring methods. Furthermore, the partitioning of a drug between aqueous and nonpolar solvents
is one of the important factors considered in pharmacokinetics. In this study, the absolute
hydration free energy for a set of 239 neutral ligands spanning diverse chemical functional groups
commonly found in drugs and drug-like candidates is calculated using the molecular dynamics
free energy perturbation method (FEP/MD) with explicit water molecules, and compared to
experimental data as well as its counterparts obtained using implicit solvent models. The hydration
free energies are calculated from explicit solvent simulations using a staged FEP procedure
permitting a separation of the total free energy into polar and nonpolar contributions. The nonpolar
component is further decomposed into attractive (dispersive) and repulsive (cavity) components
using the Weeks-Chandler-Anderson (WCA) separation scheme. To increase the computational
efficiency, all of the FEP/MD simulations are generated using a mixed explicit/implicit solvent
scheme with a relatively small number of explicit TIP3P water molecules, in which the influence
of the remaining bulk is incorporated via the spherical solvent boundary potential (SSBP). The
performances of two fixed-charge force fields designed for small organic molecules, the General
Amber force field (GAFF), and the all-atom CHARMm-MSI, are compared. Because of the crucial
role of electrostatics in solvation free energy, the results from various commonly used charge
generation models based on the semiempirical (AM1-BCC) and QM calculations [charge fitting
using ChelpG and RESP] are compared. In addition, the solvation free energies of the test set
are also calculated using Poisson-Boltzmann (PB) and Generalized Born model of solvation
(GB), which are two widely used continuum electrostatic implicit solvent models. The protocol
for running the absolute solvation free energy calculations used throughout is automated as
much as possible, with minimum user intervention, so that it can be used in large-scale analysis
and force field optimization.

1. Introduction
An accurate determination of solvation free energy of a
molecule plays a critical role in numerous areas of biomedi-

cal, chemical, and industrial research, and its evaluation is a
long-standing and constantly evolving challenge in compu-
tational chemistry.1,2 For example, estimating the desolvation
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penalty for a ligand and its receptor upon formation of a
bound complex is an important component in drug design.2

Another example is in the area of pharmacokinetics, where
partitioning between various solvents (the so-called “log P”)
and acid-base equilibrium is useful in determining absorp-
tion properties.3–5 Solvation free energies are highly sensitive
to the details of the molecular mechanical force field
parameters used to describe the solvent and the solute
molecules, such as atomic partial charges, Lennard-Jones
radii, and the well depth. The calculation of the absolute
solvation free energy is, thus, a critical test of the accuracy
of a force field, and the underlying method to represent the
interaction between the solute and the solvent. Because
absolute solvation free energies have been experimentally
determined for several small molecules, it provides a direct
comparison between the experimental and calculated values.

Despite its importance, the calculation of “absolute”
solvation free energies presents a challenge to computational
chemists. Both the dynamic and the thermodynamic proper-
ties of a molecular solute are strongly influenced by the
microscopic structure and organization of the solvent mol-
ecules in its surrounding. The current methods to treat
solvation generally follow one of two approaches. The first
one involves the explicit simulation of a large number of
solvent molecules with periodic boundary conditions.6

Alternatively, the effect of solvation can be incorporated
implicitly, via continuum approximations.7 While molecular
dynamics free energy perturbation (FEP/MD) with explicit
solvent molecules provides the most realistic, and arguably
most accurate, treatment of solvation,8 the approach is often
limited in practice by the computational cost.9 On the other
hand, there is a vast range of available implicit solvent
methods differing widely in sophistication, computational
cost, and accuracy.7 The family of methods constructed on
the basis of continuum electrostatic solvation models are
particularly appealing because of their ability to accurately
reproduce solvation in polar liquids while remaining com-
putationally inexpensive.10–13

Several groups have shown that the Poisson-Boltzmann
(PB) models14,15 are capable of reproducing polar explicit
solvent forces between solute and solvent.16,17 The perfor-
mance of continuum electrostatic models is highly dependent
on the input parameters, such as the effective atomic Born
radii.11,18–21 A good agreement with PB has been observed
for the electrostatic or polar component of the solvation
energy using an optimized set of radii.18,21,22 In implicit
solvation models based on continuum electrostatics, the free
energy to insert the uncharged solute into the solvent, the
so-called nonpolar contribution, must be treated separately.
Such free energy contribution to solvation has been tradition-
ally approximated from models based on the solvent-
accessible surface area (SASA).22–25 However, more sophis-
ticated statistical mechanical treatments have shown that the
cavity creation term is dependent on both the SASA and the
solvent-accessible volume term, with a crossover at large
solute sizes (>10 Å).26,27 Furthermore, decomposition of
the nonpolar solvation free energy in simulation with explicit
water molecules indicates that the effects from the repulsive
and the dispersive van der Waals interactions are both

considerable and of opposite sign.28 In fact, not accounting
for the attractive van der Waals interactions between solvent
and solute atoms in the SASA-based model introduces
important inaccuracies,29–32 and efforts have been made to
design reasonably accurate and computationally tractable
approximations to the nonpolar free energy contribution.
Along those lines, Tan et al. have recently developed an
implicit solvent model methodology treating explicitly the
nonpolar solvation energy corresponding to the cavity
creation and the attractive dispersion.33 This implicit solva-
tion model was implemented in the Amber simulation
program (Amber9 and newer versions).

In the present study, we compute the absolute hydration
free energy using FEP/MD with explicit water molecules
for a set of 239 small molecules that are representative of
the chemical functionalities found in drug design. The set
includes saturated hydrocarbons, unsaturated hydrocarbons,
strained systems, conjugated and aromatic systems, all major
polar functional groups, as well as heterocyclic systems. The
FEP/MD simulations with explicit solvent molecules are
based on the TIP3P water model.34 To increase the compu-
tational efficiency, the FEP/MD simulations are generated
using the Spherical Solvent Boundary Potential (SSBP)
approach,35 which consists of keeping a small number of
explicit solvent molecules in the vicinity of the solute, and
representing the remaining bulk implicitly via an effective
solvent boundary potential. Two widely used fixed charge
general force fields are considered to model the small
molecules. The first is the generalized Amber force field
(GAFF)36 established recently, and the second is the
CHARMm-MSI force field,37 which was developed almost
a decade earlier. Both are biomolecular force fields con-
structed from simple analytical functions. Because they share
a similar functional form, a comparison of the calculated
absolute solvation free energy using these two force fields
is meaningful and of general interest.

For the same test set of small molecules and force field
parameters, we compare the FEP/MD results to the free
energies obtained from two commonly used implicit solvent
models, PB/SA and GB/SA.38 For the purpose of this
comparison, the total solvation free energy is separated into
polar (electrostatics) and nonpolar contributions to provide
more insight, following a step-by-step reversible work to
materialize the solute in solution.7,39 The nonpolar compo-
nent obtained in FEP/MD is further decomposed into purely
repulsive and dispersive terms using the separation scheme
for the Lennard-Jones 6-12 pair potential introduced in the
WCA theory40 and implemented in an earlier study of side
chain analogues.28 Correspondingly, the nonpolar component
obtained with the implicit solvation models is separated into
a repulsive and an attractive component using an optimized
continuum decomposition.33 Although such a decomposition
scheme of the solvation free energy is path dependent by
definition,41 the analysis based on a specific step-by-step
reversible work provides a useful framework for dissecting
the free energy because each individual contribution can be
associated with a microscopic process with a clear and well-
defined physical meaning.7 Here, the decomposition of the
solvation free energy allows a comparison of the various
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contributions terms from explicit as well as implicit solvent
methods. Furthermore, decomposition of nonpolar solvation
energy into repulsive and attractive contributions is advanta-
geous to better understand the factors governing hydrophobic
solvation and protein stability. In particular, it is shown that
the nonpolar component of the free energy correlates strongly
with log P and SASA values. All of the computational
methodologies and force field parameters are described in
the next section.

2. Method and Force Fields

a. Test Set. The absolute free energy of solvation for 239
neutral molecules (Table 1) was computed using three
separate methods: molecular dynamics free energy perturba-
tion (FEP/MD) simulation in explicit TIP3P solvent mol-
ecules,34 finite-difference Poisson-Boltzmann (PB) con-
tinuum electrostatic,10 and Generalized Born plus a surface
area term (GB/SA).11 This set of methods enables us to
evaluate the accuracy of the commonly used point-charge
models and force fields used in molecular modeling of small
molecules. The test set consisting of 239 molecules was
curated from earlier work in the literature.42,43 The initial
structures were obtained from the NIST Chemistry WebBook
database. The molecules chosen for this comparative study
have diverse chemical functional groups commonly encoun-
tered in drug design. These include saturated hydrocarbons,
unsaturated hydrocarbons, conjugated and aromatic systems,
all major polar functional groups, as well as heterocyclic
and ionic systems. The diverse chemical functionalities
include, alkanes, alkenes, alkynes, branched alkanes, alco-
hols, aldehydes, ketones, esters, carboxylic acid, cycloal-
kanes, arenas, aliphatic amines, aromatic amines, amides,
bifunctional amines, ammonia, nitriles, nitro, thiols, sulfides,
disulphides, ethers, fluoro, chloroalkanes, chloroalkenes,
chloroarenes, bromo, iodo, multiple halogens, and bifunc-
tional groups. A table summarizing the list of compounds
under each category and their experimental solvation energy
is shown in Supporting Information Table T1.

b. The Force Fields. The GAFF (Generalized Amber
Force Field)36 and the CHARMm-MSI force field37 consid-
ered for the current study share a similar functional form:

Here, the first term accounts for the bond stretching energy
when the atom moved (b - b0) from equilibrium. The second
term in the potential energy function accounts for bond angle
bending from equilibrium (θ - θ0). The third term cor-
responds to the twisting in the dihedral or the torsional angle
with multiplicity n, and phase shift δ. The force constants
for bond length, bond angle, and torsional angle are kb, kθ,
and kφ, respectively. The last term represents the standard
12-6 Lennard-Jones potential used to calculate the nonbonded
interactions between pairs of atoms (i, j), where ε and Rmin

represent the well depth and radius parameters of the
potential, respectively.

The ligand structures were read into the Antechamber
program to generate the individual parameter and topology
files based on the general Amber force field (GAFF). In
addition, tleap program (Amber9 version) was used to
generate topology and parameter file in Amber format for
the implicit solvent simulations. The CHARMM format of
the GAFF parameter file was used to generate the input
topology and parameter file for small molecules compatible
with the CHARMM program format. These files were used
in all of the explicit solvent simulations using the CHARMM
program. The GAFF potential function consists of 35 basic
and 22 special atom types based on element type, hybridiza-
tion, aromaticity, and chemical environment. The combina-
tion of basic and special atom types covers almost all of the
organic chemical space that is made up of C, N, O, S, P, H,
F, Cl, Br, and I atoms, making it a complete force field to
study pharmaceutical ligand phase space. The van der Waals
parameters of GAFF are the same as those used by the
traditional Amber force field.36 Also, GAFF uses a simple
additive harmonic energy function consisting of bond, angle,
dihedral, and Lennard-Jones 12-6 potential term as the
traditional CHARMM and Amber force fields as described
above, making it compatible in a broader perspective with
these force fields. Both GAFF and CHARMm-MSI are
complete force fields in the sense that they aim at covering
most small organic molecules. GAFF can be assigned to a
wide range of molecules in automatic fashion using the
Antechamber package,44 while the CHARMm-MSI force
field can be automatically assigned to small molecules using
the InsightII program (Accelrys). This makes both force fields
practical to be applied to a large number of ligands in a
database screening in docking studies.

The CHARMm-MSI force field parameters were assigned
to the 239 small molecules in our test set using the InsightII
program by specifying the force field file, CHARMM.cfrc
(Insight II Version 2000 - Molecular Modeling System).

Table 1. Table Showing the Chemical Functional Group
and Number of Small Molecules from Each Class Used in
the Present Study

type number type number

alkanes 8 esters 15
alkenes 10 ethers 11
alkynes 5 halogen, bromo 10
alcohols 17 halogen, chloroalkanes 11
aldehydes 6 halogen, chloroalkenes 5
aliphatic amines 16 halogen, chloroarenes 3
amides 5 halogen, flouro 6
arenes 14 halogen, iodo 8
aromatic amines 14 bifunamine 3
ketones 12 multiple halogens 15
bifunctional 5 nitriles 5
branched alkanes 7 cycloalkanes 5
carboxylic 5 sulfides 5
nitro 7
disulfides 2
total 239

V ) ∑
bonds

kb(b - b0)
2+ ∑

angles

kθ(θ - θ0)
2 +

∑
dihedrals

k�(1 + cos(n� - δ) + ∑
nonbonded

εij[(Rmin ,ij

rij
)12

-

(Rmin ,ij

rij
)6] +

qiqj

εrij
(1)
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Perl scripts were used to automate the input file generation
step with the InsightII program.

c. Charge Methods. The charge method plays a crucial
role in any molecular mechanics calculations. While the set
of atomic partial charges is closely associated with the rest
of the force field, combining the nonelectrostatic part of a
force field with sets of atomic partial charges derived from
a variety of approaches is quite common when considering
large databases of ligands. For the sake of clarity, we will
be implicitly referring only to the nonelectrostatic part of
the GAFF and CHARMm-MSI potential function when
invoking those names hereon. Because the charges have a
very large impact on the resulting solvation energies,28,45,46

it is often worthwhile considering different strategies to
generate them. In Amber’s ff99 and ff94, the charges are
derived by using the HF/6-31G* method. The idea behind
using this as a preferred method is that it exaggerates the
dipole moment of most of the residues by 10-20%, which
in turn mimics the polarization in the condensed phase
simulations. The CHARMM22 charges were obtained by
fitting of solute-water dimer energies from SCF/6-31G*.
In the present study, we compare three different charge
models: two methods based on fitting partial charges to the
electrostatic potential, ChelpG47 and restrained electrostatic
potential fit (RESP),48 and a third method based on semiem-
pirical AM1-BCC model.49,50 The AM1-BCC method is a
computationally inexpensive method used to generate high-
quality atomic charges for condensed phase simulations. The
AM1 atomic charges are “population” quantities based on
occupation of the molecular orbital and do not reproduce
the electrostatic potential (ESP) of a molecule. The simple
additive bond charge corrections (BCC) are added to these
AM1 atomic charges to generate the AM1-BCC charges,
which better reproduce the ESP. The parametrizations of the
BCC were carried out by Bayley and co-workers by fitting
to the HF/6-31G* ESP of a training set of >2700 molecules.50

Henceforth, the models considered will be GAFF/AM1-BCC,
GAFF/ChelpG, GAFF/RESP, CHARMm-MSI/AM1-BCC,
CHARMm-MSI/ChelpG, and CHARMm-MSI/RESP. The
performance of three commonly used charge methods was
compared in this work. They are ab initio methods such as
RESP and ChelpG and a semiempirical method, AM1-BCC.
For each molecule, these three methods are used to derive a
set of atom-centered point charges.

AM1-BCC charges for our test set containing 239 mol-
ecules were obtained using the Antechamber package (ver
2.7). The Antechamber and mopac programs were used to
calculate the AM1-Mulliken population charges for each
small molecule. The am1bcc program was used to assign
atom types and bond types according to AM1-BCC defini-
tions, and then assign the BCC values for the atoms.

ChelpG (charges from electrostatic potentials using a grid)
charges were obtained using the Gaussian program.51 In this
method, the atomic charges were fitted to reproduce the
molecular electrostatic potential (MEP) at a number of grid
points around the molecule. After the MEP was evaluated
at all valid grid points, atomic charges were derived that
reproduce the MEP in the most optimum way. The only

additional constraint in the fitting procedure was that the sum
of all atomic charges equals that of the overall charge of the
system.

RESP (restrained electrostatic potential fit) charges are
based on a restrained least-squares fitting algorithm to best
reproduce the quantum mechanical electrostatic potential of
a molecule. The potential was evaluated at a large number
of points defined by four shells of surfaces at 1.4, 1.6, 1.8,
and 2.0 times the VDW radii. These distances have been
shown to be appropriate for deriving charges that reproduce
typical intermolecular interactions (energies and distances).
Also, during the RESP charge fitting, the equivalent atoms
were made to bear the same charges because equivalent
atoms are indistinguishable during the molecular dynamical
simulations. The value of the electrostatic potential at each
grid point was calculated from the quantum mechanical wave
function using the Gaussian 03 program.51 The charges
derived using this procedure are basis set dependent. The
electrostatic potential for the small molecules in our test set
was calculated at the HF/6-31G* level of theory. The 3-21G*
basis set was used for the iodine atom. The Respgen utility
of the Antechamber package was used to generate the input
files for two-stage fitting. The partial atomic charges were
fitted to the electrostatic potential using the RESP program
and Antechamber package.

d. Generating Input Files. Because our ultimate goal is
the practical application of these methods for screening
databases containing multiple small molecules used in
protein-ligand docking studies, emphasis was given to
making the input file generation steps automated with the
help of programs such as Antechamber and InsightII, and
simple perl scripts. To efficiently handle hundreds of small
molecules in any molecular mechanics calculations, one
needs to automatically assign the parameters and generate
the residue topology file rather than hand-editing individual
molecule. The stand-alone version of Antechamber program
v2.7 serves this purpose by automatically perceiving atom
types and assigning bond type and bond order from the three-
dimensional geometry of the molecule.44 However, it should
be kept in mind that when using Antechamber, the user has
to provide the total charge of the molecule for accurate
charge calculation; otherwise the program perceives the
default total charge of 0. Because in our case only neutral
molecules were used, we used the default total charge. The
Antechamber program was used to generate the input
topology and parameter files for both the Amber and the
CHARMM programs when using GAFF. The InsightII
program and perl scripts were used to automate the input
file preparatory step when the CHARMm-MSI force field
was used. All of the explicit solvent simulations were set
up and performed with the CHARMM program in an
automated manner using a suite of perl scripts, keeping in
mind the broader application of this method in screening
large databases of ligands. The only input that was supplied
was a coordinate file for the small molecule, for example,
mol2 or PDB format.

e. Solvation Free Energy Protocols. The absolute free
energy of solvation for the small molecules was calculated
using FEP/MD with explicit solvent molecules. The FEP/
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MD simulations were carried out using the PERT module
of the program CHARMM v31.52 Three staging or coupling
parameters, s, �, and λ, were used to separate the absolute
solvation free energy in terms of its polar and nonpolar
components.28 The latter was further decomposed into purely
repulsive and attractive terms using the WCA scheme. The
free energy contribution from the core repulsion was
calculated by setting the staging parameter s to 0.0, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. For each value of s, two
trajectories of 70 ps were run for both the initial and the
final states. Only the last 60 ps of each trajectory was used
in the free energy calculations. The free energy contributions
from electrostatics and from the van der Waals dispersion
interactions were both calculated using a standard linear
coupling scheme. For the dispersive attraction, the coupling
parameter � was set to 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, and 1.0. For the electrostatic free energy contribu-
tion, the coupling parameter λ was set to 0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. In both cases, interaction
energy samples were collected from the last 20 ps of two
30 ps trajectories, and the samples were processed by the
weighted histogram analysis method (WHAM).53 All free
energies were calculated with 400 explicit TIP3P water
molecules, with the influence of the remaining bulk being
incorporated via the SSBP.35 The system temperature was
held fixed at 300 K with Langevin dynamics. A fric-
tion constant of 5 ps-1 was applied on the oxygen atoms of
all of the water molecules. The integration time step of
the dynamics was 2 fs. All bonds containing hydrogen atom
were fixed with SHAKE constraints. The center of mass of
the solute was constrained to the center of the solvent
sphere with a harmonic potential with a force constant of
1.0 kcal Å-2 mol-1.

The solvation energies for the 239 small molecules were
obtained using two implicit solvent methods, the GB/SA
model in Nucleic Acid Builder (NAB)54 and the PB. The
NAB molecular modeling package was used to perform the
MM-GB/SA calculations with the Amber force field. NAB
is a high-level language that can perform the force field
calculations, such as molecular dynamics and minimization
similar to the Amber program.54 The NAB and Amber
program have the same GB implementation. The ∆Gpolar was
obtained using the GB method as implemented in the NAB
program using a dielectric constant of 80 for the water phase.
Each atom in a molecule was represented as a sphere of
radius Ri with a charge qi at its center; the interior of the
atom was assumed to be filled uniformly with a material of
dielectric constant 1. The Born radii were computed accord-
ing to the method of Onuchic, Bash, and Case or the “OBC”
model (implemented as igb ) 5 in NAB, version 5).55 The
effective Born radius of an atom reflects the degree of its
burial inside the molecule. In the “OBC” model, the effective
radii are rescaled using parameters proportional to the degree
of the atom’s burial.

The ∆Gnonpolar contribution to the total solvation free energy
was estimated using a term proportional to the total solvent
accessible surface area (SASA) of the molecule, with
proportionality constant derived from experimental solvation
energies of small nonpolar molecules. A fast LCPO algo-

rithm56 was used to compute an analytical approximation to
the SASA of the molecule.

The PB continuum solvent method with new and improved
nonpolar solvation model in Amber9 was used in this study.
This implicit solvent model decomposes the total solvation
free energy into polar and nonpolar. The polar component
of the total solvation free energy was obtained by using a
grid-based finite difference solution to the PB equation with
zero salt concentration and modified Bondi radii (cor-
responding to mbondi2 in Amber) for small molecules.55 A
grid spacing of 0.2 was used for generating the grids. The
∆Gnonpolar was obtained as a combination of two terms
representing separate cavity or repulsive term and a disper-
sive or attractive term using an optimized 6-12 decomposition
scheme using the methodology implemented as igb ) 10 in
Amber9.33

For the continuum solvent calculations, the starting
structures of the small molecules were subjected to 500 steps
each of SD and ABNR energy minimizations, followed by
1 ns of MD simulations using GB (igb ) 5 in Amber). The
PB was performed on the final snapshot of the equilibrated
structure. As a comparison, we also calculated the PB
electrostatic energy using PBEQ solver18,21,57 in the
CHARMM program using the same set of radii (mbondi2
in Amber) and PB parameters. The effect of conformational
fluctuations on the magnitude of the solvation free energy
was examined in the case of four small molecules: methyl
hexanoate, methyl propyl ether, octanal, and 5-nonanone.
Those molecules were chosen because they have the highest
number of the rotatable bonds and are among the most
flexible in the test set of 239 molecules studied here. The
MD simulations for 10 and 20 ns duration for each of the
molecule in vacuum were carried out to generate an ensemble
of conformations using both the CHARMM and the NAB
programs. The solvation free energy for the snapshots was
then calculated perturbatively for the implicit solvent methods
described above, PB/CHARMM and GBSA/NAB.

3. Results and Discussion

a. Comparison of the Charge Methods. For each set of
Lennard-Jones parameters from GAFF and CHARMm-MSI
force fields, we calculate the absolute solvation free energies
using atomic partial charges obtained from three different
methods. The first two methods are based on the electrostatic
potential from the quantum mechanics (QM): ChelpG and
RESP. The third method, AM1-BCC, is based on a semiem-
pirical AM1 determination of charge followed by bond
charge correction (BCC). The correlation plot between the
experimental (∆Gexp) and calculated (∆Gcalc) absolute sol-
vation free energies is shown in Figure 1. When using GAFF/
RESP and GAFF/ChelpG, the correlation coefficient R2

between the absolute ∆Gexp and ∆Gcalc corresponds to 0.84
and 0.80, respectively. Thus, the two QM methods show
good overall performance in terms of reproducing the
experimental results, the GAFF/RESP being slightly better
than the GAFF/ChelpG. The major outliers using the GAFF/
RESP model are (the error in absolute solvation free energy
is shown in parentheses) 1,4-dimethylpiperazine (5.1), aze-
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tidine (3.4), 1,2-ethanediol (-3.6), N-methylacetamide (3.0),
2-ethylpyrazine (3.1), propylaminoformamidine (-5.2), and
methyl formate (-3.3). Upon discarding these top outliers,
the R2 between the absolute solvation free energy (∆Gexp

and ∆Gcalc) improved from 0.82 to 0.88. On the other hand,
the semiempirical charge AM1-BCC method is able to
reproduce the absolute solvation free energies for our test
set with a higher correlation coefficient (R2 ) 0.87). The
major outlier with the GAFF/AM1-BCC method was 1-hep-
tanol (3.8). When using the CHARMm-MSI Lennard-Jones
parameters, we see that the overall correlation between the
absolute ∆Gexp and ∆Gcalc is worse for all three charge
models, CHARMm-MSI/AM1-BCC, CHARMm-MSI/RESP,
and CHARMm-MSI/CHelpG. However, a similar trend was
observed between the performances of the three charge
models. The R2 between the absolute ∆Gexp and ∆Gcalc from
the CHARMm-MSI/RESP, CHARMm-MSI/ChelpG, and
CHARMm-MSI/AM1-BCC corresponds to 0.72, 0.72, and
0.76, respectively (Figure 1B). The results show that for both
force fields, the two QM methods, RESP and ChelpG,
performed similarly in reproducing the experimental absolute
solvation free energies, whereas the semiempirical AM1-
BCC performed slightly better than the former two.

In an attempt to compare the performance of different
charge models, the compounds were grouped depending on
their chemical nature, and the average unsigned error (AUE)
in the absolute solvation energy was calculated for each

group (Figure 2). We observe that for small molecules
containing hydrocarbons, such as linear and branched al-
kanes, alkenes, alkynes, cycloalkanes, polar groups such as
aldehydes, ketones, carboxylic acids, esters, ethers, aliphatic
amines, nitro, sulfides, and the majority of the halogenated
molecules, the AUE in solvation energy is similar between
the two QM charge methods (Figure 2). The major outliers
are the small molecules containing hydrophobic ring structure
(arenes), and a polar functional group like alcohols, amides,
groups containing amines and another chemical group
(bifunctional), and compounds with iodine. For the bulky
arene hydrocarbons and compounds with an iodo functional
group, the calculated solvation free energies with RESP
charges yield better agreement with the experimental sol-
vation free energies as compared to the ChelpG charges.

In the calculation of absolute solvation energies, the results
obtained from the semiempirical AM1-BCC charges perform
as well as those obtained with QM charges. In case of
nitrogen-containing polar functional groups, such as amines,
amides, nitro, and bifunctional groups with at least one amino
function, the AM1-BCC performs better than the ChelpG
and RESP, for a given force field. It is somewhat surprising
that the AM1-BCC charges outperform the RESP for the
above functional groups. This can be attributed to the five
BCC parameters that were adjusted in the original AM1-
BCC model to improve agreement with experimental data
of amines, nitro, and unsaturated aromatic hydrocarbon

Figure 1. Plot showing correlation between experimental (x-axis; ∆Gexperimental, kcal/mol) and calculated (y-axis; ∆Gcalculated, kcal/
mol) absolute solvation free energies obtained using explicit solvent simulations on 241 neutral molecules. Absolute solvation
free energy calculated using the following models: GAFF/RESP (R2 ) 0.84) (A), CHARMm-MSI/RESP (R2 ) 0.72) (B), GAFF/
ChelpG (R2 ) 0.80) (C), CHARMm-MSI/ChelpG (R2 ) 0.72) (D), GAFF/AM1-BCC (R2 ) 0.87) (E), and CHARMm-MSI/AM1-
BCC (R2 ) 0.76) (F). The energies are in kcal/mol.
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groups.50 The AM1-BCC model also outperforms the RESP
and ChelpG in case of bulky arene molecules, such as 1,3-
dimethyl naphthalene, benzene, biphenyl, etc., for the above-
mentioned reason.

For the small molecules containing alkyne and nitrile
functional groups, AM1-BCC underperforms as compared
to the two QM charge models. A possible explanation can
be the AM1 population charges are insufficient to model the
electron delocalization in the highly unsaturated compounds.
The nitriles were also among the major outliers in a previous
study using implicit solvent GB/SA and SGB/NP model58

and indicate the challenges associated with obtaining accurate
charge distributions for nitrogen-containing species. Overall,
the AM1-BCC charge model appears to perform well with
both the GAFF or CHARMm-MSI force field and the explicit
solvent FEP/MD in reproducing the experimental absolute
solvation free energies. Considering the fact that the AM1-
BCC model was not parametrized to work with the GB/SA
(or PB) model, the low AUE in solvation free energies
calculated with implicit solvent models is extremely encour-
aging. Because the AM1-BCC charge generation method is
very fast as compared to the RESP and ChelpG methods,
the present results suggest that it can be a preferred practical
method for screening database containing thousands of
diverse small molecules.

b. Comparison of the Lennard-Jones Parameters/
Force Fields. We compare the absolute solvation free
energies for small molecules using two popular fixed charge
force fields that are commonly used as a general force field
for small molecules, GAFF and CHARMm-MSI. The former
is a general version of the traditional biomolecular Amber
force field that was recently developed, and the latter is a
part of the CHARMm force field distributed commercially
by MSI. Both of them use a similar functional form of the
harmonic potential energy function to describe their additive
force field equations based on bond, angle, dihedral, and
nonbonded Lennard-Jones parameters.

Comparing the overall reproduction of the experimental
absolute solvation free energies with any given charge
method, we find that GAFF performs better than CHARMm-
MSI. For example, using the GAFF/AM1-BCC method (R2

) 0.87), we obtain a better correlation between the experi-
mental and calculated solvation free energy when using the
CHARMm-MSI/AM1-BCC (R2 ) 0.76, Figure 1). The AUE
in absolute solvation free energies obtained from GAFF and
CHARMm-MSI for different chemical functions is shown
in Figure 2. For a given charge method, GAFF performs
better than CHARMm-MSI for several functional groups,
such as alkenes, alkynes, arenes, aromatic amines, nitriles,
bifunctional groups, and small molecules with chloride
functional group. Interestingly, in this study, the disulfides
and sulfides are one of the major outliers in the CHARMm-
MSI force field, which point in the direction of need for
improvement in the sulfur atomic parameters in MSI force
field. GAFF performs well even for those small molecules
for which CHARMm-MSI has trouble reproducing the
absolute solvation free energies. On the other hand, GAFF
has high AUE [AUE > 1.5 kcal/mol] in reproducing the
absolute solvation free energy for chemical functional groups
such as amides, sulfides, ethers, bromo, and chloro-alkenes.

c. Comparison of the Explicit and Implicit Solvent
Models. The accuracy of commonly used continuum solvent
models, such as PB and GB, depends sensitively upon the

Figure 2. Average unsigned error [AUE] in the absolute
solvation free energies. The AUE is shown in the y-axis, and
the chemical functionalities in the small molecules are plotted
in the x-axis. The solid bars represent the solvation free
energies calculated using explicit solvent/FEP method in
CHARMM. The bars with dotted line and stripes represent
the solvation free energy calculated using GB and PB model
in Amber9.
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parameters like atomic charges, the solute and solvent
dielectric coefficients, and the atomic Born radii, which are
used to define the solute-solvent dielectric boundary. Here,
we compare the electrostatic component of the absolute
solvation free energies obtained using the GB and PB
continuum solvation models and compare it with its coun-
terpart from the explicit solvent simulation, FEP/MD. We
find that the electrostatic components obtained by solving
the PB equation are in better agreement (R2 ) 0.91) with
the explicit solvent simulation as compared to the GB model
(R2 ) 0.81) [Figure 3]. Such a good performance of
continuum PB in approximating the electrostatic free energy
from FEP/MD has been observed in several previous
studies.18,22,29

The decomposition scheme implemented in the implicit
solvent module (igb ) 10) in the Amber9 program was used
to separate the nonpolar solvation free energy into repulsive
(∆Grep-PB) and attractive or dispersive (∆Gatt-PB) compo-
nents.33 In this optimized 6-12 decomposition scheme, the
SASA has been used to correlate the repulsive (cavity) term
only, and a surface-integration approach is used to compute
the attractive (dispersion) term. We benchmark the cor-
responding values for the repulsive and attractive terms with
the similar counterparts obtained using WCA decomposition
from the explicit solvent simulation using CHARMM
(∆Grep-explicit and ∆Gatt-explicit). The correlation plot comparing
the two components of the nonpolar solvation free energy
is shown in Figure 4A and B. The ∆Gatt-PB shows a
correlation coefficient of 0.94 with ∆Gatt-explicit, whereas the
∆Grep-PB has a correlation coefficient of 0.96 with ∆Grep-explicit.

We observe a very good correlation between the repulsive
and attractive component of the nonpolar solvation free
energy (∆Grep-explicit) calculated using the WCA decomposi-
tion via FEP/MD simulation with explicit solvent and the
SASA (R2 ) 0.95) approximation (Figure 5). However, the
total nonpolar contribution obtained from both PB and
explicit solvent simulations shows poor correlation with the
SASA approximation (Figure 5). This suggests that implicit
solvent models that rely exclusively on the SASA ap-
proximation to model the total nonpolar contribution might
lead to considerable errors and should be used with caution.

In an attempt to better understand the performance of the
PB solver implemented in the two popular molecular
mechanics program, CHARMM and Amber, we compared
the electrostatic solvation free energies between the two. The
modified Bondi radii (corresponding to mbondi2 in Amber)
were extracted from Amber and read in as a stream file in
the PBEQ solver in CHARMM. With a grid spacing of 0.2,
reentrant water surface, and probe density of 1.4, we find
an excellent correlation between the electrostatic component
of the solvation energy using the PB solvers from CHARMM
and Amber (R2 > 0.99) (Supporting Information, Figure S1).

In the present study, we used a single energy-minimized
conformation to calculate the solvation free energies with
the implicit solvation model. This is actually a common

Figure 3. Comparison of the electrostatic component of the
absolute solvation free energy between explicit solvent and
implicit solvent model. The implicit solvent is modeled using
PB in the Amber9 program. The explicit solvent results are
from the FEP/MD and CHARMM v31 program. The correlation
coefficient is 0.92. The calculations were done with the GAFF/
AM1-BCC model. The energies are in kcal/mol.

Figure 4. Comparison of the nonpolar components of the
absolute solvation free energy between explicit solvent and
implicit solvent model. The correlation between the attractive
component of the nonpolar solvation energy obtained from
FEP/MD with explicit solvent (∆Gatt-exp) and PB implicit
continuum solvent (∆Gatt-PB) is 0.95. In the continuum PB
model, the nonpolar part of the solvation energy is obtained
from the Amber9 program. The FEP/MD results are from the
CHARMM v31 program. The calculations were done with the
GAFF/AM1-BCC model. The energies are in kcal/mol.

Figure 5. Plot showing correlation between total nonpolar
solvation free energy (kcal/mol), and its repulsive and attrac-
tive components calculated using explicit solvent FEP/MD with
solvent accessible surface area (SASA, Å2).
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practice in docking and scoring with implicit solvation
models. However, the neglect of conformational flexibility
can cause some problems, as shown in a previous study.59

To ascertain the impact of conformational flexibility on the
solvation free energy, we compared the solvation free energy
obtained using the single solute conformation with that from
a proper ensemble average. The solvation free energy was
calculated pertubatively from an ensemble of conformations
generated by an extensive MD simulation of the molecule
in a vacuum using the following expression:

where ∆W(Xi) is the potential of mean force incorporating
the effect of solvent implicitly for the conformation Xi, kB

is the Boltzmann constant, and T is absolute temperature.
We obtained the average solvation free energy using both
the PB and the GB implicit solvent simulations, for four of
the most flexible molecules in our set (number of rotatable
bonds larger than 5). These molecules are methyl hexanoate,
5-nonanone, octanal, and methyl propyl ether. The results
are shown in Table 2. Comparing the average solvation free
energy obtained from the above method with that of the
single solute conformation reported in this Article, we find
that the solvation free energy estimated from a single energy-
minimized snapshot is within 0.5 kcal/mol for all four flexible
molecules. These estimates are comparable to the results from
a previous study where for the energy-minimized conforma-
tion in vacuum (called “BestVac” in Mobley et al.59) the
rms error was on the order of 0.34 kcal/mol. They showed
that an approach based on energy-minimum conformations
in vacuum gives the lowest errors.

d. log P. The molecular hydrophobicity or log P of a small
molecule is an important descriptor to measure differential
solubility of a solute in two immiscible solvent media,
hydrophobic and hydrophilic solvent.4 For example, the
partition coefficient of a solute between octanol and water
is represented by

It is commonly used in the QSAR studies and drug design
to study the drug absorption, bioavailability, metabolism, and
toxicity. However, the force field-based simulations are not
commonly used to calculate this quantity as the simulations
in octanol solvent pose significant challenges due to complex
structure formations, such as micelles.

Here, we compare the correlation between the experimen-
tal log Poct/wat with the repulsive component of the nonpolar
solvation free energy (∆Grep-explicit) obtained using explicit

solvent FEP/MD. The experimental data for log Poct/wat have
been taken almost entirely from the recommended values in
the compilation by Hansch and co-workers.60 The data cover
a range of 7.0 log units from ca. -2 to +5. It shows high
correlation with the cavity or repulsive term, ∆Grep-explicit.
Such a high correlation is intriguing. A possible explanation
is that log P is a measure of hydrophobicity, and therefore
is correlated with ∆Grep-explicit. Also, the SASA is correlated
with the ∆Grep-explicit as well as log P with a correlation
coefficient of 0.95.

Within a particular chemical series, the log P is linearly
correlated with ∆Grep-explicit with a high correlation coefficient
(Figure 6). For example, for alcohols, such as methanol,
ethanol, propanol, butanol, pentanol, hexanol, heptanol, and
octanol, the correlation coefficient between log P and
∆Grep_Explicit is 0.996. For amines, such as methylamine,
ethylamine, 1-propanamine, 1-butylamine, 1-pentanamine,
N-ethylethamine, N,N-dimethylamine, N,N-diethyletha-
namine, N-propylpropan-1-amine, trimethylamine, piperidine,
and pyrrolidine, the correlation coefficient is 0.93. For nitro-
containing small molecules, such as nitroethane, 1-nitropro-
pane, 2-nitropropane, 1-nitrobutane, nitrobenzene, 3-nitro-
phenol, and 1-methyl-2-nitro-benzene, the correlation coeffi-
cient is 0.99.

The physical significance for such a correlation may be
that a larger SASA facilitates solvation in a more hydro-
phobic solvent, such as octanol. It reflects the importance
of van der Waals interaction in the organic solvent, which
in turn is related to the cavitation of the solute. The nature
of the chemical function governs the slope and the intercept
of this log P versus ∆Grep-explicit linear curve. We believe that
the FEP/MD simulations, similar to the ones used in this
study, could provide important information about the mo-
lecular descriptor properties such as hydration and log P.
Further studies in making a physics-based accurate log P
predicting tool are currently underway and will be reported
elsewhere.

4. Conclusion

In this study, we computed the absolute solvation free energy
for a diverse set of 239 neutral molecules using FEP/MD
with explicit solvent and compared the results with experi-
mental data as well as with two widely used implicit solvent
models (GB/SA and PB). We evaluated the performance of
two popular general force fields, GAFF and CHARMm-MSI,
used to model small molecules and ligands in drug design.
Also, we examined the sensitivity of the free energy to the
atomic partial charges generated via ab initio QM (ChelpG
and RESP) and semiempirical (AM1-BCC) methods.

Table 2. Table Showing the Average Solvation Free Energy and Single Snapshot Using Implicit Solvent Models, PB and
GBa

molecule ∆Gexperiment PB (10 ns) PB (20 ns) PB (1 snapshot) GB (10 ns) GB (20 ns) GB (1 snapshot)

methyl hexanoate -2.49 -4.27 -4.25 -4.59 -6.07 -5.93 -6.07
methyl propyl ether -1.59 -1.21 -1.22 -0.97 -2.18 -2.12 -2.14
octanal -2.29 -3.71 -3.77 -4.14 -5.66 -5.58 -5.7
5-nonanone -2.67 -2.78 -2.77 -2.97 -4.78 -4.68 -4.6

a All energies are reported in kcal/mol.

e-∆G/kBT ) 1
N ∑

i

e-∆W(Xi)/kBT (2)

log Poct/wat ) log([solute]oct /[solute]wat) (3)

Solvation Free Energies of Small Molecules J. Chem. Theory Comput., Vol. 5, No. 4, 2009 927



Our analysis indicates that the GAFF force field with the
AM1-BCC atomic charges generally outperforms the others
for a majority of chemical functionalities. However, the
AM1-BCC charges need to be revisited for some unsaturated
chemical functional groups, such as nitriles and alkynes, to
provide better agreement with experiment. The origin of the
problem is clearly the partial charges because those same
functional groups show good correlation with experimental
values when RESP charges are used. Also, our studies show
that the sulfur-containing groups are particularly troublesome
in case of the CHARMm-MSI force field.

Concerning the performance of implicit solvent models,
it is observed that the electrostatic component obtained by
solving the finite-difference PB equation is in better agree-
ment with the explicit solvent simulations as compared to
the GB model. The underperformance of GB as compared
to PB noted here is somewhat surprising because the

accuracy of GB is generally believed to deteriorate for large
complex macromolecules, but to be quite adequate in the
case of small molecules such as those considered here. On
the other hand, the repulsive and the attractive components
of the nonpolar solvation free energy show excellent cor-
relation between the implicit and the explicit solvent simula-
tions. The repulsive components of nonpolar solvation free
energy obtained using the implicit and explicit solvent models
are also highly correlated with the SASA. However, the total
nonpolar solvation free energy is poorly correlated with
SASA. This suggests that implicit solvent models that use
only SASA to approximate the total nonpolar contribution
are less accurate and should be used with caution.

Interestingly, log P appears to be highly correlated with
the cavity or repulsive component of the nonpolar solvation
free energy, ∆Grep-explicit, as well as the SASA. Within
particular chemical series, log P displays an almost perfect
linear correlation with the ∆Grep-explicit. Although the reasons
for such a high correlation are not entirely clear, it is possible
that it reflects the importance of van der Waals interaction
in the organic solvent such as octanol, which is related to
the size of the cavity needed to insert the solute.

Continued efforts are needed to assess the accuracy of
atomic partial charges and other aspects of molecular
mechanical force fields. Such assessment is critically im-
portant for the progress of computational structural biology.
The present study shows how force field development and
validation could benefit from extensive free energy computa-
tions performed on a large-scale basis.
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the PB solvers from CHARMM and Amber. This material
is available free of charge via the Internet at http://
pubs.acs.org.
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Abstract: A new single reference perturbation partition is proposed for restricted open-shell
Hartree-Fock (ROHF) and complete active space self-consistent field (CASSCF) orbitals. It is
a sum of one-particle operator which is implicitly defined. When the operator acts on a ROHF
or CASSCF orbital, the resultant eigenvalue is the orbital’s corresponding orbital energy coming
from the ROHF or CASSCF calculation. HF, F2, and N2 with stretched bonds are used for the
size extensivity test. Results indicate that the first three-order energies calculated with the new
partition are size extensive. Single reference perturbation calculations for H2O, NH3, and CH4

with CASSCF orbitals have been performed and compared with other methods like MRCI,
MRCI+Q, MRPT2, and MRPT3. The single reference nature of the present perturbation theory
is also shown with computations of the singlet-triplet separation of the CH2 and SiH2 radicals.

1. Introduction

The Rayleigh-Schrödinger perturbation theory with the
Møller-Plesset partition (MP)1 has been widely used in
electronic structure calculations because of its inexpensive
computational cost and size extensivity. MP partition is
defined as a sum of the Fock operator which is only valid
for restricted closed-shell problems. For open-shell problems,
unrestricted Hartree-Fock (UHF), restricted open-shell
Hartree-Fock (ROHF), and complete active space self-
consistent field (CASSCF) computations are usually per-
formed instead. Because of spin contamination, the UHF
wave function and its corresponding MP perturbation series
will not be discussed here further. Because no single particle
operator is properly defined for ROHF and CASSCF orbitals,
the application of MP perturbation series is largely limited.
Although Epstein-Nesbet partition2 can be used sometimes
as an alternative, yet its corresponding perturbation series
are not size extensive.3 It is because the perturbation series
are not invariant with respect to the orbital unitary transfor-
mation.4

Encouraged by the success of the MP partition for
restricted closed-shell problems, many perturbation ap-
proaches3,5-19 have been attempted for open-shell problems.
The basic strategy is to define an analogous single particle

operator such as the Fock operator based on a physical
intuition or a mathematical consideration. Among these
methods, to list just a few, there are opt1 and opt2,6 and
MROPT,7 of Davidson’s group, and MRMP28 of Hirao,
CASPT2 and CASPT3 of Roos.11 The interested reader can
find more details from ref 20.

Rintelman et al.21 investigated extensively the size exten-
sivity problem of MRMP28 and CASPT211 with a series of
basis sets and three challenging molecules, HF, N2, and F2,
which are stretched away from their equilibrium geometries
to have some multireference character. Rolik et al. presented
a multireference perturbation theory.17 Szabados et al.
reformulated it later and obtained a size extensive second-
order theory.18 However, higher orders of the series violate
the size-extensivity requirement. On the basis of the multi-
reference perturbation theory by Chen et al.,22 we derived a
size extensive second-order multireference perturbation
theory through a theoretical analysis on a supermolecule
consisting of N noninteracting H2 molecules.19

In this paper, a new single reference perturbation partition
is proposed for ROHF and CASSCF orbitals. The size
extensivity as well as the accuracy of the first three-order
perturbation energies based on this partition will be examined
numerically. The single reference nature of the present
partition will also be investigated with the CH2 and SiH2

radicals.* Corresponding author. E-mail: chenfeiwu@sas.ustb.edu.cn.
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2. Theory

ROHF and CASSCF are two common approaches for open-
shell problems. CASSCF are also widely used to account
for the nondynamic correlation energy in multireference
problems. ROHF orbitals and orbital energies are obtained
for a given system by minimizing its electronic energy E37

where a, b, and f are constants, indices k and l are used for
closed-shell orbitals, m and n for open-shell obitals, ĥ and ĝ
are one- and two-particle operators respectively. A CASSCF
wave function for a given system has the following form

where Φk is a configuration function. These configurations
are constructed by a complete distribution of a number of
active electrons among a set of active orbitals.38 The
CASSCF wave function can be regarded as a small full
configuration interaction function. But it is optimized
variationally not only with respect to the expansion coef-
ficients ck but also with respect to the orbitals within the
configuration Φk.

In order to apply Rayleigh-Schrödinger perturbation
theory to the problems discussed above a zero-th Hamiltonian
should be defined at first. Similar to the Fock operator, a
single particle operator F̂ for a ROHF or CASSCF orbital
φi is defined implicitly below

provided that all orbitals are orthonormalized with each other.
The eigenvalue εi is the orbital energy of the corresponding
orbital φi, which is originally from a ROHF or CASSCF
calculation. For a restricted closed-shell problem the operator
F̂ is reduced to the Fock operator. For other cases, an explicit
form of the operator F̂ is in general unknown or maybe does
not exist in reality. However, the information given in eq 1
is enough to define the zero-th Hamiltonian Ĥ0 in Rayleigh-
Schrödinger perturbation theory. Of course, some kind of
generalized Fock operator may be defined explicitly for these
cases. However, the reason that we do not follow this
approach is that the orbitals optimized with ROHF and
CASSCF have been well tested and widely used for years.

Corresponding to the single particle operator F̂ in eq 1,
the zero-th Hamiltonian Ĥ0 has the following form

The summation in the above equation is carried out over all
electrons in a system of interest. It is assumed that the
eigenvalues and eigenfunctions of Ĥ0 are known as

In the current implementation of this perturbation theory,
spin-adapted configuration interaction functions are used as
Φi

(0). Thus, Ei
(0) is just a sum of the orbital energies of those

molecular orbitals in the corresponding configuration function
Φi

(0). The system Hamiltonian operator Ĥ can then be
decomposed into two parts, Ĥ0 and V̂, i.e.

where V̂ is supposed to be a small perturbation operator to
the unperturbed Ĥ0, λ is a perturbation parameter. With these
preparations, application of the Rayleigh-Schrödinger per-
turbation theory to the atomic and molecular systems is
straightforward. The corresponding perturbation formula4,30

is

where Vij ) 〈Φi
(0)|V̂|Φj

(0)〉 , λ is set equal to unity for the final
energy Ei.

For the purpose of comparison, the multireference per-
turbation series22 are also included here

where up
(0)(i) is the i-th component of the p-th eigenvector

and εp
(0) is the p-th eigenvalue in the reference space. The

dimension of the reference space is n. Hij is the Hamiltonian
matrix element with respect to the i-th and j-th configuration
functions. λ is a perturbation parameter as described in eq 4
and is set equal to unity for the final energy Ep.

3. Results and Discussion

For a supermolecular system composed of m monomers,
which are separated by so large a distance that the interaction
among them can be negligible, the size extensivity error
(SEE) can then be defined as

If the monomers are the same, the SEE can be computed as
follows

Equation 7 is used for all SEE calculations in this study.
All ROHF and CASSCF orbitals and orbital energies in

this study were calculated with GAMESS23 and Gaussian.36

E ) 2 ∑
k

〈k|ĥ|k〉 + ∑
k,l

[2(kl|ĝ|kl) - (kl|ĝ|lk)] +

f(2 ∑
m

〈m|ĥ|m〉 + f ∑
m,n

[2a(mn|ĝ|mn) - b(mn|ĝ|nm)] +

2 ∑
k

∑
m

[2(km|ĝ|km) - (km|ĝ|mk)])

Ψ ) ∑
k

ckΦk

F̂�i ) εi�i (1)

Ĥ0 ) ∑
i

F̂(i) (2)

Ĥ0Φi
(0) ) Ei

(0)Φi
(0), i ) 1, 2, 3, ...

Ĥ ) Ĥ0 + λV̂ (3)

Ei ) Ei
(0) + Viiλ + ∑

j*i

VijVji

Ei
(0) - Ej

(0)
λ2 +

[ ∑
j,k*i

VijVjkVki

(Ei
(0) - Ej

(0))(Ei
(0) - Ek

(0))
- Vii ∑

j*i

VijVji

(Ei
(0) - Ej

(0))2]λ3 + ...

(4)

Ep ) εp
(0) + ∑

i,jen
∑
a>n

up
(0)(i)HiaHajup

(0)(j)

εp
(0) - Haa

λ2 +

∑
i,jen

∑
a,b>n

a*b

up
(0)(i)HiaHabHbjup

(0)(j)

(εp
(0) - Haa)(εp

(0) - Hbb)
λ3 + ... (5)

SEE ) E(A1 + A2 + ... + Am) - [E(A1) + E(A2) +
... + E(Am)] (6)

SEE ) E(m × A)/m - E(A) (7)
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MELDF24 and our group programs were used to calculate
matrix elements and perturbation energies.

A. Size Extensivity Test. As discussed in the first part
of this paper, Rintelman et al. 21 investigated the size
extensivity error with three molecular series, HF, N2, and
F2, and several different levels of basis sets, Pople’s
6-31G(d,p),25,26 6-311G(d,p),27 and Dunning’s cc-pVDZ,
cc-pVTZ, and cc-pVQZ.28 It was shown that the SEEs
increased as the basis set was enlarged. However, the changes
are not so much, and the errors are almost at the same order
of magnitude. On the basis of this observation, only
6-31G(d,p) for the above three molecular series is used in
this study. The stretched bond lengths of HF, N2, and F2 are
the same as in ref 21 and are 1.60 Å, 1.50 Å, and 1.50Å,
respectively. The distance between monomers of N2 and F2

is 200 Å to make sure that interactions between monomers
can be neglected. However, the distance between HF
monomers is 2000 Å in order to quench the possible
dipole-dipole interactions. The CASSCF convergence thresh-
old is 10-8 for supermolecular series of HF, F2, and N2.

In Table 1, SEEs are calculated with the first-, second-,
and third-order perturbation theory in eq 4 (denoted as
SRPT1, SRPT2, and SRPT3) with partition eq 2. Results of
HF supermolecules are listed in the upper part of the table.
The complete active space is CASSCF(2,2). SEE is very
small and is less than the CASSCF convergence threshold.
As the basis set changes to 6-31G, the unpublished SEEs
are still at about the same level. The effects of HF geometries
on the SEE have also been investigated though the results
have not been presented in the Table 1. The bond length of
HF is chosen as 1.4 Å, which is between the equilibrium
bond length30 0.92 Å and the elongated bond length 1.6 Å
studied above. These unpublished SEEs calculated with basis
set 6-31G and 6-31G(d,p) are all also less than the
CASSCF convergence threshold.

In the middle part of the Table 1 are the results of F2

supermolecules. They are more challenging examples for the
SEE test. The active space is CASSCF(2,2) which is the same
as used in the HF case. The core orbital 1s of the fluorine
atom is frozen in the calculations. The SEEs are all at the
order of 10-8 hartree. Though they are slightly larger than
the results of HF supermolecules, SEEs are still at the same
level as the convergence threshold set for CASSCF calcula-

tions. Thus, the SEEs are not from the perturbation theory
itself but due to the accuracy of CASSCF.

The SEE results of N2 dimer are listed in the bottom of
the Table 1. Three different complete active spaces, CASS-
CF(2,2), CASSCF(4,4), and CASSCF(6,6) are exploited to
investigate the impact of active spaces on SEE. The absolute
values of SEEs are below or close to the accuracy threshold
10-8 set for CASSCF calculations. These results indicate that
SEEs are not dependent on the active space.

The SEEs of the above three molecular series are the
smallest numerical data available in the literature so far. They
are only dependent on the accuracy of CASSCF calculations.
On the basis of this numerical observation, it is concluded
that the first three-order perturbation energies with the
partition eq 2 are size extensive.

B. Total Energies of H2O, NH3, and CH4. Experimental
geometries30 of H2O, NH3, and CH4 are used. The basis set
is the Pople’s 6-31G(d, p).25,26 Total energies of H2O, NH3,
and CH4 at the ground states are calculated with the first
three-order perturbation theory with partition eq 2 and are
compared with other methods: CASSCF, multireference
configuration interaction (MRCI), MRCI with Davidson
correction29 (MRCI + Q), and multireference second- and
third-order perturbation theory (MRPT2 and MRPT3) in
eq 5.

The results are listed in Table 2, Table 3, and Table 4. It
can be seen from the tables that total energies are improved
substantially with MRCI+Q over the results of MRCI.
MRPT2 overestimates the energies especially with a small
complete active space like CASSCF(2,2) in comparison with
MRCI results. MRPT3 counteracts these discrepancies
significantly. As the complete active space increases from
CASSCF(2,2) to CASSCF(6,6) the MRPT2 and MRPT3
results converges very closely to MRCI energies. As
expected, the CASSCF energies, which is actually the
multireference zeroth-order energies, becomes lower as the
CASSCF active space enlarged.

Table 1. Size Extensivity Error (hartree) Check for N2, HF,
and F2 Supermolecules

method SRPT1 SRPT2 SRPT3

no. of HFs CASSCF(2,2)
1 0 0 0
2 0.00000000 -0.00000000 0.00000000
3 0.00000000 -0.00000000 0.00000000
4 0.00000000 -0.00000000 0.00000000

no. of F2s CASSCF(2,2)
1 0 0 0
2 0.00000000 -0.00000008 0.00000005
3 0.00000000 -0.00000008 -
4 0.00000000 -0.00000008 -

N2 dimer
CASSCF(2,2) 0.00000000 0.00000000 -0.00000000
CASSCF(4,4) 0.00000000 0.00000000 0.00000000
CASSCF(6,6) 0.00000000 0.00000000 -0.00000001

Table 2. Total Energies (hartree) for the Ground State of
H2O Calculated with Different Methods

method CASSCF(2,2) CASSCF(4,4) CASSCF(6,6)

CASSCF -76.028093 -76.073481 -76.108960
MRCI -76.214391 -76.227688 -76.229860
MRCI+Q -76.232834 -76.241006 -76.243466
MRPT2 -76.261841 -76.249367 -76.234849
MRPT3 -76.214391 -76.221040 -76.227849
SRPT1 -76.023135 -76.022580 -76.022519
SRPT2 -76.215623 -76.223225 -76.223123
SRPT3 -76.223403 -76.220441 -76.220101

Table 3. Total Energies (hartree) for the Ground State of
NH3 Calculated with Different Methods

method CASSCF(2,2) CASSCF(4,4) CASSCF(6,6)

CASSCF -56.206428 -56.236639 -56.266567
MRCI -56.392364 -56.396398 -56.399209
MRCI+Q -56.405136 -56.410243 -56.413800
MRPT2 -56.423838 -56.413585 -56.403748
MRPT3 -56.389412 -56.392987 -56.397138
SRPT1 -56.195183 -56.194773 -56.194503
SRPT2 -56.381911 -56.383932 -56.385328
SRPT3 -56.393340 -56.391289 -56.389208
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The single reference calculations are listed at the bottom
of the Table 2, 3, and 4. Unlike the CASSCF energies, the
ground-state energies of SRPT1 are almost unchanged with
respect to the three types of CASSCF wave functions. This
is also true for the energies calculated with SRPT2 and
SRPT3. The reason for this is that the perturbation series in
eq 4 considers only the ground-state configuration and its
corresponding excitation configurations such as the single
and double excitation configurations. Therefore, the nondy-
namical correlation from the CASSCF wave functions has
not been taken into account. In this sense, it may be said
that the present perturbation theory is not sensitive to the
CASSCF orbitals. Nevertheless, like the Møller-Plesset
second-order perturbation theory, SRPT2 recovers most of
the correlation energy. The biggest energy difference between
MRCI and SRPT3 is 10-2 hartree for NH3. The energy
differences for H2O and CH4 are at the order of 10-3 hartree.
Considering the cheap computational cost of the single
reference perturbation theory, the performances of SRPT2
and SRPT3 are satisfactory.

C. The Singlet-Triplet Separation in CH2 and SiH2.
Computations of the singlet-triplet separation in CH2 are a
challenging problem for any perturbation theory. Detailed
discussions on this can be found in ref 20. The purpose here
is to investigate whether the present partition can be applied
to a multireference problem. As can be seen from the above
discussions in part B, the first three-order energies of the
present partition are not changed so much though the
complete active space is enlarged. Since they are essentially
single reference problems in nature, the above three test cases
may be not good enough to show the single reference
character inherent in the present partition. Because of its well-
known multireference character, CH2 can be regarded as a
proper example to fulfill the present purpose.

The calculations are performed with the DZP basis and
the theoretically optimized geometry as used by Bauschlicher
and Taylor.31 The 1s orbital of CH2 is frozen during the
calculations. In Table 5 only single reference perturbation
calculations are presented. The singlet-triplet separations
are listed in the last column. It can be seen from the upper
part of the table that the singlet-triplet gaps are still far away
from the FCI result if only RHF orbitals for the singlet state
and ROHF orbitals for the triplet state are used for the
calculations. But the gaps listed in the lower part of the table
are still not improved even with CASSCF(2,2) and CASS-
CF(6,6) orbitals for the singlet state. As pointed out by
Bauschlicher and Taylor,31 there are two important configu-
rations in the singlet state. Thus, the possible reason for the

above failure may be due to the fact that the perturbation
series with partition eq 2 is a single reference perturbation
theory and cannot solve the multireference problem of the
singlet state. In order to check this, the multireference second-
and third-order calculations, MRPT2 and MRPT3 in eq 4,
have been performed for the singlet state with CASSCF(2,2)
and CASSCF(6,6) active spaces. The results are presented
in Table 6. It can be seen clearly from the table that the
singlet-triplet gaps are improved considerably in comparison
with the results listed in Table 5 and are close to the FCI
result.31 As the active spaces are increased from CASS-
CF(2,2) to CASSCF(6,6), the gaps are getting much closer
to the FCI result. The best result was obtained with
CASSCF(6,6) at the third-order level. The gap is only 0.22
kcal/mol bigger than the FCI result.

Another example for this preliminary test is SiH2. The
geometries for the singlet and triplet state are the same as
that used by Bauschlicher and Taylor.32 The basis sets for
H is the Dunning’s double-� basis set33 with a 2p polarization
function (R ) 1.0) added. The basis set for Si is [5s3p]
contractions of the Huzinaga34 (12s8p) Si basis given by
McLean and Chandler35 with a 3d polarization function (R
) 0.3) added. The 3s component of the 3d set is deleted.
These basis sets for SiH2 are the same as that in the original
work of Bauschlicher and Taylor.32

Table 4. Total Energies (hartree) for the Ground State of
CH4 Calculated with Different Methods

method CASSCF(2,2) CASSCF(4,4) CASSCF(6,6)

CASSCF -40.217021 -40.235347 -40.257266
MRCI -40.385722 -40.383480 -40.385818
MRCI+Q -40.397641 -40.395588 -40.398550
MRPT2 -40.405016 -40.392464 -40.387637
MRPT3 -40.386805 -40.382938 -40.384963
SRPT1 -40.201530 -40.201327 -40.201130
SRPT2 -40.369367 -40.364530 -40.365727
SRPT3 -40.386128 -40.379376 -40.378295

Table 5. The Singlet-Triplet Separation in CH2 Calculated
with Single Reference Perturbation Theory

method 1A1 (hartree) 3B1 (hartree) ∆ (kcal/mol)

FCIa -39.027183 -39.046260 11.97

method RHF ROHF ∆ (kcal/mol)
SRPT1 -38.886297 -38.927947 26.14
SRPT2 -38.996127 -39.042348 29.00
SRPT3 -39.016593 -39.043335 16.78

method CASSCF(2,2) ROHF ∆ (kcal/mol)

SRPT1 -38.885662 -38.927947 26.53
SRPT2 -38.998686 -39.042348 27.40
SRPT3 -39.017087 -39.043335 16.47

method CASSCF(6,6) ROHF ∆ (kcal/mol)

SRPT1 -38.885298 -38.927947 26.76
SRPT2 -39.000520 -39.042348 26.25
SRPT3 -39.015873 -39.043335 17.23

a See ref 31.

Table 6. The Singlet-Triplet Separation in CH2 Calculated
with the Single- And Multireference Perturbation Theory

method 1A1 (hartree) 3B1 (hartree) ∆ (kcal/mol)

FCIa -39.027183 -39.046260 11.97

method MRPT + CASSCF(2,2) SRPT + ROHF ∆ (kcal/mol)

2nd order -39.027875 -39.042348 9.08
3rd order -39.023129 -39.043335 12.68

method MRPT + CASSCF(6,6) SRPT + ROHF ∆ (kcal/mol)

2nd order -39.025273 -39.042348 10.71
3rd order -39.023912 -39.043335 12.19

a See ref 31.
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In all calculations only the outer-shell six electrons of the
SiH2 radical are considered for correlation. Like the CH2 case,
the single reference perturbation theory is also not enough
to describe the singlet state. Therefore, multireference
perturbation calculations with CASSCF(2,2) and CASS-
CF(6,6) orbitals have been carried out instead. As for the
triplet state, it is found that the energies calculated with
ROHF orbitals and single reference perturbation theory,
especially the SRPT3, are comparable to the full CI result
obtained by Bauschlicher and Taylor.32 All results are
summarized in Table 7. In comparison with the FCI result,
the errors of the singlet-triplet gaps calculated with SRPT2
and MRPT2 are 4 and 3.5 kcal/mol for CASSCF(2,2) and
CASSCF(6,6), respectively. However, as the perturbation
level increases to the third-order, i.e., SRPT3 for the triplet
and MRPT3 for the singlet, the errors of the singlet-triplet
gaps becomes surprisingly small, i.e., zero for CASSCF(2,2)
and 0.2 kcal/mol for CASSCF(6,6).

The above calculations in parts B and C demonstrate that
the single reference perturbation theory with the partition
eq 2 is valid and effective for single reference problems
whenever ROHF and CASSCF orbitals are available. More
studies with the present theory for open-shell problems such
as the geometry optimization are under investigation.

4. Conclusions

A single reference perturbation theory with a new partition
is presented. The perturbation partition has been proposed
for ROHF and CASSCF orbitals. Through numerical studies
on the size extensivity test with HF, F2, and N2 supermol-
ecules, it has been shown that the first three-order perturba-
tion series with the present partition are size extensive. The
ground-state energies of H2O, NH3, and CH4 calculated with
the present perturbation partition are accurate. The biggest
energy difference between MRCI and SRPT3 is 10-2 hartree
for NH3. The energy differences for H2O and CH4 are at the
order of 10-3 hartree. The single reference nature of present
partition has also been demonstrated with the computations
on the singlet-triplet gap of the CH2 and SiH2 radicals.

The present perturbation partition can be considered as a
natural extension of Møller-Plesset partition beyond
Hartree-Fock orbitals and can be used for single reference
problems where the perturbation theory with the Møller-
Plesset partition is not applicable.

Acknowledgment. The author would like to thank the
National Natural Science Foundation of China (grant nos.
20473011 and 20773011) for financial support.

References

(1) Møller, C.; Plesset, M. S. Phys. ReV. 1934, 46, 618.

(2) (a) Epstein, P. S. Phys. ReV. 1926, 28, 695. (b) Nesbet, R. K.
Proc. R. Soc. London Ser. A 1955, 230, 312.

(3) Witek, H. A.; Nakano, H.; Hirao, K. J. Chem. Phys. 2003,
118, 8197.

(4) Chen, F. Computational methods in quantum chemistry;
Science Press: Beijing, P. R. China, 2008; pp 166-170.

(5) Davidson, E. R.; MacMurchie, L. E.; Day, S. J. J. Chem.
Phys. 1981, 74, 5491.

(6) Murray, C. W.; Davidson, E. R. Chem. Phys. Lett. 1991,
187, 451.

(7) (a) Kozlowski, P. W.; Davidson, E. R. J. Chem. Phys. 1994,
100, 3672. (b) Kozlowski, P. W.; Davidson, E. R. Chem.
Phys. Lett. 1994, 222, 615. (c) Kozlowski, P. W.; Davidson,
E. R. Chem. Phys. Lett. 1994, 226, 440. (d) Kozlowski, P. W.;
Davidson, E. R. Int. J. Quantum Chem. 1995, 53, 149.

(8) (a) Hirao, K. Chem. Phys. Lett. 1992, 190, 374–380. (b)
Hirao, K. Chem. Phys. Lett. 1992, 196, 397–403. (c) Hirao,
K. Chem. Phys. Lett. 1993, 201, 59.

(9) Dyall, K. G. J. Chem. Phys. 1995, 102, 4909.

(10) Werner, H. J. Mol. Phys. 1996, 89, 645.

(11) Roos, B. O.; Andersson, K.; Fulscher, M. K.; Malmqvist, P.-
A.; Serrano-Andres, L.; Pierloot, K.; Merchan, M. AdV. Chem.
Phys. 1996, 93, 219.

(12) Knowles, P. J.; Andrews, J. S.; Amos, R. D.; Handy, N. C.;
Pople, J. A. Chem. Phys. Lett. 1991, 186, 130.

(13) Lauderdale, W. J.; Stanton, J. F.; Gauss, J.; Watts, J. D.;
Barttlett, R. J. Chem. Phys. Lett. 1991, 87, 21.

(14) (a) Head-Gordon, M.; Oumi, M.; Maurice, D. Mol. Phys.
1999, 96, 593. (b) Head-Gordon, M.; Maslen, P. E.; White,
C. A. J. Chem. Phys. 1998, 108, 616. (c) Maslen, P. E.; Head-
Gordon, M. Chem. Phys. Lett. 1998, 283, 102.

(15) Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.;
Malrieu, J.-P. J. Chem. Phys. 2001, 114, 10252.

(16) (a) Wolinski, K.; Seller, H. L.; Pulay, P. Chem. Phys. Lett.
1987, 140, 225–231. (b) Wolinski, K.; Pulay, P. J. Chem.
Phys. 1989, 90, 3647. (c) Van Dam, B. J. J.; Van Lenthe,
J. H.; Pulay, P. Mol. Phys. 1998, 93, 431.
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Abstract: Results of the application of an adaptive piecewise linear finite element (FE) based
solution using the FETK library of M. Holst to a density functional theory (DFT) approximation
to the electronic structure of atoms and molecules are reported. The severe problem associated
with the rapid variation of the electronic wave functions in the near singular regions of the atomic
centers is treated by implementing completely unstructured simplex meshes that resolve these
features around atomic nuclei. This concentrates the computational work in the regions in which
the shortest length scales are necessary and provides for low resolution in regions for which
there is no electron density. The accuracy of the solutions significantly improved when adaptive
mesh refinement was applied, and it was found that the essential difficulties of the Kohn-Sham
eigenvalues equation were the result of the singular behavior of the atomic potentials. Even
though the matrix representations of the discrete Hamiltonian operator in the adaptive finite
element basis are always sparse with a linear complexity in the number of discretization points,
the overall memory and computational requirements for the solver implemented were found to
be quite high. The number of mesh vertices per atom as a function of the atomic number Z and
the required accuracy ε (in atomic units) was estimated to be υ(ε, Z ) ≈ 122.37(Z 2.2346/ε1.1173),
and the number of floating point operations per minimization step for a system of NA atoms was
found to be O(NA

3υ(ε, Z )) (e.g., with Z ) 26, ε ) 0.0015 au, and NA ) 100, the memory
requirement and computational cost would be ∼0.2 terabytes and ∼25 petaflops). It was found
that the high cost of the method could be reduced somewhat by using a geometric-based
refinement strategy to fix the error near the singularities.

1. Introduction

Kohn-Sham density functional theory (DFT)1,2 which can
be used to predict the structures, properties, and reactivities
for a wide variety of solid state and molecular systems has
become a state of the art tool. In many cases it can achieve

chemical accuracy at a smaller cost than traditional quantum
chemistry methods. It is now routine at this level of theory
to perform simulations containing hundreds of atoms, and
on today’s parallel supercomputers, simulations containing
over a thousand atoms are feasible; making realistic descrip-
tions of material surfaces and defects possible. While current
implementations of DFT are very efficient and the results
are adequate for many cases,3,4 the much wider application
of these approaches to the even more demanding systems
encountered in complex technology problems are limited.
The limitations are that they use basis sets5,6 and/or pseudo-
potentials7 that are highly engineered, they scale as O(NA
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or O(NA
4) in the number of atoms, and the parallel scalings

of existing solution methods are not good enough to exploit
the performance of the next generation parallel computers.
Hence, there is still a need to investigate other computational
methods for solving DFT.

There have been a number of efforts to develop fast ab
initio solvers based on real space solutions to the DFT
equations.8-27 Uniform finite difference gridding coupled
with multilevel solvers has led to significant progress in the
calculation of large systems8-14 with large numbers of
processors (∼10 000 processors).10 While these methods are
often robust enough for predicting structural properties, they
are not very efficient for describing multiple length scales
and as a result do not have an accurate description near the
atomic centers. In particular, when the interaction between
the electron and the nucleus is described by the proper
singular potential, -(Ze/|rb - RbI|), the singular behavior at
|rb - RbI| can cause trouble with convergence. In fact, this
kind of potential cannot be represented by uniform meshes
methods. Adaptive finite element methods on the other hand,
which can telescope down to the singularity, can in principle
describe this kind of potential, and if used with a low order
elements (i.e., piecewise finite elements) all the quantum
mechanical operators can be represented by O(N) sparse
matrices, which can in principle limit the communications
per processor to be O(1).

Even though adaptive real space methods for DFT have
shown some promise for describing singular electron-ion
interactions, these methods have needed to use large number
of elements for high Z atoms to describe the singular potential
accurately. Earlier work by Bylaska et al.,18 in which they
developed a multilevel eigenvalue solver based on structured
adapted mesh refinement and finite difference gridding
worked well for simple systems such as H, and H2

+.
However, by Z ) 10 (i.e., Ne), errors as large as 1 hartree
were seen with this approach. These large errors led Kohn
et al. to replace the atomic singular potentials with pseudo-
potentials and replace the finite difference solver with an
adaptive finite element solver.19 This new solver improved
the accuracy somewhat, but at the time, it was too compu-
tationally intensive to be considered as a practical alternative
to standard DFT solvers. Recently, Fattebert et al. have
revisited these solvers and have shown them to be competi-

tive with fast Fourier transform (FFT) solvers when very
stiff pseudopotentials are used;20 however, this work still
had to rely on using pseudopotentials. Recent work by Batcho
using spectral element methods24 and Harrison et al. using
a multiwavelet (high-order) basis,21-23 has also been shown
to be computationally competitive with standard DFT solvers
and in some cases surpass them.

In this paper, we present an overview of our implementa-
tion of an unstructured adaptive finite element (FE) first
principles solver and apply it to DFT equations which contain
atomic singular potentials to estimate its overall memory and
computational requirements. This solver is based on the
FETK finite element framework of Holst.28 The implementa-
tion is unique in that tetrahedral elements are used rather
than parallelepipeds, and it also makes use of completely
unstructured simplex meshes that have the advantage of being
able to resolve the near singular features around atomic nuclei
with minimal computational resources. This type solver has
several potential advantages. It has compact support, it can
be controlled by systematically increasing the number of the
basis functions, it produces sparse matrices, it allows for the
variable resolution in real space and can exactly represent
potentials with “Z/r” singularities, and it does not require
the use of a computationally intensive transform.

In section 2, a concise review of the FE method is given,
and in section 3, the formulation of FE DFT equations is
presented. In section 4, by using test problems which
incorporate the critical issues of multiple length scales and
the singular behavior of the potential, the overall memory
and computational requirements per atom needed by the
solver are estimated. The solver is then illustrated for several
atoms and molecules including H, He, Li, Ne, H2

+, and Li2.
Finally conclusions are given in section 5.

2. Background of the Finite Element (FE)
Method

In the FE procedure,29-34 the solution domain Ω (e.g., Figure
1) is divided up into connected polyhedral subregions or
elements, {el}l)1

L , where L is the number of elements. For
each element el, a set of Tl nodes is chosen.

Figure 1. Examples of 3D finite element meshes. (left) Tetrahedral domain containing 8 elements and 7 vertex nodes. The
elements are labeled el, and the nodes are labeled (m) in this figure. (right) Adaptive hemisphere domain containing 453 608
elements and 81 406 vertex nodes.

{Nbt
el ) (xt

el, yt
el, zt

el)}t)1
Tl (1)
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From these nodes, a global set of nodes is defined from the
union of the element nodes,

where M is the number of nodes in the finite element mesh.
Nodes may be located at an element vertex, face, edge, or
in its interior. A set of Tl basis functions are then defined
for each element el. The basis functions are defined such
that they are nonzero only inside the element, represented
as simple low order polynomials, and have a value of 1 at
its associated node, i.e.

Using these basis functions, any piecewise polynomial
function may be expanded as follows

where c̃t, l are the expansion coefficients. This expansion is
somewhat intricate given that neighboring elements share
nodes with one another, which in turn results in certain
expansion coefficients being equal to one another. For
example, the expansion of a function using the finite element
mesh shown in Figure 1 necessitates that the following
coefficients be equal

To facilitate this mapping, a local to global index, m̃(t, l), is
defined. By using this index, the finite element expansion
can then written as

Compared to eqs 5 and 6, this expansion is fairly uncom-
plicated. However, it can be simplified even further by
introducing the following assembled finite element basis.

With this assembled basis, the finite element expansion is

To facilitate the definition of the finite elements el and
the corresponding basis functions as shown in eq 3, standard
elements ẽ and their corresponding basis functions are
introduced. This is done so that the basis functions and

integrals for elements of different shapes are calculated
readily, through a variable transformation, from the basis
functions and integrals for a standard element. In this work,
3D tetrahedral elements with nodes at the vertices are used.
The standard 3D tetrahedral element ẽ which covers the
domain [x̃ ) 0:1, ỹ ) 0:1 - x̃, z̃ ) 1 - x̃ - ỹ], is shown in
Figure 2, and its standard local basis functions are

Integrals over the tetrahedral standard element,

can be computed for polynomial functions

using the following analytic formula,

where

Equations 12 and 13 are straightforward to compute.
However, because the basis functions are only of a certain
polynomial order O(n), the integrals of eq 10 only need to
be calculated to the same order in the finite element
procedure. Therefore, the computation of the integrals of eq
10 can be further simplified by using a numerical method.
In this work, the following formula is used

{Nbm}m)1
M ) ∪ l)1

L {Nbt
el}t)1

Tl (2)

φt
el(xb) ) φt

el(x, y, z) ) ∑
n1

∑
n2

∑
n3

at,n1,n2,n3
xn1yn2zn3 (3)

u(xb) ) ∑
l)1

L

∑
t)1

Tl

c̃t,lφt
el(xb) (4)

c1 ) c̃11 ) c̃12 ) c̃13 ) c̃14 ) c̃15 ) c̃16 ) c̃17 ) c̃18

c2 ) c̃41 ) c̃42 ) c̃43 ) c̃44

c3 ) c̃45 ) c̃46 ) c̃47 ) c̃48

c4 ) c̃21 ) c̃34 ) c̃35 ) c̃28

c5 ) c̃22 ) c̃31 ) c̃36 ) c̃25

c6 ) c̃23 ) c̃32 ) c̃37 ) c̃26

c7 ) c̃24 ) c̃34 ) c̃38 ) c̃27

(5)

u(xb) ) ∑
l)1

L

∑
t)1

Tl

cm̃(t,l)φt
el(xb) (6)

ηm(xb) ) ∑
l)1

L

∑
t)1

Tl

φt
el(xb)δm,m̃(t,l) (7)

u(xb) ) ∑
m)1

M

cmηm(xb) (8)

Figure 2. Standard 3D piecewise tetrahedral element.

φ̃1(x̃, ỹ, z̃) ) 1 - x̃ - ỹ - z̃

φ̃2(x̃, ỹ, z̃) ) x̃

φ̃3(x̃, ỹ, z̃) ) ỹ

φ̃4(x̃, ỹ, z̃) ) z̃

(9)

Iẽ(f̃) ) ∫ẽ
f(x̃f) dx̃f ) ∫0

1
dz̃ ∫0

1-z̃
dỹ ∫0

1-z̃-ỹ
dx̃ f̃(x̃f)

(10)

f̃(x̃f) ) f̃(x̃, ỹ, z̃) ) x̃n1ỹn2z̃ n3 (11)

Iẽ(x̃n1ỹn2z̃n3) ) ∫0

1
dz̃ ∫0

1-z̃
dỹ ∫0

1-z̃-ỹ
x̃n1ỹn2z̃n3

) P̃(n1, 0)P̃(n2, n1 + 1)P̃(n3, n1 + n2 + 2)
(12)

P̃(a, b) ) ∑
k)0

b (b
k ) (-1)k

(a + k + 1)
(13)

Iẽ(f̃) ≈ ∑
q)1

Q

wqf̃(x̃fq) (14)
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where { x̃fq} q)1
Q and {wq}q)1

Q are the integration point and
weights respectively. Many different sets of integration points
and weights can be constructed for use in eq 14; however,
the computation will be more efficient for small Q. A 5-point
formulation that can be used to integrate the standard 3D
tetrahedral element to second-order is given in Table 1.

The affinte variable transformation is used to convert the
basis function and integrals over an arbitrarily sized tetra-
hedral element el with vertices xb1

el, xb2
el, xb3

el, and xb4
el in terms of

a standard element ẽ. This variable transformation is linear
and invertible. It is defined by

or more explicitly by

where the matrix Fel is the Jacobean matrix and bel is the
location of the origin in the transformation.

The inverse affine transformation is then

or

where

Using this transformation, the global FE basis functions
are written in terms of the standard local basis functions
by

and the gradients are written as

With this transformation, the integral of a function f over an
element is then

The following element integrals are also needed for our
adaptive multilevel finite element (FE) first principles
solver.

Gr
el(f) ) ∫el

φr
el(xb)f(xb) dxb ≈ |F el| ∑

q)1

Q

φ̃r(x̃
f

q)f(F
elx̃fq) (25)

Mrs
el ) ∫el

φr
el(xb)φs

el(xb) dxb ≈ |F el| ∑
q)1

Q

wqφ̃r(x̃
f

q)φ̃s(x̃
f

q) (26)

Table 1. 5-Point Tetrahedral Integration Points and
Weights

formula type points weight

5-pt formula (1/4, 1/4, 1/4) -2/15
(1/6, 1/6, 1/6) 3/40
(1/2, 1/6, 1/6) 3/40
(1/6, 1/2, 1/6) 3/40
(1/6, 1/6, 1/2) 3/40

xb ) F elx̃f + bbel (15)

x ) xel
(x̃, ỹ, z̃) ) F11

el x̃ + F12
el ỹ + F13

el z̃ + b1
el

y ) yel
(x̃, ỹ, z̃) ) F21

el x̃ + F22
el ỹ + F23

el z̃ + b2
el

z ) zel
(x̃, ỹ, z̃) ) F31

el x̃ + F32
el ỹ + F33

el z̃ + b3
el

(16)

Fel ) [(x2
el - x1

el) (x3
el - x1

el) (x4
el - x1

el)

(y2
el - y1

el) (y3
el - y1

el) (y4
el - y1

el)

(z2
el - z1

el) (z3
el - z1

el) (z4
el - z1

el) ] (17)

bbel ) [x1
el

y1
el

z1
el ] (18)

x̃f ) (F el)-1(xb - bbel)xb (19)

x̃ ) x̃el
(x, y, z) ) (F el)11

-1(x - b1
el) +

(F el)12
-1(y - b2

el) + (F el)13
-1(z - b3

el)

ỹ ) ỹel
(x, y, z) ) (F el)21

-1(x - b1
el) +

(F el)22
-1(y - b2

el) + (F el)23
-1(z - b3

el)

z̃ ) z̃el
(x, y, z) ) (F el)31

-1(x - b1
el) +

(F el)32
-1(y - b2

el) + (F el)33
-1(z - b3

el)

(20)

(F el)11
-1 )

F22
el F33

el - F32
el F23

el

|F el|

(F el)21
-1 )

F31
el F23

el - F21
el F33

el

|F el|

(F el)31
-1 )

F21
el F32

el - F31
el F22

el

|F el|

(F el)12
-1 )

F32
el F13

el - F12
el F33

el

|F el|

(F el)22
-1 )

F11
el F33

el - F31
el F13

el

|F el|

(F el)32
-1 )

F31
el F12

el - F11
el F32

el

|F el|

(F el)13
-1 )

F12
el F23

el - F22
el F13

el

|F el|

(F el)23
-1 )

F21
el F13

el - F11
el F23

el

|F el|

(F el)33
-1 )

F11
el F22

el - F21
el F12

el

|F el|

(21)

φt
el(xb) ) { φ̃t((F

el)-1xb) for xb ∈ el

0 otherwise
(22)

d

dx(i)
φt

el(xb) ) { ∑
j)1

3

(F el)ji
-1 d

dx̃(j)
φ̃t((F

el xb)) for xb ∈ el

0 otherwise
(23)

Iel(f) ) ∫e
f(xb) dxb ≈ |F el| ∑

q)1

Q

wq f(F elx̃fq) (24)
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3. Formulation of FE DFT Equations

The electronic wave functions in density functional theory
(DFT) in atomic units are given by the solutions to the
following Kohn-Sham eigenvalue problem1

where εi is an eigenvalue, and the wave functions {ψi} satisfy
the orthonormality constraints of a symmetric operator. In
general, we require the lowest Ne/2 eigenvalues and wave
functions for a spin-paired system, where Ne is the number
of electrons in the system. The formulation for spin-
unrestricted and fractionally occupied systems2 are not
presented here; however, generalizing the following equa-
tions to do so is quite straightforward. The external potential

represents the external electrostatic field imposed on the
system. For molecular systems Vext represents the ion-electron
interaction,

where NA is the number atoms, ZI is the nuclear charge of
atom I, and RbI is location of atom I. The Hartree potential,
VH, and the exchange-correlation potential, Vxc, are the effects
of electron-electron interactions. Both of these potentials
are functions of the electron density

The exchange and correlation potential, Vxc, is a straight-
forward parametrized function of the electron density, e.g.
Dirac exchange formula,35

and the Hartree potential VH is the solution to the Poisson
equation

Since both Vxc and VH are functions of F, the Kohn-Sham
eigenvalue problem must be solved self-consistently by an
iterative algorithm. The standard approach for these type of
problems is a Gummel-like iteration involving two compu-
tationally intensive kernels at each iteration:

(1) Calculation of the Hartree potential through the solution
of the Poisson equation.

(2) Calculation of the eigenfunctions of the linearized
generalized eigenvalue problem where the updated Hartree
and exchange-correlation potentials are taken to be frozen.
The FE Poisson and FE DFT eigenvalue equations are
generated by representing the Hartree potential and Kohn-
Sham wave functions as a finite element expansion,

and defining the boundary conditions for eqs 32 and 37. More
extensive derivations of the weak formulation of the FE DFT
and Poisson equations can be found in the work of Pask et
al.14 and Fattebert et al.20 Free-space boundary conditions
and periodic boundary conditions are the most common
boundary conditions used for solving the Kohn-Sham
eigenvalue equations. In this work, we chose to use free-
space boundary conditions, i.e.

Krs
el(f) ) ∫el

φr
el(xb)f(xb)φs

el(xb) dxb

≈ |F el| ∑
q)1

Q

wqφ̃r(x̃
f

q)f(F
elx̃fq)φ̃s(x̃

f
q) (27)

Krs
el(u) ) ∫el

φr
el(xb)( ∑

l′)1

L

∑
t)1

Tl'

cm̃(t,l′)φt
el ′(xb))φs

el(xb) dxb

≈ |F el| ∑
q)1

Q

wqφ̃r(x̃
f

q)( ∑
t)1

Tl

cm̃(t,l)φ̃t(x̃
f

q))φ̃s(x̃
f

q) (28)

Rrs
el(f, F) ) ∫el

φr
el(xb)f(F(xb))φs

el(xb) dxb

≈ |F el| ∑
q)1

Q

wqφ̃r(x̃
f

q)f(F(F elx̃fq))φ̃s(x̃
f

q) (29)

Trs
el ) ∫el

∇ φr
el(xb)·∇ φs

el(xb) dxb

≈ |F el| ∑
q)1

Q

wq[ ∑
i)1

3 (∑
j)1

3

(F el)ji
-1 d

dx̃(j)
φ̃r(x̃

f
q)) ×

(∑
k)1

3

(F el)ki
-1 d

dx̃(k)
φ̃s(x̃

f
q))] (30)

Dr
el(uD) ) -∫el

φr
el(xb)∇ 2uD(xb) dxb

) ∫el
∇ φr

el(xb)·∇ uD(xb) dxb

) ∫el
∇ φr

el(xb)·∇ ( ∑
l′)1

L

∑
t)1

Tl′

cm̃(t,l′)φt
el′(xb)) dxb

) ∑
t)1

Tl

cm̃(t,l)Trt
el (31)

Hψi(xb) ) (-1
2

∇ 2 + Vext + VH + Vxc)ψi(xb) ) εiψi(xb)

(32)

∫Ω
ψi(xb)ψj(xb) dxb ) δij (33)

Vext(xb) ) ∑
I)1

NA -ZI

| xb - RbI|
(34)

F(xb) ) ∑
i)1

Ne/2

|ψi(xb)|2 (35)

Vxc(xb) ) -( 3
π
F(xb))1/3

) -(3
π ∑

i)1

Ne/2

|ψi(xb)|2)1/3

(36)

∇ 2VH(xb) ) -4πF(xb) ) -4π ∑
i)1

Ne/2

|ψi(xb)|2 (37)

VH(xb) ) ∑
m)1

M

Vmηm(xb) (38)

ψi(xb) ) ∑
m)1

M

cm
i ηm(xb) (39)
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The problem with applying these boundary conditions is that
the solution domain Ω does not go out to ∞. For eq 32, this
is not a problem since the wave functions for most molecular
systems decay exponentially and can readily be set to zero
at ∂Ω. However, for eq 37 with free-space boundary
conditions, the potential decays ∝ 1/r; hence, we must first
calculate the boundary conditions on ∂Ω. To do this, we use
a high-order multipole expansion of the density to define
the following far field expansion of the Hartree potential at
the boundary,

where x̂ )(cos � sin θ, sin � sin θ, cos θ) and Plm(z) is an
associated Legendre polynomial.36 To include this boundary
condition in the solution to Poisson equation the potential is
broken up into two parts VH(xb) ) u(xb) + uD(xb), where the
homogeneous part u(xb) is defined to be zero on the boundary,
and the boundary part, uD(xb), is the finite element expansion
of eq 41. The solution to the homogeneous expansion
coefficients, un, for the Hartree potential in eq 38) is then
found by solving the following systems of linear equations,

where

and

In this work, a standard preconditioned conjugate gradient
solver was used to solve these equations.

Similarly, substituting eq 39 into eqs 32 and 33 produces
the following generalized eigenvalue problem

and orthonormality conditions

where

A formula for the matrix Smn in terms of eq 26 can be readily
be obtained by substituting eq 7 into eq 50.

Similarly, a formula for the matrix Hmn in terms of eqs 30,
27, and 29 can also be obtained.

Standard preconditioned eigenvalue solvers used in plane-
wave DFT programs were used to solve the generalized
eigenvalue equations.20,37 However, as pointed out by Kohn
et al., one potential problem in solving the Kohn-Sham
equations with adaptivity is that the condition number of the
discrete Kohn-Sham equations is dependent on the number
of levels of refinement and that as many as two times the
iterations will be needed for each new level of refinement.19

In this work, we took a very simple approach to this problem.
We first solved the equations at a coarse level of refinement
and then projected it down for use as input at a finer level
of refinement.

4. Adaptive FE DFT Solutions of Atoms and
Molecules

The Kohn-Sham DFT equations contain several length
scales because of the steepness of the atomic potentials. It
is well-known that uniform FE meshes are not very efficient
for these types of problems. Ideally, an FE mesh could be

VH(| xb| f ∞) ) 0
ψi(| xb| f ∞) ) 0 (40)

VH(xb ∈ ∂Ω) ) ∑
l)0

LMAX

∑
m)-l

l

NlmMlm

Tlm(x̂)

| xb|l+1
(41)

Nlm ) { 1 for m ) 0

2
(l - |m|)!
(l + |m|)!

for |m| > 0
(42)

Mlm ) ∫Ω
| xb′ |lF(xb′)Tlm(x̂′) dxb' (43)

Tlm(x̂) ) { Pl|m|(cos θ) for m ) 0
Pl|m|(cos θ)cos |m|� for m > 0
Pl|m|(cos θ)sin |m|� for m < 0

(44)

Amnun ) fn (45)

Amn ) ∑
l)1

L

∑
r)1

Tl

∑
s)1

Tl

δm,m̃(r,l)δn,m̃(s,l)(-Trs
el) (46)

fn ) ∑
l)1

L

∑
r)1

Tl

δm,m̃(r,l)(-4πGr
el( ∑

i)1

Ne/2

|ψi(xb)|2) + Dr
el(uD(xb)))

(47)

Hmncn
i ) εiSmncn

i (48)

∑
m)1

M

∑
n)1

M

cm
i Smncn

j ) δij (49)

Smn ) ∫Ω
ηm(xb)ηn(xb) dxb (50)

Hmn ) ∫Ω
ηm(xb)Hηn(xb) dxb (51)

Smn ) ∫Ω
{ ∑

l)1

L

∑
t)1

T

φt
el(xb)δm,m̃(t,l)}{ ∑

k)1

L

∑
s)1

T

φt
el(xb)δn,m̃(s,k)} dxb

(52)

Smn ) ∫Ω { ∑
l)1

L

∑
r)1

Tl

φr
el(xb)δm,m̃(t,l)}{ ∑

k)1

L

∑
s)1

Tk

φs
ek(xb)δn,m̃(s,k)} dxb

) ∑
l)1

L

∑
k)1

L

∑
r)1

Tl

∑
s)1

T

δm,m̃(r,l)δn,m̃(s,k)∫Ω
φr

el(xb)φs
ek(xb) dxb

) ∑
l)1

L

∑
k)1

L

∑
r)1

Tl

∑
s)1

Tk

δm,m̃(r,l)δn,m̃(s,k)δk,l∫el
φr

el(xb)φs
el(xb) dxb

) ∑
l)1

L

∑
r)1

Tl

∑
s)1

T

δm,m̃(r,l)δn,m̃(s,l)∫el
φr

el(xb)φs
el(xb) dxb

) ∑
l)1

L

∑
r)1

T

∑
s)1

Tl

δm,m̃(r,l)δn,m̃(s,l)Mrs
el (53)

Hmn ) ∑
l)1

L

∑
r)1

Tl

∑
s)1

Tl

δm,m̃(r,l)δn,m̃(s,l)(1
2

Trs
el + Krs

el(Vext) +

Krs
el(VH) + Rrs

el(Vxc, ∑
i)1

Ne/2

|ψi(xb)|2)) (54)
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adaptively refined only in the regions near the atom centers.
However, in general, generating adaptive meshes of good
quality is a difficult problem. Straightforward adaptive
refinement procedures usually result in “nonconforming”
meshes or meshes with hanging nodes. A globally “conform-
ing” FE mesh is defined as a collection of elements which
meet only at vertices and faces. While it is possible to
develop a FE method based on nonconforming meshes, in
general, FE meshes need to be conforming to ensure
continuity of interpolated functions.30,33 A basic algorithm
to refine an existing conforming mesh is as follows. In the
first step, the elements that have been selected for refinement
are bisected. This step more then likely will produce a
nonconforming mesh. The next step in the algorithm is then
to mark for refinement the elements which contain hanging
nodes. These steps proceed interactively until a conforming
mesh is produced.38,39 Many variants on this basic algorithm
are possible. For example, the bisection could be along the
longest edge or the newest vertex. In this work we used the
conforming adaptive mesh refinement based on longest edge
bisection. The exact algorithm used in our calculations is
given in Scheme 1.

The adaptive FE solver was tested initially on the
hydrogen-like atom. The Hamiltonian for this test problem
has a deceptively simple form with only a single potential
term.

The solutions to this eigenvalue problem are well-known and
analytical solutions are available. However, the singular
behavior at the origin can cause significant problems for
numerical methods. In the case of the FE solver, a mesh
vertex must be at the atom center (origin) in order for the
Hamiltonian matrix of the FE solver not to contain a
singularity in any of its elements. The lowest energy solution
and energy are ψ(xb) ) (Z3/2/�π) exp(-Z|xb|) and ε ) -Z2/2.
Note that the severity of the singularity with increasing Z is
reflected in the increasing localization of the solution.

Scheme 1: Conforming Adaptive FE Mesh Genera-
tion Algorithm.

1. Estimate the error γ(el) for each element el in the FE
mesh using the following formula

where xb, xb2, xb3, and xb4 are the four vertices of the tetrahedral
element el, xbc is its geometric center, and 
(xb) is a user defined
weight function having dimensions of density in atomic units.

2. Set refinement queues Q1 ) Q2 ) L.
3. Place elements with large errors (γ(el) > ε) in the

refinement queue Q1.
4. If Q1 ) L, then go to step 9.
5. If Q1 > L, then proceed to step 6; otherwise, go to step

1.
6. Bisect the elements in Q1 (removing from Q1) using

either q-q tetrahedral bisection or b-b bisection using the
longest edge as shown in Figure 3 and place the noncon-
forming elements created in refinement queue Q2.

7. Set Q1 r Q2.
8. Go to step 5.
9. Done with refinement.
To define the adaptive FE mesh for this problem, local

adaptivity was carried out starting from a uniform mesh using
the geometric-based refinement strategy given in Scheme 1
with the following weight (atomic density) function

The initial uniform mesh used was generated by uniformly
refining a seven element tetrahedral mesh four times using
q-q refinement (as shown in Figure 3) with the boundary
vertices set to be at a radius of 10 au, resulting in mesh
composed of 32 768 finite elements with 6017 vertices. For
a given γ, the number of elements generated by refinement
procedure was found to be nearly independent of Z.
Furthermore, the number of vertices grows very rapidly for
small tolerances, since at the lowest tolerance γ ) 10-4 there
are approximately 11 000 vertices in the FE mesh, whereas
at γ ) 10-7 there are approximately 220 000 vertices in the
FE mesh. The number of vertices as a function of γ was
found to be approximately,

where υ is the number of vertices.

Figure 3. b-b tetrahedral bisection (left) and q-q tetrahedral bisection (right).

H ) -1
2

∇ 2 - Z
| xb|

(55)

γ(el) ) (1
2

{
(xb2) + 
(xb3) + 
(xb4) - 
(xb1)} - 
(xbc)) |F el|
6

(56)


(xb) ) Z3

π
exp(-2Z| xb|) (57)

υ(γ) ≈ 200exp(-log10(γ)) (58)
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Not surprisingly, the placement of the elements was found
to very dependent on Z. In particular, for higher Z the
majority of elements were found to be very close to the atom
center, while for lower Z the majority of elements were found
to be located away from the atom center. For example, at a
γ ) 10-7 refinement, the number of verticies within 1.0 au
of the atom center was found to be 32 011 and 214 543
repectively for Z ) 1 and Z ) 26, while the number of
elements outside this radius was found to be 162 103 and
6212 respectively. Furthermore, it was found that increasing
the refinement threshold only increased the number of
elements very near the atom centers, while the number of
elements away from the atom center remained nearly
constant.

In Figure 4, the lowest eigenvalues and errors of the
hydrogen-like atoms (Z ) 1...26) are shown at increasing
levels of refinement. Not surprisingly, the accuracy of the

solution improved significantly when adaptive refinement
was applied. For a given refinement tolerance, the error grew
quadratically as a function of Z. For Z ) 1, the errors were
found to be 0.0150 au (γ ) 10-4), 0.0069 au (γ ) 10-5),
0.0029 au (γ ) 10-6), and 0.0012 au (γ ) 10-7). When the
singularity was strengthened, the errors were considerably
larger. For Z ) 26, the errors were found to be 12.0348 au
(γ ) 10-4), 4.9934 au (γ ) 10-5), 2.0517 au (γ ) 10-6),
and 0.08194 au (γ ) 10-7). Even though accurate solutions
can be obtained with the current adaptive FE solver based
on piecewise linear elements, extremely small adaptive
tolerances (large FE meshes) will be required. On the basis
of least-squares fitting, the error in terms of γ and Z was
found to be approximately given by the following relation
in atomic units.

Using eqs 58 and 59, one can estimate the number of
vertices needed to obtain accuracies in the millihartree range.

For example, for Z ) 26 and γ ) 10-14, the error and number
of vertices needed are ε ≈ 0.0015 au and υ ≈ 240, 520,
857. Hence, in order for the current adaptive FE solver to
obtain chemical accuracies for molecules containing atoms
with modest Z, the memory requirements are expected to
be quite large (>10 Gb/atom). Given that the number of
floating point operations per minimization step for a system
of NA atoms will be O(NA

3V(ε, Z)) the overall memory
requirement and computational cost of a simulation can be
estimated. For example, to calculate 100 Fe atoms (Z ) 26)
at an accuracy of ε ) 0.0015 au will require on the order of
2 terabytes at a cost of 25 petaflops per step.

The next test cases for the adaptive FE solver was the H,
He, Li, and Ne atoms at the DFT level using the local density
approximation (LDA) exchange-correlation functional.40

Since the solutions to these equations are spherically sym-
metric, the accuracy of these FE DFT solutions can be
checked by comparing them to solutions of the 1D-radial
Kohn-Sham equation.

Figure 4. Eigenvalues and errors for the hydrogen-like atom
as a function Z.

Table 2. LDA Energies and Errors in Atomic Units of H, He, Li, and Ne at Increasing Levels of Refinement

refinement ELDA (H) error (H) ELDA (He) error (He) ELDA (Li) error (Li) ELDA (Ne) error (Ne)

uniform -0.438492 4.02E-02 -2.383364 4.51E-01 -5.624508 1.72E+00 -75.145028 5.31E+01
γ ) 1e-2 -0.441826 3.68E-02 -2.602388 2.32E-01 -6.674924 6.69E-01 -117.391255 1.08E+01
γ ) 1e-3 -0.456391 2.23E-02 -2.731748 1.03E-01 -7.031348 3.13E-01 -123.228792 5.00E+00
γ ) 1e-4 -0.468855 9.82E-03 -2.789752 4.51E-02 -7.230246 1.14E-01 -126.047943 2.19E+00
γ ) 1e-5 -0.474739 3.93E-03 -2.817929 1.69E-02 -7.294580 4.93E-02 -127.367719 8.66E-01
γ ) 1e-6 -0.477234 1.44E-03 -2.830797 4.04E-03 -7.323754 2.01E-02 -127.917138 3.16E-01
γ ) 1e-7 -0.477879 7.91E-04 -2.833847 9.89E-04 -7.333440 1.04E-02 a a
γ ) 1e-8 -0.478194 4.77E-04 a a a a a a

a Required more than 2 GB of memory.

ε(γ, Z) ≈ 0.64423exp(0.89503log10(γ))Z2 (59)

υ(ε, Z) ≈ 122.37
Z2.2346

ε1.1173
(60)

(-1
2

d2

dr2
+ l(l + 1)

2r2
- Z

r
+ 4π∫ F(r′ )

|r - r′ |r′
2 dr′ +

Vxc(r))ψil(r) ) εilψil(r) (61)
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This 1D-radial equation was solved with a Hermann-Skilman
telescoping grid and an Adams fifth-order predictor-correc-
tion method.7 From solving this simplified equation, the exact
LDA energies for H, He, Li, and Ne were found to be
-0.47867, -2.83484, -7.34386, and -128.2335 au, re-
spectively. For the adaptive FE solutions, the initial uniform
FE mesh and the adaptive FE meshes were generated in the
same way as the hydrogen-like atoms above, except that the
weight functions were taken to be the all electron densities
obtained from the solutions to the 1D-radial Kohn-Sham
equation.

The LDA energies and errors for H, He, Li, and Ne are
reported in Table 2. As expected, the accuracy of the
solutions significantly improved when adaptive mesh refine-
ment was applied. Just as for the non-self-consistent hydrogen-
like problem, the error grew quadratically as a function of Z
for a given refinement tolerance. The errors were also found
to be of the same order as with the non-self-consistent
hydrogen-like problem, confirming that the essential dif-
ficulties of the Kohn-Sham eigenvalues equation are the
result of the singular behavior of the atomic potentials.

The next test case for the adaptive FE solver was for the
simplest molecule, H2

+. This problem is very similar to the
hydrogen atom in that there is only one electron; however,
unlike the hydrogen atom, there are now two centers with
singularities located at Rb1 and Rb2. The Hamiltonian for this
molecule is,

where Z1 ) Z2 ) 1. Having more than one center complicates
the FE mesh generation considerably. To define the adaptive
FE mesh for this problem, the geometric-based refinement
strategy given in Scheme 1 was used with the following
weight function,

The singularities at the ion centers were accommodated by
modifying the initial uniform mesh (6017 vertices, R ) 10a0)
by moving the vertex nearest to each ion center to lie on top
of it. The adaptive solver produced solutions that were similar
in accuracy to the hydrogen atom. In Figure 5, the binding
energy curve for increasing levels of refinement is shown.
The binding energy of H2

+ at a distance |Rb1 - Rb2| is defined
as the total energy of molecule at this distance minus the
energy of the molecule at infinite separation. Even though
large errors are seen with the uniform mesh, the agreement
with the analytic result with, even low levels of, adaptive
refinement is remarkably good, producing smooth binding
energy curves.

As a final test case for the adaptive FE solver, we chose
to calculate the binding energy curve for Li2. This seemingly
simple molecule is difficult to calculate. The ground-state
solution has three molecular orbitals (1σg, 1σu, and 2σg)
shown in Figure 6. The bottom two molecular orbitals are
very localized on the atoms. The top molecular orbital is

considerably more delocalized, but it also contains a localized
part. To define the adaptive FE mesh for this problem, the
geometric-based refinement strategy given in Scheme 1 was
used with the following weight function,


(xb) ) FLi atom
LDA (| xb - Rb1|) + FLi atom

LDA (| xb - Rb2|)

where, FLi atom
LDA (r) was obtained by using a spline fit of the

solution to eq 61 for the Li atom. The same initial mesh as

H ) -1
2

∇ 2 -
Z1

| xb - Rb1|
-

Z2

| xb - Rb2|
(62)


(xb) )
Z1

3

π
exp(-2Z1| xb - Rb1|) +

Z2
3

π
exp(-2Z2| xb - Rb2|)

(63)

Figure 5. Binding energy curves for H2
+ obtained with

adaptive gridding defined by the geometric-based refinement
strategy.

Figure 6. Ground-state molecular orbitals (1σg, 1σu, and 2σg)
of LDA for Li2 obtained with the FE DFT solver.
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for the H2
+ molecule was used, and vertices nearest to each

ion center were moved to lie on top of them.
In Figure 7, the binding energy curve for increasing levels

of refinement is shown. Even though a strategy very similar
to what was used for the H2

+ molecule was used, very large
errors in the binding energy curves are seen with adaptive
refinement at γ ) 1e - 6. In analyzing the solution, it was
found that the majority of error was from the eigenvalues of
the 1σg and 1σu molecular orbitals. Since these orbitals are
very localized on the atoms, their eigenvalues are expected
to be nearly constant as a function of |Rb1 - Rb2|. However, it
was found that their eigenvalues fluctuated by as much as
0.1 au for the uniform mesh down to 0.01 au for the γ ) 1e
- 6 mesh. While these errors are slightly smaller than the
absolute errors seen for the Li atom in Table 2, they are still
too large relative to the LDA binding energy of Li2, which
is roughly 0.04 au.

It was found that the errors in the binding energy for Li2

could be reduced further by shifting a cloud of vertices near
the ion center instead of just a single vertex nearest to each
ion center (Vbnearest). To do this, for each ion each of the
vertices in the mesh (Vbi) were moved by

where f(r) is the screening function

and N and R are adjustable parameters, chosen to be 8 and
1.5 au, respectively, which define the atom center region.
When this initial shifting procedure is used, it was found
that an accurate binding energy curve was obtained by the
γ ) 1e - 5 adaptive mesh (adaptthresh(shifted))1e-5 curve
in Figure 7). This result suggests that the placement of the
mesh close to the atom centers is the main source of error,
and an overlapping grid method can be used to reduce the
errors (cancelation of errors) in structure and bond energies
of the system. We note that carefully choosing mesh close
to atom centers in order to reduce integration errors was also
used by Batcho.24 In this work, the mesh was generated by
partitioning the volume around each singularity with a cube
that was subdivided into six pyramids.

5. Conclusion

We have implemented an unstructured adaptive FE DFT
program. The severe problem associated with the rapid
variation of the electronic wave functions in the near singular
regions of the atomic centers was treated by using unstruc-
tured simplex meshes that resolve these features around
atomic nuclei. This approach uses a minimal amount of
computational resources by concentrating the computational
work in the regions in which the shortest length scales are
necessary and provides for low resolution in regions for
which there is no electron density. The matrix representations
of the discrete Hamiltonian operator in the adaptive finite
element basis are always sparse due to the local support
nature of finite element basis functions. As a result, applica-
tion of the Hamiltonian operator is O(N) in the number of
discretization points.

The overall memory and computational requirements for
the solver implemented were found to be quite high. By using
the solution to the hydrogen-like atom, the overall memory
and computational requirements per atom needed by the
solver were estimated. The number of mesh vertices per atom
as a function of the atomic number Z and the required
accuracy ε was estimated to be υ(ε, Z) ≈ 122.37(Z2.2346/
ε1.1173). These meshing requirements were also found to hold
for the full DFT solutions. The errors in the LDA energies
of H, He, Li, and Ne were found to be of the same order as
the hydrogen-like atom, which confirmed that the essential
difficulty of solving the Kohn-Sham eigenvalue equation
is the result of the singular behavior of the atomic potentials.
This estimate can be used determine the overall memory
requirement and computational cost of a simulation, since
the number of floating point operations per DFT minimiza-
tion step for a system of NA atoms will be O(NA

3V(ε, Z))
(e.g., Z ) 26, ε ) 0.0015 au, and NA ) 100, the memory
requirement and computational cost would be ∼2 terabytes
and ∼25 petaflops).

Despite the high cost of the method, it was found that
strategies for fixing the error near the atomic potential
singularities, such as a geometric-based refinement strategy
can be used to reduce the errors in structure and bond
energies of the system. In this work, to define the adaptive
FE mesh for a problem, local adaptivity was carried out by
starting from an uniform mesh and adapting using a
conforming adaptation procedure where the error was

Figure 7. Binding energy curves for Li2 obtained with adaptive
gridding defined by the geometric-based refinement strategy.
The “adaptthresh(shifted))1e-5” curve was obtained with a
γ ) 1e - 5 adaptive mesh where the initial mesh was modified
by shifting procedure of eq 64. The PSPW curve, shown for
comparison, was obtained with a NWChem pseudopotential
planewave calculation.4

Vbi ) Vbi + (RbI - Vbnearest)f(|Vbi - Vbnearest|) (64)

f(r) ) 1 - [1 - exp(-( r
R)N)]N

(65)
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determined by using a weight function composed of the sum
of the atomic densities for the problem. For the simple H2

+

molecule this strategy was found to work very well.
However, for the Li2 molecule very large errors in the binding
energy curves were seen even when the geometric-based
adaptive refinement procedure was used. It was found that
the errors in the binding energy for Li2 could be reduced
further by shifting a cloud of vertices near the ion center
instead of just a single vertex nearest to each ion center
(Vbnearest) in the initial uniform mesh. When this initial shifting
procedure was used in combination with the geometric-based
adaptation procedure, it was found that an accurate binding
energy curve could be obtained. These results showed that
the placement of the mesh close to the atom centers is the
main source of error in the method, and it suggests that an
overlapping grid method could be used to reduce the errors
(“cancellation of errors”) in structure and bond energies of
the molecule.

At present, our adaptive FE DFT solver uses piecewise linear
elements which are O(h2) accurate. It was shown at this low
order of accuracy that very large FE meshes will be needed to
obtain the millihartree or better accuracy desired for molecules
and materials with large Z atoms. Unless very large machines
are used, the memory requirements (and computational cost)
is unlikely to be competitive with more standard solution
methods. Others have shown that memory and computational
requirements of FE DFT can be substantially reduced by using
higher-order FE elements19,20 or spectral element methods.21-24

However, to date these methods have relied on using paral-
lelpiped elements along with a special treatement of the
singularity by pseudopotentials19,20 or with a special integration
technique.22,24Our current work differs from these prior works
in that we use tetrahedral elements rather than parallelpiped
elements. This allows for considerably more flexibility in
the grid generations as opposed to parallelpiped elements.
Future work will focus on higher order FE DFT solvers
which make use of tetrahedral elements.
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(3) Apr, A.; Gao, F.; Kristić, P. S.; Wells, J. C.; Windus, T. L.
NWChem for Material Science. Comput. Mater. Sci. 2003,
28, 209–221.

(4) Bylaska, E. J.; de Jong, W. A.; Govind, N.; Kowalski, K.;
Straatsma, T. P.; Valiev, M.; Wang, D.; Apra, E.; Windus,
T. L.; Hammond, J.; Nichols, P.; Hirata, S.; Hackler, M. T.;
Zhao, Y.; Fan, P.-D.; Harrison, R. J.; Dupuis, M.; Smith,
D. M. A.; Nieplocha, J.; Tipparaju, V.; Krishnan, M.; Wu,
Q.; Van Voorhis, T.; Auer, A. A.; Nooijen, M.; Brown, E.;
Cisneros, G.; Fann, G. I.; Fruchtl, H.; Garza, J.; Hirao, K.;
Kendall, R.; Nichols, J. A.; Tsemekhman, K.; Wolinski, K.;
Anchell, J.; Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.;
Dachsel, H.; Deegan, M.; Dyall, K.; Elwood, D.; Glendening,
E.; Gutowski, M.; Hess, A.; Jaffe, J.; Johnson, B.; Ju, J.;
Kobayashi, R.; Kutteh, R.; Lin, Z.; Littlefield, R.; Long, X.;
Meng, B.; Nakajima, T.; Niu, S.; Pollack, L.; Rosing, M.;
Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.; van Lenthe,
J.; Wong, A.; Zhang, Z. NWChem, A Computational
Chemistry Package for Parallel Computers;, Version 5.1,
Pacific Northwest National Laboratory: Richland, WA, 2007.

(5) Dunning, T. H., Jr.; Peterson, K. A.; Woon, D. E. Gaussian
Basis Sets for Use in Correlated Calculations. In Encyclopedia
of Computational Chemistry; Schleyer, P.v.R., Ed.; John
Wiley & Sons Ltd: New York, 1997.

(6) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. On some
approximations in applications of X theory. J. Chem. Phys.
1979, 71, 3396–3402.

(7) Hamann, D. R. Generalized norm-conserving pseudopotentials.
Phys. ReV. B 1989, 40, 2980–2987.

(8) Tsuchida, E.; Tsukada, M. Electronic-structure calculations
based on the finite-element method. Phys. ReV. B 1995, 52,
5573–5578.

(9) Bernholc, J.; Briggs, E. I.; Sullivan, D. J.; Brabec, C. J.;
Nardelli, M. B.; Rapcewicz, K.; Roland, C.; Wensell, M. Real-
space multigrid methods for large-scale electronic structure
problems. Int. J. Quantum Chem. 1997, 65, 531–543.

(10) Bernholc, J.; Hodak, M.; Lu, W. C. Recent developments and
applications of the real-space multigrid method. J. Phys.:
Condensed Matter 2008, 20, 294205.

(11) Chelikowsky, J. R.; Troullier, N.; Saad, Y. Finite-Difference-
Pseudopotential Method: Electronic Structure Calculations
without a Basis. Phys. ReV. Lett. 1994, 72, 1240–1243.

(12) Chelikowsky, J. R.; Troullier, N.; Wu, K.; Saad, Y. Higher-
order finiet-difference pseudopotential method: An application
to diatomic molecules. Phys. ReV. B 1994, 50, 11355–11364.

(13) Briggs, E. I.; Sullivan, D. J.; Bernholc, J. Large-scale
electronic-structure calculations with multigrid acceleration.
Phys. ReV. B 1995, 52, R5471–R5474.

(14) Pask, J. E.; Klein, B. M.; Sterne, P. A.; Fong, C. Y. Finite-
element methods in electronic-structure theory. Comput. Phys.
Commun. 2001, 135, 1–34.

(15) Cho, K.; Arias, T. A.; Joannopoulos, J. D.; Lam, P. K.
Wavelets in Electronic Structure Calculations. Phys. ReV. Lett.
1993, 71, 1808–1811.

(16) Lippert, R. A.; Arias, T. A.; Edelman, A. Multiscale Com-
putation with Interpolating Wavelets. J. Comput. Phys. 1998,
140, 278–310.

Solving the Exact Kohn-Sham Equation J. Chem. Theory Comput., Vol. 5, No. 4, 2009 947



(17) Arias, T. A. Multiresolution analysis of electronic structure:
semicardinal and wavelet bases. ReV. Mod. Phys. 1999, 71,
267–311.

(18) Bylaska, E. J.; Kohn, S. R.; Baden, S. B.; Edelman, A.; Kawai,
R.; Ong, M. E. G.; Weare, J. H.; Scalable Parallel Numerical
Methods and Software Tools for Material Design. In Pro-
ceeding of the SeVenth SIAM Conference on Parallel
Processing for Scientific Computing, San Francisco, CA,
1995.

(19) Kohn, S.; Weare, J.; Ong, E.; Baden, S. Parallel Adaptive
Mesh Refinement for Electronic Structure Calculations. In
Eigth SIAM Conference on Parallel Processing for Sci-
entific Computing, Minneapolis, MN, 1997.

(20) Fattebert, J. L.; Hornung, R. D.; Wissink, A. M. Finite element
approach for density functional theory. J. Comput. Phys.
2007, 223, 759–773.

(21) Harrison, R. J.; Fann, G. I.; Yanai, T. G.; Gan, Z.; Beylkin,
G. Multiresolution quantum chemistry: Basic theory and initial
applications. J. Chem. Phys. 2004, 121, 11587–11598.

(22) Yanai, T.; Fann, G. I.; Gan, Z. T.; Harrison, R. J.; Beylkin,
G. Multiresolution quantum chemistry in multiwavelet bases:
Hartree-Fock exchange. J. Chem. Phys. 2004, 121, 6680–
6688.

(23) Yanai, T.; Fann, G. I.; Gan, Z. T.; Harrison, R. J.; Beylkin,
G. Multiresolution quantum chemistry in multiwavelet bases:
Analytic derivatives for Hartree-Fock and density functional
theory. J. Chem. Phys. 2004, 121, 2866–2876.

(24) Batcho, P. F. Computational method for general multicenter
electronic structure calculations. Phys. ReV. E 2000, 61, 7169–
7183.

(25) Modine, N. A.; Zumback, G.; Kaxiras, E. Adaptive-coordinate
real-space electronic-structure calculations for atoms, mol-
ecules and solids. Phys. ReV. B 1997, 55, 10289–10301.

(26) Torsti, T.; Lindberg, V.; Makkonen, I.; Ogando, E.; Rasanen,
E.; Saarikoski, H.; Puska, M. J.; Nieminen, R. M. Real-space
electronic-property calculations for nanoscale structures. In
Handbook of Theoretical and Computational Nanotech-
nology; Rieth, M., Schommers, W., Eds.; Forschungszentrum
Karlsruhe: Germany, 2006.

(27) Modine, N. A.; Zumbach, G.; Kaxiras, E. Adaptive coordinate
real-space electronic structure calculations for atoms, mol-
ecules and solids. Phys. ReV. B 1997, 55, 10289–10301.

(28) Holst, M. Adaptive numerical treatment of elliptic systems
on mainfolds. AdV. Comput. Math. 2001, 15, 139–191.

(29) Axelsson, O.; Barker, V. A. Finite Element Solution of
Boundary Value Problems: Theory and Computation;
SIAM: Philadelphia, 2001.

(30) Braess, D. Finite Elements: Theory, Fast SolVers and
Applications in Solid Mechanics, 2nd ed.; Cambridge
Univeristy Press: Cambridge 2005.

(31) Brenner, S. C.; Scott, L. R., The Mathematical Theory of
Finite Element Methods, 2nd ed.; Springer-Verlag: New
York, 2002.

(32) Strang, G. Piecewise Polynomials and the Finite Element
Method. Bull. Am. Math. Soc. 1973, 79, 1128–1137.

(33) Norrie, D. H.; de Vries, G. The Finite Element Method;
Academic Press: New York, 1973.

(34) Zienkiewicz, O. C.; Morgan, M. Finite Elements and
Approximation, Dover Publications: New York, 1983.

(35) Dirac, P. A. M. Note on exchange phenomena in the Thomas
atom. Proc. Cambridge Philos. Soc. 1930, 26, 376–385.

(36) Sansone, G. Orthogonal Functions, revised English ed.;
Dover Publications: New York, 1991.

(37) Hasnip, P. J.; Pickard, C. J. Electronic energy minimisation
with ultrasoft pseudpotentials. Comput. Phys. Commun. 2006,
174, 24–29.

(38) Bank, R. E.; Holst, M. A New Paradigm for Parallel Adaptive
Meshing Algorithms. Siam J. Sci. Comput. 2000, 22, 1411–
1443.

(39) Arnold, D. N.; Mukherjee, A.; Pouly, L. Locally Adapted
Tetrahedral Meshes using Bisection. Siam, J. Sci. Comput.,
2000, 22, 431–448.

(40) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent
Electron Liquid Correlation Energies for Local Spin-Density
Calculations - A Critical Analysis. Can. J. Phys. 1980, 58,
1200–1211.

CT800350J

948 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Bylaska et al.



Distributed Gaussian Valence Bond Surface Derived from
Ab Initio Calculations

Jason L. Sonnenberg,† Kim F. Wong,‡ Gregory A. Voth,‡ and H. Bernhard Schlegel*,†

Department of Chemistry, Wayne State UniVersity, Detroit, Michigan 48202, and
Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112

Received November 6, 2008

�w This paper contains enhanced objects available on the Internet at http://pubs.acs.org/JCTC.

Abstract: The experimental and computational results for the tautomerization reaction of
2-pyridone are reviewed. G3, G4, CBS-APNO, and W1 model chemistries are used to generate
state-of-the-art reaction energetics for the tautomerization reaction with and without catalytic
water molecules in both the gas and aqueous phases. Reactive, electronic potential energy
surface surfaces for use in molecular dynamics simulations were generated for these reactions
following a recently improved empirical valence bond formulation. The form of molecular
mechanics potentials needed for a satisfactory fit is also discussed.

1. Introduction

Over the last century, the keto-enol tautomerism of 2-py-
ridone (PY) and 2-hydroxypyridine (HY) has been probed
by nearly every available experimental1-13 and theoretical
method.7,10-34 This seemingly innocuous proton-transfer
reaction has garnered so much attention because it serves as
the archetype model system for hydrogen bonding, proton-
transfer tautomerism, and proton-shuttling mechanisms in
chemical, biological, and medicinal reactions. Most recently,
Hatherley and co-workers used microwave spectroscopy to
determine that the gas-phase energy difference between PY
and HY is 3.2 ( 0.4 kJ/mol with HY being the more stable
species.8 This value is larger than the ∆G value determined
from X-ray photoelectron spectroscopy (PES),6 but it agrees
quite well with Beak’s value of 3.3 kJ/mol determined from
ultraviolet (UV) spectroscopy.2 The experimental values are
collected in Table 1.

With a gas-phase tautomerization energy smaller than 4.2
kJ/mol (1 kcal/mol, aka chemical accuracy), the PY/HY
system has been a formidable challenge for computational
chemistry from the beginning. Although semiempirical and
molecular mechanics methods provide qualitative agreement
with experiment and can describe the PY f HY activation

barrier Eq correctly,15 it was recognized early on that
correlation and zero-point vibrational energies are crucial.16

Following earlier calculations by Schlegel et al. (ref 16),
many investigators employed second-order Møller-Plesset
perturbation theory (MP2) with a wide variety of basis
sets.10,13,19,21,23,29 While increasing the basis set size beyond
triple-� (TZ) with the addition of polarization and diffuse
functions improved the activation barrier, it unfortunately
results in an underestimation of the tautomerization energy
because of the well-known correlation energy overestimation
by MP2.35 Predicted tautomerization energies can be brought
back into chemical accuracy by utilizing MP410 or spin-
component-scaled MP2 (SCS-MP2).36 Density functional
theory (DFT) generates reliable molecular structures but the
corresponding energetics, with the exception of the
BHandHLYP functional,28,30 are inherently wrong: PY is

* To whom correspondence should be addressed. E-mail:
hbs@chem.wayne.edu.

† Wayne State University.
‡ University of Utah.

Table 1. Experimental Data for the PY f HY Reactiona

∆H ∆G T method ref

gas phase:
-3.2 ( 0.4 356 microwave 8

-3.3 405 UV 2
-2.5 ( 0.4b PES 4

-2.4 ( 0.21 403 X-ray PES 6

aqueous phase:
14.2 298 heats of solution 1

a Energies and temperatures are in kJ/mol and K, respectively.
b ∆H was calculated with data ranging from 348 to 728 K using
the van’t Hoff equation.
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predicted to be the most stable tautomer in the gas-
phase.10,13,21,24,28,30,31 Piacenza and Grimme showed con-
vincing evidence that the poor DFT energies arise from the
exchangepotentialsandinclusionofat least50%Hartree-Fock

(HF) exchange “corrects” those exchange potentials as seen
in the BHandHLYP results.28 The necessity of HF exchange
in DFT functionals coupled with the MP2 overestimation of
the correlation energy suggests that the gas-phase tautomer-

Table 2. Computed Energies (kJ/mol) for the Gas-Phase PY f HY reactiona

theory ∆E q ∆H q ∆G q ∆E ∆H ∆G

HF/6-31G(d,p) 207.1c -6.5h -7.3h

HF/6-31++G(d,p)g -5.17 -5.8
HF/TZV(2df,2dp)e -3.8
MP2/6-31G(d,p) 147.2b 134.0b -9.2c

MP2/6-31+G(d,p)d 151.4 138.4 139.4 -8.6 -8.0
MP2/6-31++G(d,p)d 151.3 139.1 144.6 -8.7 -7.1
MP2/6-311+G(d,p) 149.3 137.3 139.0 -11.6 -10.2 -8.3
MP2/6-311++G(d,p)d 149.3 -11.8
MP2/TZV(2df,2dp)e -11.2
SCS-MP2/TZV(2df,2dp)//B3LYP/TZV(2df,2dp)e -4.6
MP4(SDTQ)//MP2/6-311++G(d,p)f -3.62
CISD/3-21G//HF/3-21Gj 188.0 12.0
CISD/DZP1i 0.28
QCISD/TZV(2df,2dp)//B3LYP/TZV(2df,2dp)e -2.9
QCISD(T)/TZV(2df,2dp)//B3LYP/TZV(2df,2dp)e -4.2
PBE/TZV(2df,2dp)e 6.3
BP86/TZV(2df,2dp)e 5.9
BLYP/TZV(2df,2dp)e 7.9
B3PW91/6-31++G(d,p)g 1.61 1.3
B3LYP/6-31G(d,p)b 148.1 135.0
B3LYP/6-31+G(d,p)d 154.3 140.8 141.3 1.9 1.5
B3LYP/6-31++G(d,p)d 154.2 140.8 141.2 1.8 1.4
B3LYP/6-311++G(d,p)d 158.8 145.1 145.6 3.6 3.3
B3LYP/6-311++G(2d,2p)d 157.6 144.1 144.6 1.5 1.1 1.5
BHandHLYP/6-311++G(2d,2p)d 176.6 162.6 163.2 -4.2 -4.6 -4.2
BHandHLYP/TZV(2df,2dp)e -2.9
G3 159.5 142.3 143.0 -3.8 -4.9 -4.4
G4 156.1 143.1 143.6 -4.2 -4.3 -3.9
CBS-APNO 157.8 144.9 145.1 -4.7 -5.3 -4.9
W1 155.5 142.2 142.7 -3.9 -4.4 -4.1

a ∆E is electronic energy and does not include zero-point energy corrections. Enthalpies are at 0 K, while Gibbs free energies are at 298
K. b Ref 13. c Ref 21. d Ref 30. e Ref 28. f Ref 10. g Ref 24. h Ref 23. i Ref 18. j Ref 17.

Table 3. Computed Energies (kJ/mol) for the Gas-Phase PY(H2O)n f HY(H2O)n Reactionsa

theory ∆E q ∆H q ∆G q ∆E ∆H ∆G

PY(H2O) f HY(H2O):
HF/6-31G(d,p)d 117.2 0.4
MP2/6-31G(d,p)b 57.3 -4.2
MP2/6-31G(d,p)d 55.6 -5.4
MP2/6-311+G(d,p) 61.3 45.8 51.5 -5.6 -4.4 -3.3
MP2/6-311++G(d,p)c -5.6
MP4(SDTQ)//MP2/6-311++G(d,p)c 1.27
CISD/3-21G//HF/3-21Gf 56.0 12.0
B3LYP/6-31G(d,p)d 52.3 3.3
B3LYP/TZ2Pd 61.1 5.9
B3LYP/6-311++G(d,p)c 8.65
B3LYP/6-311++G(2d,2p)e 63.1 47.2 52.3 7.1 6.9 7.5
B3LYP/aug-cc-pVTZ//B3LYP/6-311++G(d,p)c 7.66
BHandHLYP/6-311++G(2d,2p)e 77.6 60.5 65.9 3.1 2.9 3.5
G3 68.5 51.7 58.0 1.9 0.92 1.4
G4 67.7 52.0 56.1 1.0 0.82 1.2
CBS-APNO 64.0 46.2 52.8 0.98 0.41 0.89

PY(H2O)2 f HY(H2O)2:
MP2/6-31G(d,p)b 39.7 -1.3
MP2/6-311+G(d,p) 69.8 47.2 54.7 1.2 1.9 2.5
CISD/3-21G//HF/3-21Gf 43.0 19.0
B3LYP/6-31G(d,p)d,g 56.5 13.8
B3LYP/6-311++G(2d,2p)e 67.6 45.4 52.6 12.5 12.1 12.8
BHandHLYP/6-311++G(2d,2p)e 85.5 61.4 69.2 9.4 9.0 9.7
G3 75.1 57.3 67.0 4.3 5.7 6.3
G4 77.5 55.0 60.9 7.0 6.2 6.9

PY(H2O)3 f HY(H2O)3:
MP2/6-311+G(d,p) 94.1 67.7 77.3 6.8 6.7 6.5
G3h 13.3 12.8 14.7
G4h 13.7 14.6 17.5

a ∆E is electronic energy and does not include zero-point energy corrections. Enthalpies are at 0 K, while Gibbs free energies are at 298
K. b Ref 29. c Ref 10. d Ref 21. e Ref 30. f Ref 17. g In this calculation, one water is a proton shuttle, and the other is part of the first
solvation shell. h Transition state calculations were not feasible for this system and level of theory.
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ization energetics are dominated by the differences in the
exchange energy. Such an illation is supported by HF results
that are within chemical accuracy when employing a polar-
ized double-� (DZ) or larger basis set.16,19,21,23,24,28 QCISD,
with and without perturbative triples, has predicted tautomer-
ization energies of 4.2 and 2.9 kJ/mol, respectively, indicating
that the triples correction is necessary to avoid underestima-
tion of the reaction energy.28 A representative selection of
computational results is presented in Tables 2 and 3.

Because the magnitude of the gas-phase tautomerization
barrier prevents rapid proton transfer at room tempera-
ture, proton shuttling mechanisms involving explicit
water10,20,21,29-31 and formic acid13 solvent molecules were
investigated. Barone and Adamo were the first to theoretically
show that one water molecule reduces the gas-phase tau-
tomerization barrier and switches the lowest energy state
from HY to PY.21 They also demonstrated that addition of
a second water molecule to represent bulk solvent actually
increases the tautomerization barrier because of the hydrogen-
bonding interaction with the carbonyl moiety. Maris et al.
later confirmed Barone and Adamo’s single-molecule proton
shuttle findings using MP2, MP4, and DFT methods.10 One
formic acid molecule acting as a proton shuttle was also
shown to affect the reaction barrier in the same fashion.13

In 2005, two groups independently examined the affects of
a proton shuttle involving two water molecules and found

that both DFT30 and MP229 methods predict a further
reduction in the proton-transfer barrier.

Given that inclusion of explicit solvent molecules in
addition to those involved in the proton shuttle counterbal-
ances the barrier reduction of the shuttles, a more uniform
representation of bulk solvent has been pursued. Wong and
co-workers applied the self-consistent reaction field (SCRF)
Onsager model to the uncatalyzed 2-pyridone/2-hydroxypy-
ridine tautomerization in cyclohexane and acetonitrile.19

These results were later confirmed by Wang and Boyd, who
also investigated the reaction in chloroform.22 The same
SCRF method was applied to model the tautomerization in
water.21,30,31 For all four solvents, the equilibrium shifts such
that the PY species is now favored in solution, which agrees
well with experimental results. Barone and Adamo found
that inclusion of the bulk solvent via SCRF theory, increased
the barrier to proton transfer and stabilized PY for the single
water molecule shuttle with and without an explicit solvation
shell water.21 Fu et al. also observed such effects for one
and two water proton shuttles.30 Tsuchida and Yamabe31

continued the energetic exploration of multiwater proton
shuttles in solution and reported that a three-molecule proton
shuttle actually increases the tautomerization barrier relative
to the two-molecule shuttle rather than reducing it. Unfor-
tunately the reported three-molecule proton shuttle transition
state (TS) corresponds to a proton transfer between the three

Table 4. Computed Energies (kJ/mol) for the Aqueous Phase PY(H2O)n f HY(H2O)n Reactionsa

theory ∆E q ∆H q ∆G q ∆E ∆H ∆G

PY f HY:
MP2/6-311+G(d,p)/IEF-PCM 161.8 148.7 149.6 5.7 5.3 6.0
B3LYP/6-31G(d)/Onsagerc 158.2b 144.8 14.2b 13.4
B3LYP/6-311++G(2d,2p)/Onsagerd 150.1 15.2
B3LYP/6-311++G(2d,2p)/DPCMd 176.1 15.4
BHandHLYP/6-311++G(2d,2p)/Onsagerd 167.7 7.9
BHandHLYP/6-311++G(2d,2p)/DPCMd 193.5 10.2
G3/IEF-PCM 168.9 155.0 155.5 14.1 12.4 12.6
G4/IEF-PCM 168.9 155.5 155.9 13.6 12.5 12.7

PY(H2O) f HY(H2O):
MP2/6-311+G(d,p)/IEF-PCM 63.9 47.0 53.8 3.1 3.5 4.8
B3LYP/6-31G(d)/Onsagerc 61.2b 11.6b

B3LYP/6-311++G(2d,2p)/Onsagerd 52.4 13.1
B3LYP6-311++G(2d,2p)/DPCMd 70.2 14.6
BHandHLYP/6-311++G(2d,2p)/Onsagerd 64.7 7.4
BHandHLYP/6-311++G(2d,2p)/DPCMd 84.7 13.4
G3/IEF-PCM 73.1 62.2 69.7 12.0 10.8 11.6
G4/IEF-PCM 72.3 55.1 59.6 11.4 10.6 11.0

PY(H2O)2 f HY(H2O)2:
MP2/6-311+G(d,p)/IEF-PCM 71.3 47.7 54.6 4.9 4.9 4.7
B3LYP/6-31G(d)/Onsagerc 69.5b 51.5 17.2b 16.4
B3LYP/6-311++G(2d,2p)/Onsagerd 52.5 15.8
B3LYP/6-311++G(2d,2p)/DPCMd 74.6 15.7
BHandHLYP/6-311++G(2d,2p)/Onsagerd 68.6 12.3
BHandHLYP/6-311++G(2d,2p)/DPCMd 94.3 12.9
G3/IEF-PCM 81.7 67.5 77.3 12.2 10.9 11.7
G4/IEF-PCM 80.4 56.1 62.3 11.3 11.2 11.9

PY(H2O)3 f HY(H2O)3:
MP2/6-311+G(d,p)/IEF-PCM 82.4 70.0 78.5 7.6 7.9 8.7
B3LYP/6-31G(d)/Onsagerc 20.7b 19.3
G3/IEF-PCMe 13.7 13.2 15.2
G4/IEF-PCMe 13.0 11.4 10.9

a ∆E is electronic energy and does not include zero-point energy corrections. Enthalpies are at 0 K, while Gibbs free energies are at 298
K unless noted otherwise. b Values at 298 K. c Ref 31. d Ref 30. e Transition state calculations were not feasible for this system and level of
theory.
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water molecules rather than true proton shuttling. The correct
TS for the three-water proton shuttle for the PY to HY
tautomerization is included in Tables 3 and 4 and the
structure is available in the Supporting Information for the
present paper.

This paper provides benchmark reaction energetics for the
PY(H2O)nf HY(H2O)n (n ) 0-3) tautomerization reactions
in the gas and solution phases. The influence of proton-
shuttling water molecules in both phases is also discussed.
A reactive electronic potential energy surface for use in

Figure 1. PY(H2O)n (reactant), TS(H2O)n (transition state), and HY(H2O)n (product) geometries for proton-shuttling tautomerization
reactions with (a) one, (b) two, and (c) three catalytic water molecules. Carbon, nitrogen, oxygen, and hydrogen are depicted in
gray, blue, red, and white, respectively.

�w Movies of the molecules shown in panels a, b, and c along the reaction paths are available.

Figure 2. Potential of mean force along the reaction path for the gas-phase, uncatalyzed PY f HY tautomerization employing the
K ) 5 DG-EVB surface. The artificial minimum near the TS results from the quadratic forms of H11 and H22.
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molecular dynamics simulations is then generated from the
highly accurate ab initio results following a recently im-
proved EVB formulation using a superposition of states37,38

and distributed Gaussians.39,40 The importance of utilizing
improved molecular mechanics force fields that go beyond
the quadratic approximation utilized in most dynamics
calculations is addressed.

2. Computational Methods

The G3,41 G4,42 CBS-APNO,43 and W144 model chemistries
were employed to determine tautomerization energetics to
within (4.7, (3.5, (2.2, and (1.3 kJ/mol, respectively.
Additional data points along the reaction path were generated
at the MP2/6-311+G(d,p) level of theory45-47 using the
second-order predictor-corrector reaction path following
integrator of Hratchian and Schlegel.48,49 All stationary points
along the reaction path were optimized with the Berny
algorithm50 and confirmed with harmonic vibrational fre-
quency analysis. Bulk solvation effects were accounted for
via IEF-PCM in the SCRF framework with a dielectric value
of 78.39 and UFF atomic radii.51-53 All electronic structure

calculations were computed using a development version of
the Gaussian suite,54 while the EVB fits and analysis were
done in Mathematica version 5.255 using the EVB Toolkit
for Mathematica56 developed by the authors. Preliminary MD
calculations employed the development version of AMBER
10.57

3. Results and Discussion

The discussion begins with calculated results for the pyridone
tautomerization reaction, in both the gas and aqueous phases,
which has been studied extensively. The effect of proton
shuttling waters on reaction energetics and barrier heights
is examined for one to three catalytic waters. A new TS
structure for the proton-shuttling mechanism involving three
catalytic water molecules is given to correct an existing error
in the literature. The general form of valence bond potential
surfaces for reactions is described, and then some technical
aspects of building reliable reactive potential energy surfaces
are discussed.

3.1. Reaction Energetics. Our gas- and aqueous-phase
results for the pyridone tautomerization are presented in

Figure 3. Two-dimensional DG-EVB potential energy surface for the gas-phase, uncatalyzed PYf HY tautomerization, employing
the K ) 5 fit with quadratic Hnn. The PY valley is in the back, left-hand corner, while the HY valley is up front in the right-hand
corner in both plots. The minima are denoted with a green dot and the TS with an orange dot.
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Tables 2-4. For the uncatalyzed tautomerization, the system
size is small enough that all four model chemistries, G3,
G4, CBS-APNO, and W1 are tractable calculations. Differ-
ences of less than 1 kJ/mol between theory and experiment
should be considered excellent agreement for systems of this
size, thus the gas-phase W1 results can be taken as a “gold

standard” for evaluation of other computed results. Of the
three remaining model chemistries, the error in barrier heights
and reaction energetics increases as G4 < G3 < CBS-APNO
when compared to the W1 results. Although CBS-APNO
calculations were still feasible for the gas-phase tautomer-
ization reaction catalyzed with one water molecule, only G3

Figure 4. Decomposition of the DG-EVB potential energy surface for the gas-phase, uncatalyzed PY f HY tautomerization
employing the K ) 5 fit with quadratic Hnn: (a) H11, (b) H22, and (c) the first term of eq 4, (H11 + H22)/2. The PY valley is in the
back, left-hand corner, while the HY valley is up front in the right-hand corner in all plots.
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and G4 model chemistry results were computed for gas-phase
reactions with more than one water molecule and for all
aqueous reactions. For the aqueous results, the agreement
between G4 and experiment is very good for the uncatalyzed
tautomerization, thus all further discussions of energetics will
refer to the G4 results unless noted otherwise.

As seen previously,10,21 HY is the lower energy gas-phase
tautomer only when no proton-shuttling water is present. The
addition of one, two, or three water catalysts stabilizes PY
by an additional 5.2, 6.0, and 6.7 kJ/mol, respectively.
Interestingly, the catalytic waters always form a prereactive
complex which minimizes the hydrogen bonding distances
prior to transferring the H atom (see Supporting Information).
In the aqueous systems, PY is always the lower energy
tautomer regardless of the number of catalytic water mol-
ecules present. As seen in Table 4, the aqueous reaction
energy computed with polarizable continuum models be-
comes essentially constant once catalytic water molecules
are employed as proton shuttles. Therefore the number of
catalytic water molecules actually participating in the ground-
state tautomerization reaction is determined by the barrier
height, not the over all reaction energy. Such trends in
reaction barriers for additional catalytic waters have been
seen previously.58 In both phases, the reaction barrier
decreases by ∼90 kJ/mol with the addition of one catalytic
water molecule. Additional water molecules actually increase
the barrier height by ∼10 kJ/mol for two water molecules,
which agrees with earlier computational studies.21,30 Since
multiple water catalysts increase the reaction barrier height,
electronic potential energy surfaces will only be constructed
for the two reactions, PYf HY and PY(H2O)f HY(H2O).

3.2. Reactive Potential Energy Surfaces. A prerequisite
step in molecular dynamic (MD) studies is the construction
of a reliable reactive electronic potential energy surface. A

reactive potential energy surface V(q), where q is the vector
of molecular coordinates, can be constructed by means of a
superposition of reactant and product configuration, ψ1 and
ψ2, interacting via an empirical Hamiltonian, Ĥ.59

H11 and H22 are the energy surfaces for the reactant and
product potentials, respectively, and H12 is the resonance
integral that must be represented by an approximate func-
tional form. The construction of reactive potential energy
surfaces as a superposition of two or more states has a long
history as evidenced in the review by Balint-Kurti.60 In 1929,
London showed that a qualitatively correct potential energy
surface for the H + H2 exchange reaction could be generated
from two configurations.61 In a 1938 Faraday discussion on
reaction kinetics, Eyring reported the potential energy surface
for the same hydrogen exchange reaction calculated from
the interaction of five configurations.62 At the same confer-
ence, Evans and Polanyi described a surface for the Cl- +
CH3Cl SN2 reaction built from a reactant and a product
configuration.63 The ensuing discussion pointed out that the
two approaches are equivalent and identical to the method
used in an earlier work on the barriers for ionic reactions.64

Evans also provided an early application of this approach to
the Diels-Alder reaction.65 Subsequent variations on this
method differ primarily in the manner of approximating the
H11, H22, and H12 matrix elements.

An empirical valence bond (EVB) approach for estimating
the matrix elements was employed by Warshel for comparing
reactions in solution and enzymes.66 Pross and Shaik used a
qualitative, valence-bond, configuration-mixing approach to
investigate organic reactions.67 More relevant to the present
work, Chang and Miller68,69 constructed accurate potential
energy surfaces by fitting a superposition of two EVB
configurations to ab initio energies, gradients and Hessians
using a generalized Gaussian for H12. Minichino and Voth
generalized the Chang-Miller method68 for N-state systems
and provided a scheme to correct gas-phase ab initio data
for solutions.70

From a pedagogical point of view, EVB surfaces can be
classified by the approximation employed in H12. In addition
to the simple choice of setting H12 equal to a constant
(Constant-EVB) that reproduces experimental or high-level
ab initio barrier heights, two methods have emerged for
constructing accurate reactive EVB surfaces: DWI-EVB and
DG-EVB. DWI-EVB represents H12(q) as a distance weighted
interpolation (DWI), aka Shepard interpolation, around a set
of molecular configurations (called Shepard points) where
the energy, gradient, and Hessian are available.71-74 DG-
EVB builds upon the Chang-Miller method68 and expands

Figure 5. Various classes of reaction channels near the TS
on reactive potential energy surfaces: (a) I-shaped valley, (b)
L- or V-shaped valley, (c) T-shaped valley, (d) H- or X-shaped
valley.

Ψ ) c1ψ1 + c2ψ2 (1)

Ĥ ) [H11 H12

H21 H22
] (2)

H11 ) 〈ψ1|Ĥ|ψ1〉 , H12 ) H21 ) 〈ψ1|Ĥ|ψ2〉 , H22 ) 〈ψ2|Ĥ|ψ2〉
(3)

V(q) )
1/2[H11(q) + H22(q)] - √{1/2[H11(q) - H22(q)]}2 + H12

2 (q) (4)
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H12
2 (q) into a set of distributed Gaussians (DG) centered on

a set of molecular configurations.39,40 In our DG-EVB
approach, the following form of H12

2 (q) is used to reproduce
electronic structure data,

where g(q, qK, i, j, RK) are s-, p-, and d-type Gaussians
centered at a number of molecular configurations, qK, on the
potential energy surface and B is a vector of coefficients. It
is important to note that nonstandard s- and d-type Gaussians
are employed to precondition the resulting set of linear

equations (see Appendix) that are passed to a GMRES75 (aka
DIIS76-78) solver. For a more exhaustive discussion of the
DG-EVB method please see ref 39.

Previously the gas-phase, uncatalyzed, 2-pyridone tau-
tomerization reaction was utilized as a test system for the
DG-EVB method employing a GMRES solver.40 In that
work, a simple quadratic function was employed for H11 and
H22

where En, gn, and H̃n are the ab initio energy, gradient, and
Hessian, respectively, of the reactant or product. Preliminary
MD calculations using the published distributed-Gaussian
surfaces discovered a false minimum in the potential of mean
force (PMF) plot shown in Figure 2, as a result of an
oversimplified form for H11 and H22. To investigate the
artificial minimum in the PMF plot, a two-dimensional
relaxed scan of the 2-pyridone N-H and O-H bond lengths
was computed at the HF/6-311+G(d,p) level of theory. The
resulting DG-EVB surface for those HF geometries indicated

Figure 6. Two-dimensional DG-EVB potential energy surface for the gas-phase, uncatalyzed PYf HY tautomerization employing
the K ) 5 fit with repulsive Hnn. The PY valley is in the back, left-hand corner, while the HY valley is up front in the right-hand
corner in both plots. The minima are denoted with a green dot and the TS with an orange dot.

H12
2 (q) ) ∑

K

Ncfg

∑
igjg0

Ndim

BijKg(q, qK, i, j,RK) (5)

H12
2 (q) ) [H11(q) - V(q)][H22(q) - V(q)] (6)

∆qK ) q - qK (7)

g(q, qK, 0, 0,RK) ) (1 + 1/2RK|∆qK|2)exp[-1/2RK|∆qK|2]

g(q, qK, i, 0,RK) ) (∆qK)i exp[-1/2RK|∆qK|2]

g(q, qK, i, j,RK) ) (1 - 1/2δij)(∆qK)i(∆qK)j exp[-1/2RK|∆qK|2](8)

Hnn(q) ) En + gn
T·∆q + 1/2(∆qT·H̃n·∆q), ∆q ) q - qn

(9)
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that a “swimming hole” had formed behind the TS (see
Figure 3). The source of the “swimming hole”, as shown in
Figure 4, was the interaction of H11 and H22 in the first term
of eq 4. Although H12 can correct H11 and H22, thereby
producing an improved V along the reaction path, it cannot
completely counterbalance the additive interaction of the
quadratic valence bond potentials near the TS. For L- or
V-shaped reaction channels, arising from reactions where
two coordinates dominate the reaction path, as in the
pyridone tautomerization, a simple quadratic potential is too
rudimentary and could generate artificial holes in the EVB
surface. The T-, H-, or X-shaped reaction channels80 shown
in Figure 5 may also generate artificial minima in the DG-
EVB surface when simple quadratic potentials are used as a
consequence of geometry, but I-shaped reaction channels
should not.

The ground-state potential generated by the interaction of
H11 and H22 via H12 is given in eq 4. For this expression to
be a good model of the true potential, Vtrue(q), the first term
must always be greater than Vtrue(q), since the square root
in the second term must be positive and real for the ground-
state potential.

In the region around the TS or around any test point, we
can approximate Vtrue(q) by a Taylor series truncated at
second order

with trust radius τTS defining the region where the ap-
proximation is valid. The sum of H11(q) and H22(q) can also
be approximated by a quadratic function around the TS.

Note that the minimum for Vsum(q) is between the minima
for H11(q) and H22(q), that is, possibly but not necessarily
near the transition state. The quadratic expansions for Vsum(q)
and VTS(q) can now be compared to see if eq 4 can produce
a suitable surface with the given potentials for H11(q) and
H22(q). In particular, we require Vsum(q) - VTS(q) g 0 to
satisfy equation 10.

where qmin is the minimum of Vdiff(q) (or a higher order
stationary point if Ṽ diff′′ has one or more negative eigenvalues).
A number of cases can be considered.

(a) If Vdiff(qmin) is positive and all the eigenvalues of Ṽ diff′′
are positive, then eq 10 holds for all q within the trust

region of the quadratic expansion and a reliable
potential energy surface can be constructed in this
region with a suitable choice for H12

2 (q) (however, this
may require additional molecular configurations).

(b) If Vdiff(qmin) is negative or some of the eigenvalues of
Ṽdiff

′′ are negative, then eq 10 is not satisfied in some
regions. This can lead to a “swimming hole” similar
to the one observed in the simple potential for
pyridone. This can be analyzed further by determining
where Vdiff(q) is negative.
(i) If Vdiff(qmin) is negative and qmin is within the trust

radius of the transition state, |qmin - qTS| < τTS,
then there is clearly a problem.

(ii) For other cases, one needs to find the minimum
of Vdiff(q) with the constraint |qmin - qTS| ) τTS.
If Vdiff(qmin) < 0 for this constrained minimization,
then there is a problem. Even if Vdiff(qmin) > 0,
there may still be problems outside the trust region
of the transition state, especially if some of the
eigenvalues of Ṽdiff

′′ are negative. In this case, the
location of qmin may suggest regions for additional
molecular configurations to test the surface and
to fit H12

2 (q).
The analysis described above can be repeated for any
additional points used for fitting the surface. It should be
emphasized that if eq 10 is not satisfied, the form of H11(q)
and H22(q) must be modified to avoid spurious deformations
of the surface. This is independent of the model used for
H12(q) and the resulting EVB surface (e.g., DWI-EVB and
DG-EVB).

To improve our model valence bond potentials and bring
them more in line with modern molecular mechanics
potentials, a nonbonding, van der Waals, exponential-6 term
from the universal force field (UFF)80 was added to Hnn for
coordinates of interest.

In eq 14, AUFF
i and BUFF

i are UFF exponential-6 parameters,
∆qi is the repulsive coordinate value (e.g., HsO in PY and
NsH in HY) for Hnn, and C is a constant ensuring the ab
initio energy is recovered at the DG-EVB data points, q )
qn. Alternatively, the harmonic bond-stretch terms could be
replaced by Morse potentials but this requires the determina-
tion of Morse parameters for bonds of interest. Both
capabilities have been added to the development version of
AMBER 10, so that eq 10 can be satisfied. The exponential-6
term has the advantage of less work because all the necessary
parameters are already in the literature. In Figure 6, it can
been seen that the additional repulsive term does remove
the “swimming hole” behind the TS. Since the R values for
the K ) 5 DG-EVB fit are nearly independent of the form
of Hnn, simple quadratic valence bond potentials may be
useful in accelerating the R values optimization process for
very large molecular systems, such as enzymes.

1/2(H11(q) + H22(q)) g Vtrue(q) (10)

VTS(q) ≈ VTS
0 + (VTS

′ )T(q - qTS) + 1/2(q - qTS)TṼTS
′′ (q - qTS)

(11)

Vsum(q) )
H11(q) + H22(q)

2
≈

Vsum
0 + (Vsum

′ )T(q - qTS) + 1/2(q - qTS)TṼsum
′′ (q - qTS) (12)

Vsum(q) - VTS(q) ) Vdiff(q) )

Vdiff
0 + (Vdiff

′ )T(q - qTS) + 1/2(q - qTS)TṼdiff
′′ (q - qTS)

Vdiff
0 ) (Vsum

0 - VTS
0 ),

Vdiff
′ ) (Vsum

′ -VTS
′ ), Ṽdiff

′′ ) (Ṽsum
′′ - ṼTS

′′ )

qmin ) -(Ṽdiff
′′ )-1Vdiff

′ ,

Vdiff(qmin) ) Vdiff
0 - 1/2Vdiff

′ (Ṽdiff
′′ )-1Vdiff

′ (13)

Hnn(q) )

C + gn
T·∆q + 1/2(∆qT·H̃n·∆q) + ∑

i

AUFF
i exp[-BUFF

i ∆qi]

∆q ) q - qn, C ) En - ∑
i

AUFF
i exp[-BUFF

i ∆qi](14)
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The improved form of Hnn was utilized to build a DG-
EVB surface for the pyridone tautomerization catalyzed by
a proton-shuttling water in the gas phase. With K ) 5, R
values of {1.2, 1.3, 1.9, 1.8, 1.8} and four repulsive
coordinates, the maximum error along the reaction path is
2.37 kJ/mol. The absence of artificial “swimming holes” in
the surface indicates that our improved Hnn is acceptable for
the current application. It is important to note that one should
always test the accuracy both on and off of the reaction path
to ensure the quality of the surface.

4. Conclusions

This work reviewed the experimental and computational
results for the tautomerization reaction of 2-pyridone. State
of the art G3, G4, CBS-APNO, and W1 model chemistries
were employed along with the IEF-PCM method to elucidate
the gas- and solution-phase tautomerization reaction energet-
ics with and without proton shuttling water molecules. The
new data clearly show how the addition of both catalytic
water and bulk solvent renders the tautomerization energy
in solution nearly constant at 11 kJ/mol in favor of PY(H2O)n.
Since the reaction energy is nearly constant, the reaction
barrier correlates with the number of catalytic water mol-
ecules employed in the tautomerization. Again it is clear that
while reaction channels employing two and three proton-
shuttling waters are possible, these channels actually have
higher barriers than the reaction path utilizing one catalytic
water.

Reactive electronic potential energy surfaces suitable for
use in molecular dynamics simulations were generated for
PY f HY and PY(H2O) f HY(H2O) reactions using the
DG-EVB formalism. Investigation of our previously pub-
lished PY f HY surface illuminated a shortcoming in our
ground-state molecular mechanics potentials, namely that
harmonic force fields do not guarantee an EVB surface free
of spurious deformations. This shortcoming can be overcome
by including a repulsive term in the force field for at least
the bonds that are breaking and forming. This new form of
Hnn was successfully used to generate new DG-EVB surfaces
that possess no artificial minima along or besides the reaction
path. Employing a Hnn functional form that satisfies eq 10
lays the foundation for applying the DG-EVB methodology
to large-scale biological simulations.
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Appendix

For a symmetric 2 × 2 EVB Hamiltonian matrix,

the analytical solution for the coupling term is

where εEVBis the lowest eigenvalue of the matrix and H11(q)
and H22(q) are the reactant and product valence bond states.
H11(q) and H22(q) can be described by a force field potential
or as a Taylor series expansion about the minimum from ab
initio calculations. With the valence bond states defined, the
goal here is to provide a prescription for H12

2 (q) such that
the resulting EVB surface approximates the ab initio surface,
that is, εEVB ) εΨ. The Chang-Miller approach approximates
H12

2 (q) as a generalized Gaussian

where the parameters A (a scalar), B (a vector), and C̃
(a matrix) are chosen to reproduce the ab initio energy,
gradient, and Hessian at the transition state. In this form,
H12

2 diverges for large ∆q when C̃ contains one or more
negative eigenvalues. While refinements are available for
controlling the asymptotic behavior of the Chang-Miller
approach, recasting eq 17 in terms of a quadratic polynomial
times a spherical Gaussian

keeps the coupling element bounded at the asymptotes. The
distributed Gaussian (DG) approach generalizes the above
polynomial times a Gaussian prescription to utilize ab initio
information at other potential energy surface points in
addition to the transition state. Here, H12

2 (q) is approximated
as an expansion about a set of distributed Gaussians centered
on a set of molecular configurations qK

where Ncfg is the number of ab initio data points used for
the fitting, Ndim is the number of system coordinates,
g(q,qK,i,j,RK) are the s-, p-, and d-type Gaussians and BijK

are the expansion coefficients. The term involving the unit
matrix in eq 18 was accumulated into the s-type Gaussian

ĤEVB ) [H11 H12

H21 H22
] (15)

H12
2 (q) ) [H11(q) - εEVB(q)][H22(q) - εEVB(q)] (16)

H12
2 (q) ) A exp[BT·∆q - 1/2∆qT·C̃·∆q], ∆q ) q - qTS

(17)

H12
2 (q) )

A[1 + BT·∆q + 1/2∆qT·(C̃ + RĨ)·∆q]exp[-1/2R|∆q|2] (18)

H12
2 (q) ) ∑

K

Ncfg

∑
igjg0

Ndim

BijKg(q, qK, i, j,RK) (19)

g(q, qK, 0, 0,RK) ) (1 + 1/2RK|∆qK|2)exp[-1/2RK|∆qK|2]
(20)

g(q, qK, i, 0,RK) ) (∆qK)i exp[-1/2RK|∆qK|2] (21)

g(q, qK, i, j,RK) )

(1 - 1/2δij)(∆qK)i(∆qK)j exp[-1/2RK|∆qK|2] (22)

∆qK ) q - qK (23)
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(eq 20) to precondition the system of linear equations for
faster convergence when utilizing iterative solution methods.
The non-standard form of the d-type Gaussian is for similar
reasons. If the number of Gaussian centers K is equal to the
number of data points where H12

2 are evaluated, eq 19
describes a system of linear equations

that can be solved using singular value decomposition or by
an iterative procedure, such as GMRES. The vector F stores
the coupling terms evaluated at the Ncfg ab initio configurations

where (see eq 16)

When first and second derivatives are available for Hnn and
the ab initio energy, εΨ, the derivative of the coupling terms
can also be utilized in the DG fitting procedure. In this case,
the F vector has the following elements

The corresponding unsymmetric matrix D̃ contains the values
and derivatives of the Gaussian bases

where {i,j} indicates that the columns of the matrix are
elements obtained from cycling through all permutations
denoted in the summation over these indices in eq 19. This
square matrix has dimensions DGdim ) Ncfg ×[1 + Ndim +
Ndim × (Ndim + 1)/2]. If the second derivatives of H12

2 are
unavailable, the dimensions of D̃ are Ncfg ×(1 + Ndim).
Additionally if the gradients are also unavailable, the matrix
will have Ncfg rows. Once the solution to the B vector is
known, eq 19 determines H12

2 for all coordinates q. The
quality of the resulting PES, nonetheless, depends on the
quality of the fit.
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Abstract: In the present study we have introduced a new scheme for chemical bond analysis
by combining the Extended Transition State (ETS) method [Theor. Chim. Acta 1977, 46, 1] with
the Natural Orbitals for Chemical Valence (NOCV) theory [J. Phys. Chem. A 2008, 112, 1933;
J. Mol. Model. 2007, 13, 347]. The ETS-NOCV charge and energy decomposition scheme based
on the Kohn-Sham approach makes it not only possible to decompose the deformation density,
∆F, into the different components (such as σ, π, δ, etc.) of the chemical bond, but it also provides
the corresponding energy contributions to the total bond energy. Thus, the ETS-NOCV scheme
offers a compact, qualitative, and quantitative picture of the chemical bond formation within one
common theoretical framework. Although, the ETS-NOCV approach contains a certain arbitrari-
ness in the definition of the molecular subsystems that constitute the whole molecule, it can be
widely used for the description of different types of chemical bonds. The applicability of the
ETS-NOCV scheme is demonstrated for single (H3X-XH3, for X ) C, Si, Ge, Sn) and multiple
(H2XdXH2, H3CXtXCH3, for X ) C, Ge) covalent bonds between main group elements, for
sextuple and quadruple bonds between metal centers (Cr2, Mo2, W2, [Cl4CrCrCl4]4-), and for
double bonds between a metal and a main group element ((CO)5CrdXH2, for X ) C, Si, Ge,
Sn). We include finally two applications involving hydrogen bonding. The first covers the adenine-
thymine base pair and the second the interaction between C-H bonds and the metal center in
the alkyl complex.

Introduction

Chemical bonding theory predates quantum mechanics with
the work by Lewis from 1916.1 In the Lewis picture,
molecules are formed from atoms (fragments) by the
grouping of electrons into lone and bonding pairs. The Lewis
picture has since 1916 been consolidated and expanded upon,
most often with the help of quantum mechanics. Especially
useful in this regard has been the formulation of valence
bond2,3 and molecular orbital4,5 theory.

The many useful schemes that are available for analyses
of the chemical bond emphasizes different aspects of
bonding. One group focuses on the charge rearrangement

associated with electron pairing, as the molecule is formed
from atoms (fragments). Schemes and concepts that belong
to this category are Bond Order Orbitals6,7 and the very
similar Natural Bond Orbitals (NBO),8-12 Atoms in Mol-
ecules (AIM),13 the Electron Localization Function (ELF),14

the Laplacian of the electron density (∇ F
2),13,15 the deforma-

tion density (∆F),16 population schemes,17,18 and Charge
Decomposition Analysis (CDA).19-23

A second group of bonding schemes puts the focus on
the decomposition of the bond energy into chemically
meaningful contributions. Such decomposition schemes
include the Kitaura-Morokuma method,24 the Extended
Transition State (ETS) scheme,25-27,66-69 the Block Local-
ized Wave Function Energy Decomposition, BLW-ED,
presented by Mo,28 and the kindred Absolutely Localized
Molecular Orbitals Energy Decomposition Analysis (ALMO-
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EDA) by Head-Gordon.29 Further, the Natural Energy
Decomposition Analysis (NEDA) theory by Schenter,30 the
Molecular Energy Decomposition for Atoms in Molecule by
Francisco,31 the energy decomposition schemes by Mayer,32

Korchowiec,33 Liu,34 and Bagus,35 and finally Symmetry
Adapted Perturbation Theory (SAPT) scheme.36,37

A third useful category provides descriptors of the chemi-
cal bond in terms of bond-orders (or bond multiplicity
indices). Examples are the work of Pauling,38 Wiberg,39

Jug,40 Mayer,41 and Ciosłowski,42 as well as Nalewajski,
Köster, and Mrozek.43-49

One of several useful schemes that link the concepts of
bond-order, bond-orbitals, and charge rearrangement with
the deformation density is the method based on Natural
Orbitals for Chemical Valence (NOCV).50-54 In this scheme
a few eigenfunctions (NOCV) of the deformation density
matrix (∆P) is used to describe bond formation of the
molecules from atoms or fragments in a compact form.50-54,56

The related eigenvalues can in addition be used as valence
indices as well as a measure of the change in the density
associated with bond formation. However, the NOVC
scheme50-54 does not provide information about the energet-
ics related to the charge rearrangement.

To remedy this, we shall in the present account combine
the NOCV scheme with the Extended Transition State (ETS)
method.25-27 We hope in this way to provide a compact
analysis of the chemical bond in terms of orbitals (NOCVs)
describing the charge rearrangement and the corresponding
energy contributions from these orbitals to the chemical bond.
Other schemes such as (NBO),8-12 BLW-ED,28 and (ALMO-
EDA)29 can be used to combine energy decomposition with
charge analysis. Also, our scheme shares with other analysis
methods a certain degree of arbitrariness. Thus, the bonding
picture that it provides depends on the choice of fragments
used to describe the formation of the combined molecule.

Nevertheless we hope in the following to illustrate that
the NOCV-ETS method provides a compact analysis of
chemical bonding. To this end we shall in the following
illustrate the use of our scheme in connection with single
and multiple bonds between main-group elements, between
main-group elements and metals, and between two metals.

Theory

The Extended Transition State Method (ETS). Consider
the formation of the molecule AB from the two fragments
A0 and B0. Let further the heat of formation be given by
∆Eint ) EAB - EA - EB, where EAB, EA

0 , and EB
0 are the

energies of AB, A0, and B0, respectively. The ETS
scheme25-27 decomposes ∆Eint into a number of chemically
meaningful components representing different steps toward
the formation of AB from A0 and B0 as:

In the first step we distort the two fragments A0 and B0

from their equilibrium geometries to the structures they will
have in the combined complex. The corresponding energy
required for this distortion is given as ∆Eprep in eq 1. This

term is often referred to as the distortion or preparation
energy. The “distortion” might also involve the promotion
of the fragments to another electronic state. We shall refer
to the “distorted” fragments as A and B. The corresponding
energies are EA and EB, respectively. Thus, ∆Eprep ) EA +
EB - EA

0 - EB
0 .

In the Kohn-Sham theory, A and B are represented by
the Slater determinants ΨA and ΨB, respectively. Here ΨA

is built from the occupied one-electron spin orbitals of
fragment A, {�j

A, j ) 1,nA}, and ΨB from the corresponding
set on B, {�k

B,k ) 1,nB}. We illustrate in Figure 1 a fragment
orbital �j

A as 1a and a fragment orbital �k
B as 1b. Further,

the occupied orbitals making up ΨA and ΨB form the set
{�i ) 1,n} with n ) nA + nB.

In the second step we bring the distorted fragments from
infinite separation to their final positions in the combined
compound without changing their densities, FA and FB. The
associated energy change ∆Ẽ0 due to this step is given by

Here

represents the change in electrostatic interaction energy when
the two distorted fragments are combined in the final
molecule while the densities are kept frozen. On the other
hand ∆EXC

0 represents the corresponding change in the
Kohn-Sham exchange correlation energy25

EAB - EA
0 - EB

0 ) ∆Eint ) ∆Eprep + ∆Eelstat +
∆EPauli + ∆Eorb (1)

Figure 1. Schematic representation of fragment orbitals on
A and B without Löwdin orthogonalization (1a, 1b) and with
Löwdin orthogonalization (2a, 2b).

∆Ẽ0 ) ∆Eelstat + ∆EXC
0 (2)

∆Eelstat ) ∑
V∈ A

µ∈ B

ZVZµ

RVµ
+ ∑

µ∈ A
∫ FB(r)Zµ

|Rµ - r|
dr +

∑
V∈ B

∫ FA(r)Zµ

|RV - r|
dr + ∫ FA(r1)FB(r2)

r12
dr1dr2 (3)
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Here FA
τ ,FB

τ with τ ) R,� are the spin densities of A and
B, respectively. The electrostatic contribution ∆Eelstat enters
as the second term in the expression for ∆Etot of eq 1.

It is readily seen that Ẽ0 ) EA
0 + EB

0 + ∆Eprep + ∆Eelst +
∆EXC

0 corresponds to the energy of the simple product wave
function ΨAΨB. However, ΨAΨB is not antisymmetric with
respect to the interchange of all electron indices. As a
consequence it does not fully satisfy the Pauli exclusion
principle. The product function ΨAΨB is further not normal-
ized if the occupied orbitals on the different fragments A
and B overlap.

In the third step we construct from ΨAΨB the normalized
and antisymmetrized wave function

with the corresponding energy E0.
The wave function Ψ0 can24-27 in Kohn-Sham theory

be represented by a single Slater determinant as

where the set {λi;i ) 1,n} is obtained from {�i;i ) 1,n} by
a Löwdin orthogonalization55 and given by

Here, S is the overlap matrix for the set {�i ) 1,n}. We
illustrate in Figure 1a fragment orbital λj

A as 2a and a
fragment orbital λk

B as 2b. Further, the density corresponding
to ψ0 can be written as:

Here ∆PPauli is the (deformation) density matrix in the basis
{�i ) 1,n} representing the Pauli deformation density ∆FPauli

) F0 - FA - FB. It follows from eq 8 that ∆Pij
Pauli ) (Sij -

δij).
It is readily shown25 that the energy difference ∆ẼPauli )

E0 - Ẽ0 between ψ0 and ψAψB can be expressed as

where FΤ
Pauli ) 1/2F

0 + 1/2FA + 1/2FΒ, whereas the Kohn-Sham
matrix elements are given as:

where F ) FT. In eq 10), VC[F] is the Coulomb potential
due to F and VXC[F] is the corresponding exchange correlation

potential, whereas VNe(1) is the nuclear-electron attraction
potential due to all the atoms of the combined molecule. We
note that eq 10 is derived by expanding E0 ) E[F0] on the
one hand and Ẽ0 ) E[FA + FB] on the other from the density
FTS

Pauli ) 1/2F
0 + 1/2(FA + FB) at the midpoint (transition state)

between F0 and FA + FB.25 It is customary24,25 to combine
∆ẼPauli of eq 9 and ∆XC

0 of eq 4 into the total Pauli or
“exchange repulsion” term24 ∆EPauli as

We note that ∆EPauli enters as the third contribution to ∆Etot

in eq 1. It follows further from the derivation so far that E0

- EA
0 - EB

0 ) ∆Eprep + ∆Eelstat + ∆EPauli.
The total Pauli repulsion ∆EPauli of eq 11 is dominated by

∆ẼPauli of eq 9 which is positive and destabilizing. The
destabilization comes from the extra nodes added to {λi;i )
1,n}, see 2a and 2b of Figure 1, compared to {�i;i ) 1,n},
see 1a and 1b of Figure 1, in order to make the set {λi;i )
1,n} orthogonal and satisfy the Pauli exclusion principle
through Ψ0. Thus, the added nodes will cause the energy of
ψ0 to be higher than that of ΨAΨB due to an increase of the
kinetic energy.24,25 The term ∆EPauli is in general responsible
for an increase in the kinetic energy when chemical bonds
are formed.57

It is customary26,27 to combine ∆EPauli and ∆Eelstat under
the heading of steric interaction energy as ∆Esteric ) ∆EPauli

+ ∆Eelstat. Defined in this way, ∆Esteric represents the total
interaction energy between the two fragments described alone
by their occupied orbitals according to Ψ0 of eq 5 without
any involvement of virtuals. This definition is especially
meaningful for the interaction between neutral fragments
where ∆Esteric invariably is positive.69,72 The definition is
consistent with the picture of steric interactions as originating
from the penetrations of two electronic charge clouds FA and
FB. Such a penetration leads to an increase in kinetic energy
due to ∆EPauli. However, the increase in kinetic energy is to
some degree compensated for by ∆Eelstat. This interaction,
as defined in eq 3, is normally attractive for neutral
fragments,69,72 as the density FA on one fragment only
partially can shield the stabilizing (attractive) interaction of
the nuclei on the same fragment A with the density FB on
the other fragment. In qualitative theories such as the Hückel
method, ∆Eelstat is considered to be zero and ∆EPauli represents
the steric interaction. However from a quantitative point of
view, such an approximation is too severe. The two terms
∆Eelstat and ∆EPauli give rise to two large numbers of opposite
sign that increases numerically as the fragments A and B
are brought closer together. On the other hand, their sum
∆Esteric isnumericallymuchsmallerandchemicallymeaningful.

For the interaction of charged fragments one might modify
∆Eelstat as ∆Eelstat ) ∆Ẽelstat + VAB. Here VAB is an effective
potential describing the interaction of the net charges on the
two fragments. In that case ∆Ẽsteric ) ∆Ẽelstat + ∆EPauli.
Futher, VAB would have to be added as an extra term to the
total bonding energy. Such a modification has not been
implemented yet. At the moment we can only say that for
the interaction of charged fragments, ∆Esteric as defined above
contains both ∆Ẽsteric and VAB. Of the many examples given

∆EXC
0 ) ∑

γ

R�

∑
τ

R�

{EXC
γ,τ[(FA

γ + FB
γ);(FA

τ + FB
τ )] -

EXC
γ,τ[FA

γ ;FA
τ ] - EXC

γ,τ[FB
γ ;FB

τ ]} (4)

Ψ0 ) NÂ{ΨAΨB} (5)

Ψ0 ) |λ1λ2,...λiλj,...λn| (6)

λi ) ∑
j

Sij
-1/2xj (7)

F0 ) ∑
i

n

λi
*λi ) ∑

i

n

∑
j

n

Sij�i�j)∑
i

n

∑
j

n

∆Pij
Paulii�i�j +

FA + FB (8)

∆ẼPauli ) E0[F0] - EA[FA] - EB[FB]

) ∑
i

occ

∑
j

occ

∆Pij
PauliFij[FT

Pauli] (9)

Fij[F] ) ∫ xi(1){-1/2∇ 2 + VNe(1) + VC[F]}xj(1)dτ1

(10)

∆EPauli ) ∆ẼPauli + ∆EXC
0 (11)
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in the following, only the one dealing with [Cl4CrCrCl4]4-

involves charged fragments. We shall qualify the use of
∆Esteric when we discuss [Cl4CrCrCl4]4-.

The last term of eq 1, ∆Eorb, is called the orbital interaction
term. It represents the interactions between the occupied
molecular orbitals on one fragment with the unoccupied
molecular orbitals of the other fragment, as well as the
mixing of occupied and virtual orbitals within the same
fragment (intrafragment polarization). The orbital interaction
term represents the energy change when going from the Ψ0

state, characterized by the density matrix P0 to the final wave
function, Ψ, characterized by P and the density F. A full
expression for ∆Eorb will be given shortly after a discussion
of the deformation density ∆F ) F - F0.

Natural Orbitals for Chemical Valence (NOCV) and
the Extended Transition State Method (ETS). In the
Natural Orbitals for Chemical Valence (NOCV) approach50-54

the deformation density

is expressed in terms of a set of orthonormal fragment
spin-orbitals {λi;i ) 1,N} with N ) n + nV. This set is
generated by a separate Löwdin orthogonalization of the n
occupied fragment orbitals {�i;i ) 1,n} and nV virtual
fragment orbitals {�j;j ) n + 1,n + nV}, followed by a
Schmidt orthogonalization of the virtual set on the occupied
set. The set {λi ) i ) 1,n + nV} includes the occupied and
orthonormal fragment orbitals {λi;i ) 1,n} introduced
previously as well as a an additional set of virtual fragment
orbitals {λi;i ) 1 + 1,n + nV} that are orthogornal to each
other and the occupied set {λi;i ) 1,n}. The Schmidt (rather
than Löwdin) orthogonalization of all virtual orbitals on the
occupied ensures that F0 is represented by a diagonal matrix
within the set {λi;i ) n + 1,n + nV}.

The NOCVs are now constructed by a diagonalization of
the deformation density matrix ∆Pµν

orb of eq 12 expressed in
the set of orthogonalized fragment spin-orbitals. Thus, the
NOCVs satisfy the equation:

where Ci is a vector containing the coefficients that expands
ψi in the basis of orthogonalized fragment orbitals λj as ψi

) ∑j Cijλj.
The deformation density, (∆Forb), can in the NOCV

representation be expressed as a sum of pairs of comple-
mentary orbitals (ψ-k, ψk) corresponding to eigenvalues equal
in absolute value but opposite in signs:50-54

The structure of the eigenvalues in complementary pairs
is a consequence of the fact that the set λ is orthonormalized
and that ∆P is traceless. The complementary pairs of NOCV
define the channels for electron charge transfer between the
molecular fragments.50-54 This “pairing” property is also

characteristic for Inter-Reactant-Modes (the charge-flow
channels describing changes in atomic populations) defined
within the Charge Sensitivity Analysis by Nalewajski et
al.96,97

We can further combine the NOCV and ETS methods in
a ETS-NOCV charge and energy decomposition scheme by
providing an expression for ∆Eorb.

The term ∆Eorb is given by:

where E[F] is the energy of the final molecule and E[F0] is
the energy E0 associated with Ψ0 of eq 6. An expansion of
E[F] ) E[F0 + ∆Forb] as well as E[F0] from the density FTS

) 1/2F + 1/2F0 at the midpoint (transition state) between F
and F0 allows us to express ∆Eorb as:

Here ∆Pµν
orbof eq 16 is over orthogonalized Löwdin orbitals

{λµ ) 1,N} and Fµν
TS is a matrix element similar to that of eq

10 with F ) FTS and � replaced by λ.
It follows from eq 13 that the NOCVs (ψi) are related to

the set λ by a unitary transformation C. We can thus write:

where C diagonalizes ∆Porb. Further, F-k,-k
TS and Fk,k

TS are
diagonal matrix elements of the type defined in eq 10 over
ψ-k and ψk, respectively, with F ) FTS. Also eq 17 makes

∆Forb ) F - Fo ) ∑
µ

N

∑
ν

N

∆Pµν
orbλµλν (12)

∆PorbCi ) ViCi (13)

∆ Forb(r) ) ∑
k)1

N/2

vk[-Ψ-k
2 (r) + Ψk

2(r)] ) ∑
k)1

N/2

∆Fk(r)

(14)

Figure 2. Schematic representation of fragment spin-orbitals
in the two methyl radicals MeA and MeB.

∆Eorb ) E[F] - E[F0] (15)

∆Eorb ) ∑
ν

N

∑
µ

N

∆Pµν
orbFµν

TS ) Tr(∆PorbFTS) (16)

∆Eorb ) Tr(∆PorbFTS) ) Tr(C+∆PorbCC+FTSC)

) ∑
k)1

N/2

Vk[-F-k,-k
TS + Fk,k

TS] ) ∑
k)1

N/2

∆Ek
orb (17)
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use of the fact that the trace of the product of two matrices
is invariant to a unitary transformation of the two matrices.

The advantage of the expression for ∆Eorb in terms of
NOCVs, eq 17, rather than orthogonalized fragment orbitals,
eq 16, is that only a few complementary pairs might
contribute significantly to ∆Eorb whereas the contributions
to ∆Eorb in eq 16 might come from several products of
orthogonalized Löwdin orbitals. We see further that for each
complementary NOCV pair, representing one of the charge
delocalization ∆Fk, not only can we visualize ∆Fk but also
provide the energy contributions ∆Eorb

k to the bond energy
from ∆Fk.

Computational Details

All the DFT calculations presented here were based on the
Amsterdam Density Functional (ADF) program.58-62 The
Becke-Perdew exchange-correlation functional63,64 was
applied. A standard double-� STO basis with one set of
polarization functions was adopted for the elements H, C,
N, O, Si, Cl while a standard triple-� basis set was employed
for the transition metals, Cr, Mo, W, and for the heavier
main group elements, Ge, Sn. Auxiliary s, p, d, f, and g STO
functions, centered on all nuclei, were used to fit the electron
density and obtain accurate Coulomb potentials in each SCF
cycle. Relativistic effects were included using the ZORA
approximation.65-67

Results and Discussion

Single Bonds between the Main-Group Elements,
H3X-XH3. Let us first analyze the formation of a single
X-X bond in H3X-XH3, where X ) C, Si, Ge, Sn. We
consider X2H6 formed from the two radicals H3Xv and VXH3

of opposite spin.
Starting with X ) C, the first step in the formation of the

H3C-CH3 single-bond is the distortion of the two methyl
radicals from their equilibrium geometry to the structure that
they have in the combined molecule. The associated energy
is given by ∆Eprep of eq 1 and amounts to a destabilization
of ∆Eprep ) 17.8 kcal/mol, Table 1. The distortion is the
result of steric interactions between the two methyl fragments
in H3C-CH3. The distortion energy is seen to be much
smaller for the heavier congeners X ) Si, Ge, and Sn where
the distance between the two H3X fragments in the combined
X2H6 compound is much larger, Table 1.

The second step involves bringing the distorted fragments,
H3Cv and VCH3, from infinity to their final positions in the
molecule, without any change in their electronic densities.
This step gives rise to the electrostatic interaction ∆Eelstat of
eq 1. This interaction, as defined in eq 3, is normally

attractive for neutral fragments, as the density on one
fragment only partially can shield the stabilizing (attractive)
interaction of the nuclei on the same fragment with the
density on the other fragment. The reduced shielding is due
to interpenetration of the two fragment densities. For C2H6

the contribution from ∆Eelstat amounts to -129.3 kcal/mol,
Table 1. For the higher congeners ∆Eelstat becomes less
stabilizing from Si to Sn as the interpenetration decreases
with increasing X-X bond distance, Table 1.

In the third step we construct the Kohn-Sham Slater
determinant Ψ0 of eq 6 from the orthogonalized set of
occupied orbital {λi;i ) 1,n}. The orbital λi consists of �i

with an out-of-phase contribution from all occupied orbitals
of the same spin residing on other fragments, see Figure 1.
The out-of-phase contribution will make ∆EPauli of eq 11
positive. We say that occupied orbitals {�i;i ) 1,n} of the
same spin but on different fragments interact, destabilizing
each other. Futher, ∆EPauli has contributions from both spins
so that ∆EPauli ) ∆EPauli

R + ∆EPauli
� .

In C2H6 the leading contribution to ∆EPauli is from the
repulsive interaction between the SOMO 2σMeA

R (4a for γ )
R) on fragment A with a C-H bonding orbital 1σMeB

R (3b
for γ ) R) on the other fragment as well as the SOMO 2σMeB

�

(4b for γ ) �) on fragment B interacting repulsively with
1σMeA

� (3a for γ ) �) on the other fragment, see Figure 2.
Another contribution is from the destabilizing interactions
of the two occupied C-H bonding orbitals 1πx,MeA

γ ; 1πy,MeA
γ

(5a,b) on one fragment with the corresponding occupied
1πx,MeB

γ ; 1πy,MeB
γ orbitals (6a,b) on the other fragment for γ )

R,�; see Figure 2.
The changes in the electron density, ∆FPauli, due to the

Pauli interaction are presented in Figure 3. We can clearly
see the outflow of the electron density from the bonding
region due to the antibonding nature of the set {λi;i ) 1,n}.

Table 1. ETS-NOCV Energy Decomposition of the X-X Bond in H3X-XH3
a

X ∆EPauli ∆Eelstat ∆Esteric
b ∆Eorb

σc ∆E orb
πx ∆Eorb

πy ∆Eorb
πd ∆ Eorb

e ∆Eprep ∆Eint
f d(XX)g

C 205.9 -129.3 76.5 -173.3 -7.2 -7.2 -14.4 -187.7 17.8 -93.4 1.53
Si 97.1 -79.3 17.8 -88.3 -2.0 -2.0 -4.0 -92.3 0.6 -73.9 2.35
Ge 107.9 -88.5 19.4 -84.4 -2.0 -2.0 -4.0 -88.4 0.6 -68.4 2.43
Sn 93.7 -84.1 9.6 -66.6 -1.2 -1.2 -2.4 -69.0 0.4 -59.0 2.82

a kcal/mol. b The total steric repulsion, ∆Esteric ) ∆EPauli + ∆Eelstat. c The total stabilization energy from the σ-orbital interactions illustrated
in Figure 4 for X ) C. d The total stabilization energy from the π-orbital interactions illustrated in Figure 5 for X ) C, ∆E orb

π ) ∆E orb
πx + ∆E orb

πy .
e ∆Eorb ) ∆E orb

σ + ∆E orb
π . f ∆Eint ) ∆Esteric + ∆Eprep + ∆Eorb. g XX bond lengths in angstroms.

Figure 3. The contour of the Pauli deformation density ∆FPauli

for C2H6. The numerically smallest contour values are (0.01
a.u. The corresponding Pauli repulsion energy is ∆EPauli )
205.9 kcal/mol.
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In other words, the antisymmetrization of the wave function
in eq 6 reduces the electron density in the overlap region.69

It follows from Table 1 and Figure 3 that the corresponding
energy change due to the Pauli repulsion is ∆EPauli ) 205.9
kcal/mol. For the higher congeners, ∆EPauli becomes less
repulsive from Si to Sn as the X-X bond distance increases
and the overlaps between occupied orbitals on different
fragments become smaller, Table 1. It follows from Table 1
that ∆Esteric ) ∆EPauli + ∆Eelstat is destabilizing due to ∆EPauli.
It is further seen that ∆Esteric decreases for X2H6 from X )
C to X ) Sn as the X-X bond length increases.

The final step in the H3C-CH3 bond formation is the
inclusion of the virtual fragment orbitals on H3Cv and VCH3.
The result is the density change ∆Forb defined in eqs 12-14.
Associated with ∆Forb is the energy change ∆Eorb of eq 1
which is defined in eqs 15-17. The most important
contributions to ∆Forb and ∆Eorb are due to the in-phase
interaction of the virtual orbital 2σMeA

� (4a for γ ) �) on A
with the destabilized SOMO 2σMeB

� (4b for γ ) �) on
fragment B, giving rise to a transfer of charge (∆Fσ,�

orb) from
B to A as well as the interaction of the destabilized SOMO
2σMeA

R (4a for γ ) R) on A with the virtual orbital 2σMeB
R (4b

for γ ) R) on B resulting in the transfer of charge from A
to B (∆Fσ,R

orb). The two interactions are combined responsible
for the formation of the σ-bond.

The two complementary Natural Orbitals for Chemical
Valence (NOCV) responsible for the σ-transfer of density
from A to B are shown as ψ-1

R ,ψ1
R in Figure 4a whereas the

complementary NOVC’s representing the σ-transfer of

density from B to A are shown as (ψ-1
� ,ψ1

�) in Figure 4b.
Figure 4c holds the σ-deformation density for the A-to-B
transfer given as ∆Fσ,R

orb ) -0.51(ψ-1
R )2 + 0.51(ψ1

R)2 with the
corresponding orbital stabilization energy ∆E orb

σ,R ) -86.7
kcal/mol as well as σ-deformation density for the B-to-A
transfer given as ∆Fσ,�

orb ) -0.51(ψ-1
� )2 + 0.51(ψ1

�)2 with the
corresponding orbital stabilization energy ∆E orb

σ,� ) -86.7
kcal/mol. We have finally presented in Figure 4d the total
σ-orbital deformation density ∆Fσ

orb ) ∆Fσ,R
orb + ∆Fσ,�

orb along
with the total σ-orbital interaction energy ∆E orb

σ ) -173.4
kcal/mol. The term ∆E orb

σ clearly represents the σ-orbital
interaction energy associated with the formation of the
σ-bond. It follows further from Table 1 that ∆E orb

σ decreases
for X2H6 from X ) C to X ) Sn as the X-X bond length
increases.

There is one more stabilizing orbital interaction, ∆E orb
σ ,

that contributes to ∆E orb in eq 1. It involves a transfer
(polarization) from the occupied and destabilized C-H
bonding orbitals 1πx,MeA

γ ; 1πy,MeA
γ (5a,b) and 1πx,MeB

γ ; 1πy,MeB
γ

(6a,b) to the virtual C-H antibonding orbitals 2πx,MeA
γ ; 2πy,MeA

γ

(7a,b) and 2πx,MeB
γ ; 2πy,MeB

γ (8a,b), where λ can be either R
or �, see Figutre 2. Although these fragment orbitals involve
C-H σ (5,6) and C-H σ* (7,8) components, they are in
accord with common practice given the designation π to
emphasize the transformation properties of the contributing
p-orbital combinations on the carbons. The term ∆E orb

π does
not represent the formation of a π-bond but rather a relief
of repulsive Pauli interaction between occupied C-H bond-
ing fragment orbitals on opposite fragments by donating

Figure 4. (a) Contours of complementary NOVCs (ψ-1
R ,ψ+1

R ) representing donation from MeA (left) to MeB (right) and
corresponding eigenvalues (υ-1

R ,υ+1
R ) in C2H6. The numerically smallest contour values are (0.1 a.u. (b) Contours of

complementary NOVC’s (ψ-1
� ,ψ+1

� ) representing donation from MeB (right) to MeA (left) and corresponding eigenvalues
(υ-1

� ,υ+1
� ) in C2H6. The numerically smallest contour values are (0.1 a.u. (c) Contours of sigma donation (∆Fσ,R

orb) from MeA

to MeB (left) and sigma donation (∆Fσ,�
orb) from MeB to MeA (right). The smallest contour values are (0.0 a.u. The corresponding

orbital stabilization energies are ∆Eorb
σ,R ) ∆Eorb

σ,� ) -86.7 kcal/mol. (d) Total sigma donation ∆Fσ
orb ) ∆,Fσ,R

orb + ∆Fσ,�
orb and

corresponding stabilization energies ∆Eorb
σ ) ∆Eorb

σ,R + ∆Eorb
σ,� ) -173.4 kcal/mol. The smallest contour values are (0.01 a.u.
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density from these orbitals (5,6) to the virtual (7,8) pair. In
this process we are trading C-H bonding and C-C anti-
bonding interactions with C-H antibonding and C-C
bonding interactions.

We give in Figure 5a the complementary pairs of NOCVs
(ψ-2

γ ,ψ2
γ) and (ψ-3

γ ,ψ3
γ) describing the change of charge due

to the π-orbital interactions. The corresponding deformation
densities are given in Figure 5b as ∆Fπx

orb and ∆Fπx
orb. The

related stabilization energies are ∆E orb
πx ) ∆E orb

πy ) (1)/
(2)∆E orb

π ) -7.2 kcal/mol; see Table 1. We note that ∆E orb
π

decreases in absolute terms for X2H6 from X ) C to X )
Sn as the X-X bond length increases and overlap between
orbitals on the two XH3 fragments diminish.

The results collected in Table 1 are in good qualitative
agreement with experiment as well as with other theoretical
investigations98 based on the ETS scheme.

Double Bonds between the Main-Group Elements,
H2XdXH2. Turning next to the double bonds between main
group elements, we shall consider ethylene and its heavier
homologue Ge2H4.

68,72-74 Planar ethylene with D2h sym-
metry can be considered formed from two ground-state triplet
carbenes H2Cvv and VVCH2 of opposite spin-polarization. The

steric term ∆Esteric is somewhat larger for ethylene than for
ethane because of the shorter C-C bond length, Table 2.

The carbene units73-75 each have two singly occupied
orbitals σCH2

(9) and πCH2
(10); see Figure 6. They give rise

to a σ- and a π-bond, respectively. In molecular orbital theory
the σ-component is represented by σCC which is a bonding
combination of σCH2

(9) on the two carbenes whereas the
π-component is represented by πCC which is the correspond-

Figure 5. (a) Contours of the π-type NOCVs in C2H6. The numerically smallest contour values are (0.1 a.u. (b) The π-deformation
density contributions, ∆Fπx

orb, ∆Fπy
orb, and corresponding energies ∆Eorb

πx , ∆Eorb
πy . The numerically smallest contour values are (0.005

a.u.

Table 2. ETS-NOCV Energy Decomposition of the Double XdX Bond in the C2H4 and Ge2H4 Systemsa

X ∆Esteric
b ∆E orb

σ ∆E orb
π a ∆E orb

π b ∆Eorb
c ∆Eprep

d ∆Eint
e d(XX)f

C 107.9 -220.6 -67.8 -5.7 -294.1 6.5 -179.7 1.33
Ge-planar 27.1 -76.3 -22.0 -3.0 -101.3 51.2 -23.0 2.27
Ge-bent 22.0 -75.2 -37.0 -2.6 -114.8 51.9 -40.9 2.37

a kcal/mol. b The total steric repulsion, ∆Esteric ) ∆EPauli + ∆Eelstat. c ∆Eorb ) ∆E orb
σ + ∆E orb

π1 + ∆E orb
π2 . d The distortion (or preparation) term

includes the difference in energy between the singlet ground state and the triplet excited state of GeH2 fragments. e ∆Eint ) ∆Esteric + ∆Eprep

+ ∆Eorb. f XX bond lengths in angstroms.

Figure 6. Schematic representation of XH2 and XCH3 frag-
ment orbitals.
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ing bonding combination of πCH2
(10) on the two carbenes.

The NOCVs for planar ethylene are given as Supporting
Information. As for C2H6, bonds in C2H4 are formed by the
shift of density from fragment A to B in one spin component
and from B to A in the other component with a net buildup
of charge in the bonding region. However, for C2H4 both a
σ-components (σCH2

) and a π component (πCH2
) is involved.

We present in the left-hand column of Figure 7 the
contributions to the orbital interaction deformation density
∆Forb from the σ- and π-bond as ∆Fσ

orb and ∆Fπ1
orb, respectively,

where we have summed over spin components. There is a
noticeable accumulation of charge in the bonding region for
both ∆Fσ

orb and ∆Fπ1
orb. The corresponding contributions to

∆Eorb are given by ∆E
orb
σ ) -220.6 kcal/mol and ∆E

orb
π1 )

-67.8 kcal/mol, respectively. Thus our analysis finds in
agreement with the common perception that the σ-bond is
stronger than the π-bond. There is one more contribution to
∆Forb and ∆Eorb given by ∆Fπ2

orb and∆E orb
π2 , respectively. It is

very similar to ∆E orb
π of ethane and it involves the relief of

Pauli repulsion by transferring density from the occupied
and Pauli destabilized C-H bonding carbene fragment
orbitals σXH (11) to the empty C-H antibonding carbene
fragment orbitals σXH

* (12), see Figure 6. The stabilization
amounts to ∆E

orb
π2 ) -5.7 kcal/mol.

Also presented in the second column of Figure 7 is planar
Ge2H4 with triplet GeH2 as the reference. The corresponding
energy decomposition is given in Table 2. We find a
reduction in both σ- and π-bond strength with ∆Eorb

σ )-76.3
kcal/mol and ∆E orb

π1 ) -22.0 kcal/mol as one would expect

from the increase in the X-X bond distance in going from
X ) C to X ) Ge. In reality Ge2H4

68,72 is trans-bent, Figure
7. Such a bending allows occupied Pauli destabilized and
occupied spin-orbitals σGeH2

(9) on one fragment to overlap
not only with empty σGeH2

orbitals on the other fragment but
also with the corresponding empty πGeH2

orbitals (10). As a
result, ∆Fσ

orb for trans-bent Ge2H4 exhibits transfer of density
from σCH2

to the bonding region; see third column of Figure
7. The bending allows as well occupied and Pauli-
destabilized πGeH2

spin-orbitals (10) on one fragment to
interact not only with empty πGeH2

orbitals on the other
fragment but also with the corresponding empty σGeH2

orbitals
(9). As a result ∆Fπ1

orb for trans-bent Ge2H4 exhibits some
transfer of density from πGeH2

to σGeH2
; see third column of

Figure 7. It follows from Table 2 that ∆E orb
σ ) -75.2 kcal/

mol and ∆E orb
π1 ) -37.0 kcal/mol, respectively, in the trans-

bent conformation. Thus, the deformation from planarity
slightly reduces the strength of the σ-bond while considerably
strengthening the π-bond. Trans-bending is favorable when
the overlap between the two πXH2

orbitals is weak in the
planar conformation of X2H4, as is increasingly the case
through the heavier congeners of ethylene.

Strictly speaking, a σ/π separation is not possible when
Ge2H4 is trans-bent. However, during the bending process,
the ETS-NOCV scheme affords two major contributions to
∆Forb (and ∆Eorb). Further, in the planar case these contribu-
tions correlate with ∆Fσ

orb and ∆Fπ
orb, respectively. We have

for this reason maintained the same designation for the major
components throughout the bending process. For the same
reason we refer throughout to the two major contributions
to ∆Eorb as ∆Eorb

π1 and ∆Eorb
π2 , respectively. We note that ∆Eorb

π2 ,
from the plane not influenced by the bending, is virtually
unperturbed. We find it a useful characteristics of the ETS-
NOCV scheme that the same basic components are main-
tained when the symmetry of the molecule is reduced.

In the case of GeH2 the electronic ground-state is a singlet
with two electrons in σGeH2

whereas πGeH2
is empty. It is thus

necessary to add a correction of 47.2 kcal /mol to ∆Eprep

representing the difference in energy between the singlet and
triplet states of two GeH2 units. We might also perform the
analysis of the bonding in X2H4 with the singlet state of XH2

as the reference. However, the occupations of the σXH2
(9)

and πXH2
(10) orbitals in the final X2H4 complex is much

closer to the triplet state of XH2 than the singlet. This makes
the triplet a natural choice. Nevertheless, it is important to
underline that the bonding analysis depends on the reference.
On the other hand, the relative energies of bent and planar
species are invariant as are the bond energies as long as use
is made of XH2 in its electronic ground state.

Triple Bonds between the Main-Group Elements,
RXtXR. In order to demonstrate the application of the ETS-
NOCV scheme to triple bonds between main group elements,
we will discuss the XtX bonding in RXtXR, with R )
CH3 and X ) C, Ge.

Let us start the discussion with the triple CtC bond in
the linear 2-butyne formed from the two units MeCvvv and
VVVCMe having the opposite spin polarization. These units
are each generated by promoting CMe from its doublet
2Ey(σ2πλ

1;γ ) 1,2) ground-state to its 4A2(σ1π1
1π2

1) quartet

Figure 7. The contours of deformation density contributions
∆Fσ

orb, ∆Fπ1
orb, ∆Fπ2

orb for ethylene (left), hypothetical planar
germanium system (middle), and the real trans-bent germa-
nium homologue (right). The numerically smallest contour
values are (0.01 a.u. The last component, ∆Fπ2

orb, was plotted
with the contour values (0.005 a.u. In addition the cor-
responding energies ∆E orb

σ , ∆E orb
π1 , ∆E orb

π2 are shown.

Combined Charge and Energy Decomposition Scheme J. Chem. Theory Comput., Vol. 5, No. 4, 2009 969



excited-state for the price of 63.2 kcal/mol for two CMe
units. This energy is part of ∆Eprep given in Table 3.

The σ-component of the CtC bond is made up from σA

(13) and σB, on the two different fragments, H3CC, CCH3,
respectively; see Figure 6. Similarly, the two equivalent
π-type contributions to the CtC bond are built from π1,A

(14), π2,A (15), on one H3CC fragment and π1,B, π2,B of the
second CCH3 fragment; see Figure 6. The NOCVs represent-
ing the formation of the triple bond in H3CCtCCH3 are
given as Supporting Information. The deformation density
contributions, ∆Fσ

orb, ∆Fπ1
orb, ∆Fπ2

orb, representing the formation
of one σ- and two π-components of the CtC bond are shown
in the left column of Figure 8. Also shown are the
corresponding energies, ∆E orb

σ , ∆E orb
π1 , ∆E orb

π2 . It is clear that
the σ-bond contribution of ∆E orb

σ ) -209.7 kcal/mol is
stronger than the total π-bonding contribution given by ∆Eorb

π2

) -177.5 kcal/mol.
Turning next to the corresponding H3CGetGeCH3 system,

we promote in a way similar to acetylene the GeMe fragment
from its doublet 2Eγ (σ2πλ

1;γ ) 1,2) ground-state to its 4A2

(σ2π1
1π1

1) quartet excited-state for the price of 94.9 kcal/mol
for two GeMe units and add this contribution to ∆Eprep given
in Table 3.

Considering first the H3CGetGeCH3 system with a linear
structure, the σ- and π-contributions to ∆Eorb are significantly
weaker (-102.1 and -24.4, -24.1, respectively) compared
with 2-butyne, as it is shown in the middle column of Figure
8. This is directly related to the increase in the XX distance
as we go from X ) C to X ) Ge; see the last column of
Table 3.

Experimentally and theoretically the heavier alkyne ho-
mologues, RXtXR, are known to adopt a trans-bent
geometry.75-84,90-94 The last column of Figure 8 indicates
that the σ- and π-components, ∆Fσ

orb, ∆Fπ2
orb, of the GetGe

bond in the bent-structure are slightly stronger (by 2.4, 2.9
kcal/mol, respectively) compared with the linear analogue.
However, the second component of the GetGe bond, ∆E

orb
π1,

exhibits the most significant increase in the strength, by 10.0
kcal/mol, compared with the linear system. In fact the
bending makes it possible for the occupied and Pauli-
destabilized π1 orbital on one GeMe fragment to interact not
only with the empty π1 fragment orbital of the other fragment
but also the corresponding empty σ component. The mixing
appears as a donation of density from π1 to σ in ∆Fπ1

orb, Figure
8. We note again that we have used a σ/π notation for the
contributions to ∆Forb and ∆Eorb in trans-bent MeGetGeMe.

Table 3. ETS-NOCV Energy Decomposition of the Triple XtX Bond in the RXtXR Systems, R ) CH3, X ) C, Gea

X ∆Esteric
b ∆E orb

σ ∆E orb
π1 ∆E orb

π b ∆E orb
π b ∆Eprep

d ∆Eint
e d(XX)f

C 120.2 -209.7 -88.8 -88.8 -387.3 63.9 -203.18 1.21
Ge-linear 25.5 -102.1 -24.4 -24.1 -150.6 94.9 -30.2 2.20
Ge-bent 23.3 -104.5 -27.3 -34.2 -166.0 96.2 -46.5 2.29

a kcal/mol. b The total steric repulsion, ∆Esteric ) ∆EPauli + ∆Eelstat. c ∆Eorb ) ∆E orb
σ + ∆E orb

π1 + ∆E orb
π2 . d The distortion (or preparation) term

includes the difference in energy between the doublet ground state and the excited quartet state of XH2 fragments. e ∆Eint ) ∆Esteric +
∆Eprep + ∆Eorb. f XX bond lengths in angstroms.

Figure 8. The contours of deformation density contributions ∆Fσ
orb, ∆Fπ1

orb, ∆Fπ2
orb for the triple bonds in the 2-butyne (left), hypothetical

linear germanium system (middle), and the real trans-bent germanium homologue (right). The numerically smallest contour
value are (0.002 a.u. In addition the corresponding energies, ∆E orb

σ , ∆E orb
π1 , ∆E orb

π2 have been presented.
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It is again gratifying to see that the ETS-NOCV scheme
affords a simple compact picture of the GetGe triple bond
in terms of three components even when the σ/π separation
is broken by distortions such as the trans-bent.

Multiple Bonds between the Metal Centers, Cr2,
Mo2, W2, [Cl4CrCrCl4]4-. Up to now we have applied the
ETS-NOCV scheme to a description of bonds between main-
group elements. We shall next switch to a discussion of
multiple bonds between metal centers. As the first (simple)
example we consider the hextuple bonds in the dimers, X2,
with X ) Cr, Mo, W. Each of the X2 molecules was built
from two atoms of opposite spin-polarization with the septet
valence configuration (ndσ

1ndπ1
1 ndπ2

1 ndδ1
1 ndδ2

1 (n + 1)s1). The
septet electronic configuration is the ground-state for chro-
mium and molybdenium atoms whereas the quintet state is
characteristic for tungsten.87,92-94 Therefore we included in
the total bonding term the energy describing the promotion
from the ground quintet to the excited septet state for
tungsten. Additionally, we will also characterize the qua-
druple Cr-Cr bond in the anion [Cl4CrCrCl4]4- with D4h

symmetry (eclipsed conformation) made up from the two
CrCI4

2- fragments of C4V symmetry each holding four
unpaired electrons with the opposite spins and the
ndσ

1ndπ1
1 ndπ2

1 ndδ
1 configuration. We found the quintet as a

ground state for CrCI4
2- units.

The NOCV deformation density contributions from the
components of the sextuple CrCr bond have been displayed
in the upper part of Figure 9. Pairing of the five singly
occupied d-orbitals on each metal center gives rise to one
σ-, two π-, and the two δ-components represented by the
σ1, π1, π2, δ1, δ2 contributions to ∆Forb and∆Eorb, Figure
9 and Table 4. We have in addition from (n + 1)s the σ2
component.

The data presented in Table 4 for Cr2 lead to the conclusion
that the main energy contributions come from the total
π-bonding, ∆E orb

π1 + ∆E orb
π2 ) -146.2 kcal/mol, as well as

σ1 with ∆Eorb
σ1 ) -91.8 kcal/mol, whereas the δ-components

(∆E orb
δ1 + ∆E orb

δ2 ) -0.4 kcal/mol) and the σ2 component
(∆E orb

σ2 ) -4.3 kcal/mol) from the 4s orbitals add very little
to the bond strength. The same relative strengths of the bond-
components can be found for the molybdenum and tungsten
dimers. However, the total bond energy, ∆Etot, increases (in
absolute term) when going from the chromium (-31.3 kcal/
mol) to the tungsten dimer (-88.7 kcal/mol). Similar
conclusions were drawn from the experimental and as well
as from the other theoretical investigations.72,87-91 The factor
responsible for the trend in ∆Eint is the steric repulsion,
∆Esteric. This term systematically decreases when chromium
atoms are replaced by their group analogues. Further, the
decrease in the steric repulsion is directly related to the
decrease in the Pauli contribution, ∆EPauli,

72 as the distance
XX increase from X ) Cr to X ) W, the last column of
Table 4. More precisely,72 for chromium where 3p, 3s, and
3d are of the same radial extension, occupied 3d orbitals on
one center experience Pauli repulsion from occupied 3p,3s
orbitals on the other center. This effect is not present to the
same extent for the heavier congeners where ns,np are much
more contracted than nd.

Finally, let us briefly describe the character of the CrCr
bond in [Cl4CrCrCl4]4-. It follows from the lower part of
Figure 9 that the four deformation density contributions,
∆Fσ

orb, ∆Fπ1
orb, ∆Fπ2

orb, ∆Fδ
orb with the corresponding energies

∆E orb
σ ,∆E orb

π1 , ∆E orb
π2 , ∆E orb

δ accounts for the formation of the
Cr-Cr bond in [Cl4CrCrCl4]4-. Again, the largest contribu-
tions to the strength of the quadruple Cr-Cr bond come from
the σ- and π-bonding whereas the δ-component is the
weakest. We note that the term ∆Esteric in [Cl4CrCrCl4]4-

also contains the coulomb interaction VAB between the two
net charges (q ) -2) on the two [Cl4Cr]2- fragments as
discussed in the theoretical section in connection with the
introduction of ∆Esteric near eq 10.

Multiple Bonds between Main-Group Elements and
Metal Center, (CO)5CrdXH2. The analysis up to now has
been of bonds between either two main-group elements or
two metal centers. We shall in this section apply the ETS-
NOCV scheme to bonds between transition metals and main-
group elements. Consider to this end the carbene-type
complex Cr(CO)5XH2 (with X ) C, Si, Ge, Sn). Let the
complex further be formed from the square pyramidal metal

Figure 9. The contours of deformation density contributions
describing the two σ-, two π-, and two δ-components of the
hextuple bond in the Cr2 dimer (upper part). The numerically
smallest contour values are (0.003 a.u. The only contour
∆Fσ2

orb was plotted with the smaller contour values, (0.001a.u.,
to improve the quality of visibility. In addition the deformation
density components describing the quadruple bond in the
[Cl4CrCrCl4]4- system have been displayed (lower part). The
numerically smallest contour values are (0.007 a.u. For all
of the deformation density contributions, the corresponding
energies have been presented.

Combined Charge and Energy Decomposition Scheme J. Chem. Theory Comput., Vol. 5, No. 4, 2009 971



fragment Cr(CO)5 with a low-spin d6 ground-state configura-
tion and the XH2 ligand in its singlet state. For CH2, the
ground state is a triplet and we must add 15.5 kcal/mol to
∆Eprep; see Table 5.

Figure 10 exhibits the leading deformation density con-
tributions ∆Fπ

orb and ∆Fσ
orb together with the corresponding

energies, ∆Eorb
π , ∆Eorb

σ . The σ-bond contribution ∆Fσ
orb is due

to donation from the occupied σCH2
orbital into the empty

dz2 orbital of the metal-based fragment, with dz2 pointing
toward the carbene. The associated σ-bond formation energy
is ∆E orb

σ ) -51.9 kcal/mol. The second component, ∆Fπ
orb,

represents the π-back-donation from an occupied dπ orbital
of the metal into the empty πCH2

type orbital of CH2. The
corresponding energy is given by ∆E orb

π ) -46.3 kcal/mol.
The σ-bond strength ∆E orb

σ is seen to change little along
the homologue series X ) C, Si, Ge. On the other hand, the
π-bond strength ∆E orb

π is much larger for X ) C than for
the other elements, Table 5, as the overlap between dπ and
πXH2

drops sharply from X ) C to X ) Si because of the
increased Cr-X bond distance. Further, ∆E orb

π decreases
steadily from X ) Si to X ) Sn as the energy gap between
dπ and πXH2

increases, Table 5.

Our bond analysis of Cr(CO)5XH2 conforms to the known
Dewar-Chatt-Duncanson model85,86 with σ-donation from
σXH2

to dz2 and π-back-donation from dπ to πXH2
. We find

that the charge involved in the σXH2
to dz2 donation is 0.92

(C), 0.83 (Si), 0.81 (Ge), and 0.80 (Sn) whereas the
corresponding numbers for the dπ to πXH2

π-back-donation
are 0.77 (C), 0.65 (Si), 0.53 (Ge), and 0.40 (Sn).

The Hydrogen Bond in Deoxyribonucleic Acid
(DNA) between Nucleobases. We shall as another example
of a donor-acceptor interaction briefly consider the hydrogen
bond in DNA between two nucleobases typified by the

Table 4. ETS-NOCV Energy Decomposition of the Hextuple Bond in the X2 Dimers (X ) Cr, Mo, W) and the Quadruple
Bond in the [Cl4CrCrCl4]4- Moleculea

X ∆E orb
σ a ∆E orb

σ b ∆E orb
π a ∆E orb

π b ∆E orb
δ a ∆E orb

δ b ∆Estericb ∆Eint
c d(XX)d

Cr2 -91.8 -4.3 -73.1 -73.1 -0.2 -0.2 211.4 -31.3 1.64
Mo2 -90.0 -6.7 -74.7 -74.7 -2.5 -2.5 173.2 -77.9 1.98
W2 -74.2 -13.8 -75.0 -75.0 -5.7 -5.7 150.7 -88.7e 2.04
[Cl4CrCrCl4]4- -82.0 - -64.3 -64.4 -2.4 - 189.0 -24.1 1.88

a kcal/mol. b The total steric repulsion, ∆Esteric ) ∆EPauli + ∆Eelstat. c ∆Eint ) ∆Esteric + ∆Eprep + ∆Eorb, ∆Eorb ) ∆E orb
σ1 + ∆E orb

σ2 + ∆E orb
δ1 +

∆E orb
σ2 + ∆E orb

π1 + ∆E orb
π2 . d XX bond lengths in angstroms. e For W2 the term ∆Eint includes 10.0 kcal/mol from the promotion of the quintet

ground state of the tungsten atoms to their septet excited states.

Table 5. ETS-NOCV Energy Decomposition of the Double
Bond in the (CO)5CrdXH2 complexesa

X ∆Esteric
b ∆E orb

σ ∆E orb
π ∆Eorb ∆Eprep ∆Eint

c ∆EHOMO/LUMO
d

C 20.6 -51.9 -46.3 -98.2 19.0e -58.6 1.42
Si 23.7 -55.9 -19.0 -74.9 3.8 -47.4 1.67
Ge 21.7 -51.8 -15.4 -67.2 4.3 -41.2 2.49
Sn 13.5 -45.6 -9.7 -55.3 4.5 -37.3 2.63

a kcal/mol. b The total steric repulsion, ∆Esteric ) ∆EPauli +
∆Eelstat. c ∆Eint ) ∆Esteric + ∆Eprep + ∆Eorb, ∆Eorb ) ∆E orb

σ + ∆E orb
π .

d The difference in energies (eV) between occupied dπ of Cr(CO)5

and the LUMO πXH2.
e Distortion term includes the difference in

energy between the triplet ground state and the singlet excited
state of CH2 fragment.

Figure 10. The contours of deformation density contributions
∆Fσ

orb, ∆Fπ
orb describing the σ- and π-components of the carbene

bond in the (CO)5CrdCH2 complex together with the cor-
responding energies ∆E σ

orb, ∆E π
orb. The numerically smallest

contour values are (0.01 a.u.

Figure 11. The adenine and thymine fragments in the base
pair between the two nucleobases (panel a). The contours of
the deformation densities describing the NH-N (∆Fσ1) and
NH-O (∆Fσ2) hydrogen bonds as well as the π-resonance
(∆Fπ). Also shown are the corresponding energy contributions,
∆Eorb

σ1 , ∆Eorb
σ2 , ∆Eorb

π (panel b). The numerically smallest contour
values are (0.01 a.u.
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adenine-thymine base pair, Figure 11a. This system has
previously been studied both experimentally99 and theoreti-
cally.100 It follows from Figure 11b that three deformation
density components (∆Fσ1, ∆Fσ2, ∆Fπ) contribute to the A-T
bonding. The energetically most important contributions
(∆E orb

σ1 , ∆E orb
σ2 ) come from the donor-acceptor interactions

(∆Fσ1, ∆Fσ2) between the occupied lone pairs of oxygen
(from thymine) and nitrogen (from adenine) and the two
unoccupied σ* orbitals of the N-H bonds. We note that the
hydrogen bond involving the nitrogen lone pair (∆Fσ1) has
a more stabilizing contribution with ∆E orb

σ1 ) -12.6 kcal/
mol compared to ∆Fσ2 involving the oxygen lone pair for
which ∆Eorb

σ2 ) -5.8 kcal/mol, Figure 11b and Table 6. This
is in line with the fact that nitrogen is the better donor. The
deformation density ∆Fπ illustrates the minor participation
of π-type orbitals in the A-T bonding. Thus density depletion
in the σ-network gives rise to density buildup in the

π-framework and visa versa. This so-called Resonance
Assisted Hydrogen Bonding (RAHB)100 between the adenine
and thymine subsystems amounts to ∆Eorb

π ) -2.6 kcal/mol.
Hydrogen bonding in the A-T pair has already been fully
analyzed and understood in a previous ETS study.100

However, the analysis given here illustrate that the ETS-
NOCV scheme is able to capture the essential bonding
aspects in a few plots as illustrated in Figure 11b. The
theoretical bond energies presented in Table 6 are seen to
be in good agreement with experiment.

Agostic Bond Interactions in Transition Metal Alkyl
Complexes. We shall as our last example study the agostic
bonding interactions in a nickel-based �-agosctic propyl
complex101 formed between a C�-H bond of the propyl
group and a nickel center (Figure 12a). It is clear from Figure
12b that three components (∆F1, ∆F2, ∆Fagostic) are present
in the bond between the propyl group and the nickel center.
The dominant contribution, ∆F1, with ∆E orb

1 ) -72.4 kcal/
mol comes from the σ-bond formed between CR of the propyl
group and the nickel center. The second energetically relevant
component, ∆Fagostic, with ∆E orb

agostic ) -13.9 kcal/mol
describes the �-agostic interaction between the C�-H bond
and nickel. Finally, the last component, ∆F2, exhibits direct
formation of a weak C�-Ni σ-bond, with ∆E orb

2 ) -7.54
kcal/mol. We should point out that a very useful feature of
the ETS-NOCV scheme is that we can separate (and
simultaneously quantify) the �-agostic interaction between
the C�-H bond of propyl (∆Fagostic) from the two Ni-C
sigma bonds (∆F1, ∆F2).

Concluding Remarks

In the present study we have combined the Extended
Transition State (ETS) scheme with the Natural Orbitals for
Chemical Valence (NOCV) method. It has been shown that
the ETS-NOCV charge and energy decomposition scheme
offers a compact picture of chemical bond formation within
one common theoretical framework. Thus, it not only makes
it possible to obtain a qualitative picture of the different
components of the chemical bond (σ, π, δ, etc.) by
visualization of the deformation density contributions, ∆Fk,
but it also provides the corresponding quantitative energies,
∆E k

orb. Although, our description of bonding is based on a
subjective division of a molecule into subsystems (fragments)
with a particular electronic structure, we have demonstrated
the applicability of the ETS-NOCV scheme in a description
of various types of chemical bonds. They include single,
double, and triple bonds between main group elements,
sextuple and quadruple bonds between metal centers, and
double bonds between a metal and a main group element.

The ETS scheme has previously been used to extract the
various components (σ, π, δ, etc.) of the chemical bond for
highly symmetrical molecules where ∆Eorb is blocked by
symmetry.20-22,25-27,59-62 However, without high symmetry
such a separation into the σ, π, δ components was not
possible. The distinctive advantage of the new ETS-NOCV
charge and energy decomposition scheme is that we do not
need a specific point group symmetry for a given molecule
to assess the σ, π, δ contributions to the chemical bond. In

Figure 12. (a) Definition of the fragment separation in the
�-agostic propyl-based complex. (b) The contours of the
deformation densities describing the two σ bonds (CR-Ni, ∆F1),
(C�-Ni, ∆F2), and the agostic interaction (C�H · · ·Ni, ∆Fagostic).
Also shown are the corresponding energy contributions, ∆Eorb

1 ,
∆E orb

2 , ∆E orb
agostic. The numerically smallest contour values are

(0.01 a.u. for ∆F1 and ∆Fagostic. The corresponding values for
∆F2 are (0.005 a.u.

Table 6. ETS-NOCV Energy Decomposition Results for
the Adenine-Thymine Base Pair (A-T)

BP86/TZ2P kcal/mol

∆Eint -13.0
∆Eorb -22.0
∆EPauli 38.7
∆Eprep 2.1
∆Eelstat -31.9
∆Eint (experiment)99 -12.1
∆Eint (other theoretical results)100 -13.2
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fact they can be easily identified by visualization of the
deformation density contributions, ∆Fk, and quantified by
providing the corresponding energies, ∆Ek

orb
, (see eq 17), even

for molecules with no symmetry. Accordingly ETS and
NOCV combined significantly broadens the spectrum of
applications for the ETS scheme. We have here illustrated
the applicability of the ETS-NOCV scheme with applications
ranging from strong single and multiple bonds to weak
hydrogen bonding interactions.
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Abstract: By using density functional theory (DFT) and high-level ab initio theory, the structure,
interaction energy, electronic property, and IR spectra of the water dimer cation [(H2O)2

+] are
investigated. Two previously reported structures of the water dimer cation [disproportionated
ionic (Ion) structure and hydrazine-like (OO) structure] are compared. For the complete basis
set (CBS) limit of coupled cluster theory with single, double, and perturbative triple excitations
[CCSD(T)], the Ion structure is much more stable (by 11.7 kcal/mol). This indicates that the
ionization of water clusters produce the hydronium cation moiety (H3O+) and the hydroxy radical.
The transition barrier for the interconversion from the Ion/OO structure is ∼15/∼9 kcal/mol. It is
interesting to note that the calculation results of the water dimer cation vary seriously depending
on calculation methods. Möller-Pleset second-order perturbation (MP2) theory gives reasonable
relative energies in favor of the Ion structure but reports unreasonable frequencies for the OO
structure. On the other hand, most DFT calculations with various functionals overstabilize the
OO structure. However, the DFT results with MPW1K and BH&HLYP functionals are very close
to the CCSD(T)/CBS results. Thus, as for the validity test of the DFT functionals for ionized
molecular systems, the energy comparison of two water dimer cation structures would be a
very important criterion.

I. Introduction

Numerous experimental and theoretical studies have been
carried out on aqua clusters (neutral water clusters,1 anion-
water clusters,2 and cation-water clusters3). The investigation
of neutral water clusters has provided the information on
neutral H-bonds. The studies of electron-water clusters have
provided the information on the electron affinity (EA) of
neutral water and the hydration of an electron.4 Through the
study of the hydronium-water clusters,5 the hydration and
coordination chemistry of hydronium cation or proton are
understood. There have also been a number of studies on
the hydration and dissociation phenomena of acids, bases,
and salts,6 which are important in understanding the nature
of water as a solvent. In addition, the studies of the ionization

and the ionized state of the water molecule are very useful
for understanding the water cluster cations.7,8

The ionization of water clusters is widely seen in neutron
irradiation of the cooling water in a nuclear atomic plant, in
the photoreaction of water, and in aqueous environments.9

The ionization energy of the water molecule is 12.61 eV.8

Water cluster cations [(H2O)n
+] were experimentally pro-

duced under special conditions in the gas phase.10 A few
theoretical investigations for water cluster cations were
performed.11-13 For the water dimer cation, the hydrazine-
like (OO) structures and disproportionated ionic (Ion)
structure were suggested.11,12 Therefore, we investigate the
structures, energetics, spectra, and dynamics of the water
dimer cations [(H2O)2

+] using high level ab initio calcula-
tions. Here, we note serious failures of most DFT calculations
except for a few functionals. Thus, the comparison of the
DFT and CCSD(T) results for the water dimer cation is also
addressed.
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II. Calculation Methods

The OO structure and the Ion structure of the water dimer
cation are shown in Figure 1. We optimized the two
structures and calculated their frequencies using various DFT
methods of Becke’s exchange and Lee-Yang-Parr correla-
tion functionals (BLYP),14 Becke’s exchange and Perdew-
Wang correlation functionals (BPW91),15 Handy’s family
functional including gradient-corrected correlation (HCTH-
407),16 Becke’s three-parameters for exchange and Lee-
Yang-Parr correlation functionals (B3LYP),17 Perdew-
Burke-Ernzerhof hybrid functional (PBE1PBE),18 modified
Perdew-Wang one-parameter model for kinetics (MPW-
1K),19 Becke’s half HF-LSDA (Hartree-Fock Local Spin
Density Approximation) exchange and Lee-Yang-Parr
correlation functionals (BH&H),20 and Becke’s half HF-
LSDA-Becke exchange and Lee-Yang-Parr correlation
functionals (BH&HLYP)21 with the 6-311++G** basis
set.22 The MP2 optimizations and frequency calculations
were also carried out using the aug-cc-pVDZ (abbreviated
as aVDZ) and the aug-cc-pVTZ (aVTZ) basis sets.23 The
MP2 single-point calculations with the aug-cc-pVQZ (aVQZ)
basis set were also done on the MP2/aVTZ geometries (MP2/
aVQZ//MP2/aVTZ). To obtain more accurate results, the
CCSD(T) optimizations and frequency calculations were
performed using the aVDZ and aVTZ basis sets. The
CCSD(T) single-point calculations using the aVQZ basis set
were also done on the CCSD(T)/aVTZ geometries (CCSD(T)/
aVQZ//CCSD(T)/aVTZ). The 1s orbitals of oxygen atoms
were frozen in the correlation calculations. All the “d” and
“f” orbitals used here are the spherical harmonic basis
functions (5d and 7f).

For the Ion structure, which has the charged H-bonding
between one hydronium cation and one neutral hydroxyl
radical, the basis set superposition energy (BSSE) correction
can be made. However, in the OO structure the positive
charge is almost equally distributed in two water molecules,
so the BSSE correction cannot be made properly. In order
to compare the two structures at equal conditions, it is better
not to make the BSSE corrections. Thus, the BSSE correc-
tions are not considered in this system.

All the optimizations were done with the minimization of
total energy without any symmetry constraints. We calculated
the zero-point-energy (ZPE) uncorrected total energy (∆Ee)
at the equilibrium states of the Born-Oppenheimer potential
surfaces and the ZPE-corrected total energy (∆E0). The
enthalpy/free energy changes (∆Hr/∆Gr) at room temperature
and 1 atm were obtained using the frequency calculations.
The CBS limit interaction energies were obtained with the
extrapolation scheme utilizing that the electron correlation
error is proportional to N-3 for the aug-cc-pVNZ basis set
[∆ECBS ) (∆ENN-3∆EN-1(N - 1)3)/(N3 - (N - 1)3)].24 The

DFT and MP2 calculations were carried out by using the
Gaussian 03 suite of programs,25 and the CCSD(T) calcula-
tions were performed by using the Molpro2002.6 package.26

The approximate resolution of the identity MP2 (RI-MP2)
calculations27 was also carried out by using the Turbomole5.6
package.28 However, these results are essentially the same,
with the MP2 values within 0.1 kcal/mol, so these results
are not reported here.

III. Results and Discussion

For the water monomer, the vertical/adiabatic IP (IPv/IPa)
calculated on the basis of the unrestricted open-shell approach
is 12.70/12.61 eV at the MP2/aVDZ level of theory, 12.86/
12.77 eV at the MP2/aVTZ level, 12.51/12.42 eV at the
CCSD(T)/aVDZ level, 12.68/12.57 eV at the CCSD(T)/
aVTZ level, and 12.74/12.64 eV at the CCSD(T)/aVQZ//
CCSD(T)/aVTZ level. These values are close to the experi-
mental IP (12.61 eV).8 The O-H distance and H-O-H
bond angle of the water monomer cation are 1.002 Å and
109.1° at the CCSD(T)/aVTZ level, which shows 0.04 Å
longer O-H distances and 4.9° wider bond angle than those
of the neutral water monomer (0.962 Å and 104.2° at the
CCSD(T)/aVTZ level). The O-H bond strength becomes
weaker and the H-H repulsion is greater due to the
ionization.

We calculated the interaction energy between the neutral
water monomer and the water monomer cation [∆E(dimer
cation) ) E(dimer cation) - E(water monomer) - E(water
monomer cation)], where the geometries for water monomers
are relaxed in the dimer. From the optimization of water
dimer cation, the OO structure of the “anti” form has one
imaginary frequency, while the asymmetric OO structure of
the “gauche” form has all real frequencies. Thus, the
asymmetric OO structure is shown in Figure 1. As in Table
1, the OO structure is much more stable than the Ion structure
at the BLYP, BPW91, and HCTH407 levels of theory.
The B3LYP and PBE1PBE calculations predict that both
structures are compatible. On the other hand, MPW1K,
BH&H, and BH&HLYP calculations predict that the Ion
structure is much more stable than the OO structure. Table
2 lists the interaction energies of the two structures of the
water dimer cation at the MPW1K, BH&HLYP, MP2/aVDZ,

Figure 1. Disproportionated ionic (Ion) structure and hydra-
zine-like (OO) structure of the water dimer cation (H2O)2

+.

Table 1. Various DFT/6-311++** Interaction Energies
(kcal/mol) of the Ion and OO Structures of the Water Dimer
Cation, (H2O)2

+ a

-∆Ee (-∆E0)

method Ion structure OO structure

BLYP 49.3 (46.5) 58.4 (54.0)
BPW91 49.1 (46.4) 57.2 (52.8)
HCTH407 48.0 (45.2) 56.6 (52.1)
B3LYP 49.8 (46.8) 51.5 (46.7)
PBE1PBE 50.3 (47.4) 49.8 (45.0)
MPW1K 49.9 (46.9) 42.9 (37.9)
BH&H 55.5 (52.6) 48.9 (43.8)
BH&HLYP 49.9 (46.7) 41.4 (36.1)

a Interaction energy between the neutral water monomer and
the water monomer cation. ∆Ee is the ZPE-uncorrected energy at
the equilibrium point of the Born-Oppenheimer potential surfaces,
and ∆E0 is the ZPE-corrected energy.
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MP2/aVTZ, MP2/aVQZ//MP2/aVTZ, CCSD(T)/aVDZ, CCS-
D(T)/aVTZ, CCSD(T)/aVQZ//CCSD(T)/aVTZ, and CCSD(T)/
CBS levels of theory. Except for the MP2/aVQZ//MP2/aVTZ
and CCSD(T)/aVQZ//CCSD(T)/aVTZ calculations, the two
structures (OO and Ion) were fully optimized and their
frequencies were calculated at each calculation level in Table
2. Although most DFT functionals predict that the OO
structure is more stable than or at least comparable to the
Ion structure, the most reliable CCSD(T)/CBS results show
that the Ion structure is much more stable by 11.72 kcal/
mol than the OO structure. Thus, only the MPW1K and
BH&HLYP results among many DFT calculations are listed
in Table 2 for comparison. The MPW1K and BH&HLYP
results for the larger basis sets are closer to the CCSD(T)/
CBS results. BH&H/6-311++G** predicts almost reason-
able relative energy difference, but the interaction energy is
overestimated. It is clear that most other functionals com-
pletely fail to predict the right energetics of the water dimer
cation. We also note that the higher stability of the Ion
structure over the OO structure retains even if the temperature
rises to room temperature (298 K). Thus, the water dimer
cation has the form of a hydronium cation and a hydroxyl
radical. The experimental IPv and IPa of the water dimer are
known to be 12.1 and 11.2 eV.29,30 On the unrestricted open-
shell approach, the calculated IPv of the water dimer is 11.9
eV at the CCSD(T)/aVQZ// CCSD(T)/aVTZ level. Using the

Ion structure, the calculated IPa of the water dimer is 10.8
eV at the CCSD(T)/aVQZ//CCSD(T)/aVTZ level. These
calculated IPs are in good agreement with the experimental
data.

Table 3 lists the optimized geometrical parameters of Ion
and OO structures at the B3LYP, MPW1K, BH&HLYP,
MP2, and CCSD(T) levels. The Ion structure shows longer
O-H distance and shorter O-O distance than the OO
structure. The Ion structure has a larger rotational constant
A than the OO structure. The optimized Cartesian coordinates
of water dimer cations (OO and Ion structures) at the
CCSD(T)/aVTZ level are listed in the Supporting Informa-
tion.

The barrier height for the interconversion between the OO
and Ion structures of the water dimer cation was calculated
at the MPW1K/6-311++G** and MP2/aVDZ levels of
theory. The transition state in the interconversion is higher
in energy by 8.15 and 9.78 kcal/mol (15.11 and 15.02 kcal/
mol) than the OO structure (Ion structure) at the MPW1K/
6-311++G** and MP2/aVDZ levels. At the CCSD(T)
single-point calculations, the transition state is higher in
energy by 8.14 kcal/mol (14.59 kcal/mol) than the OO (Ion)
structure with the MPW1K/6-311++G** geometries and is
higher in energy by 9.69 kcal/mol (16.12 kcal/mol) than the
OO (Ion) structure on the MP2/aVDZ geometries. These
transition energy barriers are somewhat high.

Table 2. DFT, MP2, and CCSD(T) Interaction Energies (kcal/mol) of the Two Structures of the Water Dimer Cation,
(H2O)2

+ a

Ion structure OO structure

method -∆Ee -∆E0 -∆Hr -∆Gr -∆Ee -∆E0 -∆Hr -∆Gr

MPW1K/6-311++G** 49.87 46.88 48.17 40.06 42.90 37.87 39.29 30.69
MPW1K/aVDZ 48.86 45.99 47.26 39.25 42.49 37.33 38.74 30.12
MPW1K/aVTZ 48.93 45.94 47.24 39.19 41.48 36.51 37.92 29.33
BH&HLYP/6-311++G** 49.88 46.74 47.99 39.94 41.12 36.08 37.50 29.30
BH&HLYP/aVDZ 48.83 45.82 47.07 39.09 40.45 35.46 36.88 28.64
BH&HLYP/aVTZ 48.84 45.73 46.99 38.97 39.73 34.75 36.18 27.90
MP2/aVDZ 45.92 42.91 44.15 36.25 40.68 30.17 31.71 23.23
MP2/aVTZ 46.48 43.47 44.73 36.80 40.40 30.69 32.18 24.00
MP2/aVQZ//b 46.47 43.45 44.72 36.78 40.48 30.77 32.26 24.08
CCSD(T)/aVDZ 45.96 46.11 47.81 38.07 39.49 34.75 36.66 26.46
CCSD(T)/aVTZ 46.68 46.48 47.81 38.79 39.51 34.76 36.67 26.49
CCSD(T)/aVQZ//c 46.69 46.49 47.82 38.81 39.52 34.77 36.68 26.50
CCSD(T)/CBS 46.70 46.50 47.83 38.82 39.53 34.78 36.69 26.51

a The ZPE and thermal energy corrections at the MP2/aVQZ//MP2/aVTZ and CCSD(T)/aVQZ//CCSD(T)/aVTZ levels were made using
the MP2/aVTZ and CCSD(T)/aVTZ values, respectively. b MP2/aVQZ//MP2/aVTZ. c CCSD(T)/aVQZ//CCSD(T)/aVTZ.

Table 3. Conformational Characteristics and Geometrical Parameters [Distances (r/Å) and Rotational Constants (A in GHz)]
of the Two Structures of the Water Dimer Cation, (H2O)2

+ a

Ion structure OO structure

method rO-H rO-O A rO-H rO-O A H2O: rO-H

B3LYP/6-311++G** 0.998 2.501 244.4 0.979 2.128 140.5 0.962
MPW1K/6-311++G** 0.986 2.470 252.1 0.968 2.052 143.9 0.951
MPW1K/aVDZ 0.989 2.481 242.3 0.970 2.046 142.4 0.954
MPW1K/aVTZ 0.987 2.476 243.4 0.968 2.040 143.4 0.951
BH&HLYP/6-311++G** 0.983 2.497 257.9 0.967 2.053 144.6 0.951
BH&HLYP/aVDZ 0.986 2.503 247.6 0.970 2.049 143.1 0.953
BH&HLYP/aVTZ 0.984 2.500 246.7 0.967 2.047 143.8 0.950
MP2/aVDZ 0.998 2.520 232.5 0.984 2.039 138.3 0.966
MP2/aVTZ 0.996 2.496 234.9 0.980 2.023 139.1 0.961
CCSD(T)/aVDZ 0.998 2.534 228.6 0.984 2.047 138.3 0.967
CCSD(T)/aVTZ 0.995 2.507 233.3 0.980 2.033 139.6 0.962

a rO-H is the average values for the O-H distances. The rO-H of the water monomer is also listed for comparison.
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The experimental ν3, ν1, and ν2 frequencies of the water
monomer cation are known to be 3259, 3213, and 1408
cm-1.7 We employed the scale factors (0.956 at the B3LYP/
6-311++G** level, 0.916 at the MPW1K/6-311++G**
level, 0.952 at the MP2/aVTZ level, 0.962 at the CCSD(T)/
aVDZ level, and 0.958 at the CCSD(T)/aVTZ level) to match
the average value of calculated symmetric and asymmetric
stretch frequencies (ν1 and ν3) of the neutral H2O with the
corresponding experimental value (3700 cm-1).31 The cal-
culated frequencies of the water monomer cation are 3246,
3196, and 1354 cm-1 at the B3LYP/6-311++G** level;
3259, 3210, and 1332 cm-1 at the MPW1K/6-311++G**
level; 3304, 3245, and 1400 cm-1 at the MP2/aVTZ level;
3277, 3207, and 1413 cm-1 at the CCSD(T)/aVDZ level;
and 3279, 3225, and 1413 cm-1 at the CCSD(T)/aVTZ
level. In the water monomer cation, the strength of O-H
bonds is weakened due to the ionization as compared with
the neutral water monomer. The asymmetric and symmetric
O-H stretching frequencies and bending frequency are red-
shifted by 473, 422, and 163 cm-1 at the CCSD(T)/aVTZ
level in comparison with those of pure neutral water
monomer, respectively.

We have calculated the frequencies of the Ion and OO
structures of the water dimer cation at the DFT, MP2, and
CCSD(T) levels (Figure 2 and Table 4). For the OO structure,
the MP2 calculations with aVDZ and aVTZ basis sets fail
to produce reasonable frequencies, while DFT and CCSD(T)
calculations give reasonable frequencies as shown in Table
4. At the CCSD(T)/aVTZ level, the OO structure shows four

weakly red-shifted O-H stretching frequencies of 3424,
3467, 3536, and 3537 cm-1, while the Ion structure shows
one strongly red-shifted peak and three weakly red-shifted
peaks at 2248, 3476, 3528, and 3602 cm-1. One strongly
red-shifted frequency (2248 cm-1 at the CCSD(T)/aVTZ
level) of the Ion structure is of the hydronium moiety (H3O+)
interacting with the hydroxyl radical (OH).

IV. Concluding Remarks

At the CCSD(T)/CBS level of theory, the Ion structure is
much more stable than the OO structure. The Ion structure
is composed of a hydronium cation and a hydroxyl radical.
On the other hand, most DFT calculations with various
functionals favor the OO structure. Nevertheless, the DFT
results with MPW1K and BH&HLYP functionals are very
close to the CCSD(T)/CBS results. Thus, the energy com-
parison of the two structures of the water dimer cation would
be an interesting example for the validity test of the DFT
functionals. The MP2 calculations give reasonable relative
energies but unreasonable frequencies for the OO structure.
Therefore, in order to obtain reliable stabilities and frequen-
cies of water dimer cation, the CCSD(T) calculations are
required. However, the DFT(MPW1K) is an alternative to
obtain reliable results for this system with much less
computing time. The calculated spectra are provided to
facilitate future experiments.
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Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech
Republic and Center for Complex Molecular Systems and Biomolecules,
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Abstract: Interactions between amino acid side chains play a crucial role both within a folded
protein and between the interacting protein molecules. Here we have selected a representative
set of 24 of the 400 (20 × 20) possible interacting side chain pairs based on data from Atlas of
Protein Side-Chain Interactions. For each pair, we obtained its most favorable interaction
geometry from the structural data and computed the interaction energy in the gas phase using
several different, commonly used, ab initio and force field methods, namely Møller-Plesset
perturbation theory (MP2), density functional theory combined with symmetry-adapted perturba-
tion theory (DFT-SAPT), density functional theory empirically augmented with an empirical
dispersion term (DFT-D), and empirical potentials using the OPLS-AA/L and Amber03 force
fields. All the methods were compared against a reference method taken to be the CCSD(T)
level of theory extrapolated to the complete basis set limit. We found a high degree of agreement
between the different methods, even though the range of binding energies obtained was
extremely large. The most computationally intensive methods yielded the best results. Among
the less computationally time-consuming methods, the DFT-D method as well as parm03 force
field provided consistently good results when compared to the reference values. We also tested
how representative the chosen geometries of the side chains were and investigated the effect
on the binding energies of the dielectric constant of the surrounding medium.

Introduction

The building blocks of proteins are the twenty naturally
occurring L-amino acids, which are distinguished by their

different side chain structures and chemical compositions.
The sequence of amino acids defining a given protein
determines both its overall 3D structure and, at the local level,
the interactions it makes with other molecules when carrying
out its biological function. A change to a single amino acid
(e.g., due to a point mutation) can either have relatively little
effect1,2 or seriously harm the organism.3

The packing of a protein 3D structure into its final, fully
folded form is governed by the noncovalent interactions of
its side chains. The hydrophobic interactions in the protein’s
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core4,5 are of particular importance, as they, along with
hydrogen bonds,6 salt bridges, and disulfide bonds, determine
the overall stability and architecture of the protein.

The packing of side chains in a protein is known to be
very tight,7 and two opposing models have been proposed
to describe it.8 The first, the “nuts and bolts in a jar” model,
suggests that the main driving force of protein folding is the
hydrophobic effect of the surrounding water molecules;
consequently, the side chains are crammed together as the
protein folds, and their packing is essentially random and
the result of entropic factors. In the second, the “jigsaw
puzzle” model, energetic (enthalpic) contributions play a
more significant role in determining how the side chains
come together; consequently, the packing is nonrandom. A
large number of studies have analyzed the available 3D
structural data in the Protein Data Bank (PDB) and have
shown that side chains do indeed have preferred interaction
geometries; their packing is not entirely random.9-12

Thus, for an accurate energetic picture of protein structure,
it is necessary to describe the interactions between amino
acid side chains properly. The potential energy landscapes
of proteins are most often approximated as a sum of
electrostatic charge-charge and Lennard-Jones contributions
including exchange-repulsion and dispersion terms. Other
energy contributions, such as charge transfer, do not appear
to be significant in this schema. There is a reasonable degree
of correlation between the molecular mechanics energy
landscapes on the one hand and the distributions of amino
acid pairs and their geometries observed in protein structures
on the other, which suggests that the intrinsic pairwise
interaction energies do contribute to packing of side chains
in proteins rather than being overwhelmed by the numerous
interactions with other atoms within the protein and with
the solvent.13

The interaction energy functions can generally be divided
into two types: an atomic level energy function, whose form
is based unambiguously on physical principles, and an energy
function based on statistics at the amino acid level, such as
the Miyazawa-Jernigan potential.14,15 The most ideal way
to treat these systems is to apply high-level correlated ab
initio quantum mechanical methods to compute the nonco-
valent interactions within a protein, incorporating all possible
energy contributions. However, these methods are currently
limited to small- or medium-sized molecular models. Sig-
nificant progress has recently been made in overcoming the
well-known deficiency of the density functional theory (DFT)
approaches in describing dispersion interactions.16,17 Nev-
ertheless, it is still not possible to make calculations on entire
proteins at this level in a reasonable amount of time and at
a high (or even medium) level of accuracy. Therefore, a
promising approach is to develop improved potential func-
tions for modeling macromolecular interactions involves
combining protein structural analysis and quantum mechani-
cal calculations on small molecule models of amino acids.

We have previously obtained a reasonable level of
accuracy for determining the interaction energies between
amino acid side chains using high-level ab initio methods.18,19

Such characteristics are of utmost importance for the analysis
and design of protein structures and can shed light on the

enthalpic background of protein stabilization and, to some
extent, on the folding process. It must be mentioned here
that lower-level theoretical calculations, such as the DFT
methods, can incorrectly predict the energetics (and geom-
etries) of these structures. Another fundamental question
currently driving research in protein packing is how a single
amino acid change in a protein sequence affects the 3D
structure.20 Determining a practical correlation between the
two would help move the field of structure prediction and
design forward.

Here we explore the intramolecular interaction energies
for selected pairs of amino acid side chains. For each pair,
we use an empirically determined representative geometry
and compare the energies computed using several different
ab initio and force field methods with the reference method.
The interaction geometries are obtained from the Web
version of the Atlas of Protein Side-Chain Interactions.21 The
energy calculations are performed using ten different ap-
proaches, summarized in Table 1. The estimated CCSD(T)/
CBS method is taken as the reference method, whose
energies are assumed to be the closest to the “true” energy
values and against which all the other methods are compared.

Materials and Methods

1. Representative Set of Amino Acid Side Chain Pairs. To
obtain a representative set of amino acid side chain pairs,
we extracted data from a specially updated version of the
Atlas of Protein Side-Chain Interactions21 The Web atlas is
based on a printed atlas published in 1992 by Singh and
Thornton22 and analyzes the interaction geometries of all 20
× 20 amino acid side chain pairs as found in experimentally
determined 3D structural models of proteins. For each side
chain pair, the atlas shows how one side chain is distributed
with respect to the other in 3D. The preferred interaction
geometries are revealed by clusters in the distributions. The
atlas lists the clusters by size and selects a representative
side chain pairing for each one.

Table 1. Computational Methods Used

method description

CCSD(T)|CBS reference methodsCCSD(T) level of theory,
extrapolated to the complete basis set limit
(CBS)27

RI-MP2|aDZ MP2 with the aug-cc-pVDZ basis set and
resolution of identity approximation

RI-MP2|aTZ MP2 with the aug-cc-pVTZ basis set and
resolution of identity approximation

SCSMI-MP2|TZ spin-component scaling MP2 perturbation
theory, parametrized for molecular
interactions (MI) with the cc-pVTZ basis set32

DFT-SAPT|aDZ DFT-symmetry-adapted intermolecular
perturbation theory with density fitting with
the aug-cc-pVDZ basis set

DFT|TZVP DFT with the TPSS functional and TZVP basis
DFT-D|TZVP DFT with the TPSS functional and the TZVP

basis set augmented with an empirical
dispersion34

RI-DFT-D|TZVP DFT with the TPSS functional and the TZVP
basis set augmented with an empirical
dispersion and resolution of identity
approximation36

OPLS OPLS-AA/L force field38

parm03 Duan et al. Amber parm03 force field39
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The atlas is derived using a set of nonhomologous protein
chains selected from the structures in the Protein Data Bank
(PDB). No two chains have a mutual sequence identity
greater than 20%, and the chains are only taken from
structures solved by X-ray crystallography to a resolution
of 2.0 Å or better. The data in the printed version of the
atlas were derived from 62 protein structures, whereas the
Web version uses 533. For the current study, we have used
the atlas as updated in October 2006, applying 2548
structures.21

Interacting side chains are considered to be those having
a center-to-center distance between their closest two atoms
(excluding backbone atoms) of less than the sum of their
van der Waals radii, plus 1 Å to allow for coordinate error.
The two amino acids must be at least 4 residues apart in the
protein’s sequence.

The cluster representatives for a given distribution are
determined by considering each side chain in turn. The root-
mean-square distance (rmsd) to all other side chains in the
distribution is computed using the three atoms that define
the side chain’s frame of reference. Any side chain with an
rmsd of less than 1.5 Å from the selected side chain is
considered a “neighbor”. The side chain with the largest
number of neighbors is taken to be the cluster representative
of the largest cluster. This side chain and all its neighbors
are then removed from the distribution, and the calculation
is repeated to obtain the cluster representative of the second
largest cluster, etc.

For this study, 24 of the 400 side chain pairs were chosen
to be representative of different types of side chain interac-
tions: hydrophobic-hydrophobic, polar-polar, charged-
charged, and intermingled interactions (see Table 2 and
Figure 1). The side chain pair corresponding to the top cluster
representative in each of these 24 distributions was under-
stood to represent that distribution and its geometry used
for the various energy calculations described below.

2. System Preparation. As the side chain atlas contains
only the heavy atom positions for each cluster representative,
the missing hydrogens were added using the Pymol 0.99rc6
package.23 Two types of model subsystem were defined
based on the hydrogenated amino acids: the first contained
only the amino acid side chain starting from the C� atom
(C� model), while the second consisted of the amino acid
side chain plus the backbone CR atom (CR model). Hydrogen
atoms were added at the point of cutting (i.e., either the CR

or C� atom) in order to complete the valence shell. Proline
was modeled as propane or tetrahydropyrrole in the C� and
CR models, respectively. The positions of hydrogens were

Table 2. Statistical Data for Selected Pairs Taken from the
Updated Version of the Side Chain Atlasa

A1 A2 code
Nclustered contact of
Ndetected contacts pA1pA2 pAA pAA/(pA1pA2)

Leu Leu LL 143 of 47638 0.850 3.032 3.57
Val Leu VL 107 of 27218 0.660 1.733 2.62
Ile Leu IL 82 of 26652 0.518 1.697 3.28
Val Val VV 192 of 19723 0.513 1.255 2.45
Ile Ile II 112 of 18624 0.315 1.186 3.76
Ala Leu AL 159 of 15282 0.771 0.973 1.26
Leu Tyr LY 74 of 12030 0.326 0.766 2.35
Phe Phe FF 42 of 11127 0.165 0.708 4.30
Leu Thr LT 172 of 8233 0.510 0.524 1.03
Lysb Glub KE 187 of 7755 0.389 0.494 1.27
Argb Aspb RD 493 of 7391 0.295 0.470 1.60
Leu Trp LW 45 of 6487 0.136 0.413 3.04
Leu Gly LG 165 of 6368 0.685 0.405 0.59
Tyr Tyr YY 51 of 5179 0.125 0.330 2.64
Thr Thr TT 238 of 4262 0.307 0.271 0.89
Tyr Pro YP 61 of 4149 0.165 0.264 1.60
Thr Ser TS 149 of 3132 0.328 0.199 0.61
Aspb His DH 75 of 2383 0.134 0.152 1.13
Gln Asn QN 106 of 2217 0.165 0.141 0.86
Met Met MM 19 of 1973 0.034 0.126 3.73
Met Cys MC 9 of 641 0.025 0.041 1.65

a The part of the total number of detected contacts between
selected residue pairs which constitutes the most populated
clustered motif, whose representative was used for further
energetic analysis. The values of pA1pA2 are probabilities in
percents that these two residues would be in protein sequences
based on the detected numbers of residues within the side chain
atlas data set. The value of pAA is the frequency in percents of the
observed contact between side chains. Their proportion is thus a
measure of preferences between side chains. b Charged residues
were treated also as neutral.

Figure 1. Set geometries of the amino acid residues
truncated at the CR atom and optimized with DFT|TPSS|TZVP,
from which the geometries with C� fragmentation were derived
by the deletion of the CR methyl group and the insertion of a
hydrogen atom in the former methyl direction.
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then optimized for each pair at the DFT|TZVP24 level using
the relax procedure in the Turbomole package.25 The
coordinates of the heavy atoms were kept fixed during the
entire computational procedure without initial optimization.

3. Reference Interaction Energy in Vacuo. The refer-
ence pair stabilization energies were determined in vacuo at
the estimated CCSD(T) level of theory and extrapolated to
the complete basis set limit (CBS). The CCSD(T)|CBS
interaction energy was approximated as26,27

The former term, ∆EMP2|CBS, was determined using the
Helgaker28 extrapolation scheme.

The Hartree-Fock and second-order Møller-Plesset
(MP2) correlation energies necessary for the extrapolation
to the complete basis set limit were determined using
systematically improved basis sets; here we have used the
aug-cc-pVXZ (X)D, T) basis sets in Turbomole (abbreviated
as aXZ). The CCSD(T) term was calculated with a smaller
basis set, 6-31G*(0.25, 0.15), in the Molpro 2006 package.29

The use of this smaller basis set is justified because the
accuracy of the quantity (called the CCSD(T) correction
term) defined as the difference between the MP2 and
CCSD(T) interaction energies (unlike MP2 and CCSD(T)
interaction energies themselves) is much less dependent on
the size of the basis set and the 6-31G*(0.25, 0.15) basis
set has been shown to yield satisfactory values of this
difference.26 The CCSD(T) correction term evaluated for the
uracil dimer with this basis set agreed very well30 with values
calculated with the aug-cc-pVDZ and aug-cc-pVTZ basis
sets. All the interaction energies were corrected for the basis
set superposition error using the counterpoise scheme of Boys
and Bernardi.31 MP2 electronic energies were computed with
the resolution of the identity approach (RI-MP2), which has
been shown to introduce negligible errors. The frozen core
approximation was used systematically throughout the story.

4. Spin-Component Scaling Perturbation Theory SCSMI-
MP2. In an attempt to compensate for the overestimation of
dispersion contributions generally seen with the MP2 method,
the spin-component-scaled MP2 method as parametrized for
molecular interactions (SCSMI-MP2) was used.32 In this
method, the parallel and antiparallel spin-contributions of
the MP2 correlation energy are empirically scaled with two
scaling factors, cPS ) 1.75 and cAS ) 0.17. These parameters
differ from those of the original SCS-MP2 method described
by Grimme:33

The parameters were fitted against molecular interaction
energies computed at the CCSD(T)|CBS level for the S22
set.27 The SCSMI-MP2 energies were calculated using the
Molpro 2006 package29 along with the cc-pVTZ basis set
(abbreviated as TZ). We prefer to use the SCSMI-MP2 over
the original Grimme SCS-MP2 procedure since the former
procedure describes not only the stacked interactions but also
H-bonding accurately. The original SCS-MP2 procedure

works well for stacking interactions, but H-bonded stabiliza-
tion energies are underestimated.

5. DFT-Based Interaction Energy Augmented with
an Empirical Dispersion Term. The energies were also
computed using the DFT-D|TZVP method,34 in which the
DFT energies calculated with a TPSS functional in a TZVP
basis set are augmented by an empirical dispersion term
parametrized against the CCSD(T)|CBS energies in the S22
set.27 The DFT energies were calculated with the Gaussian03
package.35

A faster DFT algorithm using the resolution of the identity
approximation and empirically augmented dispersion was
also utilized (RI-DFT-D).36 The RI-DFT-D energies were
calculated employing the Turbomole package.25 This tech-
nique provides excellent interaction energies not only for
the H-bonded, dispersion-bound and mixed complexes
included in the S22 set34 but also for these noncovalent
complexes in general. A strong point of the method is its
relatively low computational cost, making it an ideal
candidate for calculations on large complexes with hundreds
of atoms or even for on-the-fly molecular dynamics
simulations.

6. Empirical Force-Field Interaction Energy. All the
molecular mechanical force-field calculations were performed
using the Gromacs 3.3 package37 with the built-in OPLS-
AA/L (OPLS)38 and ported parm0339 force fields. The
porting of parm03 was performed according to the method
of Sorin and Pande.40 The amino acid topology and partial
charges were changed as follows:

OPLS - The terminal CR or C� methyl group was assigned
the same atomic types and partial charges as the other methyl
groups.

parm03 - All the original atoms have their original partial
charges and the newly added hydrogens on CR or C� were
assigned to provide the integral charge on the entire residue.

7. SAPT Decomposition of the Interaction Energy in
Vacuo. In the DFT-SAPT method,41 the interaction energy
is given as the sum of first- and second-order energies (E(1),
E(2)) as well as of the δ(HF) term. The first-order energy
term contains the electrostatic (E(1)

el) and exchange-repulsion
(E(1)

ex) contributions, the second-order term includes the
induction, exchange-induction, dispersion, and exchange-
dispersion contributions. The charge-transfer energy is
considered to be part of the induction energy. The δ(HF)
energy estimates the contributions from the higher-order
energy terms using the Hartree-Fock approximation. In this
study, we used the PBE0AC exchange-correlation potential42

along with the aug-cc-pVDZ basis set (and its corresponding
density-fitting basis sets). The PBE0AC functional has been
shown to yield accurate first-order as well as induction and
dispersion values. The aug-cc-pVDZ set is large enough to
provide a reliable estimate of the electrostatic, induction, and
exchange components. The dispersion component is under-
estimated by about 10-20% in this basis set (see ref 41)
but should serve well enough for the purpose of comparison.
Here we have implemented a gradient-controlled shift
procedure required for the asymptotic correction of the
exchange-correlation potential, which needs a computed
difference (shift) between the vertical ionization potential

∆ECCSD(T)|CBS ) ∆EMP2|CBS +
(∆ECCSD(T)-∆EMP2)|small basis set (1)

ESCSMI-MP2)cPSEPS+cASEAS (2)
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and HOMO energy calculated using the same DFT method
as used for the DFT-SAPT computation.42 The DFT-SAPT
interaction energy calculated with the aug-cc-pVDZ basis
set provides highly accurate interaction energies for DNA
base pairs, and if the dispersion energy is augmented by
10-15%, the resulting interaction energies agree fairly well
with the CCSD(T)|CBS values.43 The DFT-SAPT thus
provides reasonably accurate stabilization energies as well
as their components for various types of noncovalent
complexes.

The DFT-SAPT calculation for each pair of selected
residues was performed with the density fitting using the
Molpro 2006 package.29 In order to express the obtained
DFT-SAPT results in terms of commonly understood physi-
cal quantities, the exchange-induction and exchange-disper-
sion terms were added to the induction and dispersion terms,
respectively. The ionization potentials were calculated at the
PBE0|TZVP level, while the HOMO values were taken from
the aug-cc-pVDZ calculation with the Gaussian03 package.35

Results and Discussion

1. Representative Side Chain Pairs. While the most
populated types of contacts between the amino acids are
mainly those containing leucine, we selected a set of 24
amino acid pairs to best represent the full spectrum of
interaction types that occur within proteins, making sure that
our set included at least one of each of the 20 natural amino
acids (see Figure 1 and Table 2). The most common types
of interaction are generally those involving aliphatic-aliphatic
contacts, reflecting their tendency to be localized in a
protein’s hydrophobic core. Thus the largest group within
our set comprised aliphatic-aliphatic side chain interactions:
LL, IL, VL, AL, II, VV, and LG. The next largest groups
consisted of aliphatic-aromatic interactions - LW, LY, and
YP - and nonpolar-polar interactions - LT, MC, and MM.
An interesting set of contacts are those between aromatic
side chains: YY and FF. Polar-polar contacts are represented
by the interactions between threonine and serine: TS and
TT. A very special type of interaction is that between
aromatic and charged residues, DH(N), where the histidine
is taken to be neutral, or D(N)H(N), where both residues
are taken to be neutral. A typical salt-bridge conformation
between charged residues is represented by RD and KE. The
final group contains unphysical salt-bridge interactions, where
both charged residues are neutralized: R(N)D(N) and
K(N)E(N). This situation never happens in solution; however,
these complexes would be stable in the gas phase and provide
a test case for neutralized charged residues found in force
fields.

It is interesting to note how the numbers of expected and
observed contacts differ (see Table 2). The expected contact
value, pA1pA2, is defined as the product of the observed
frequencies of all the amino acid side chains detected in the
atlas data set. The observed contact value, pAA, is defined as
the frequency of the given contact pair divided by the total
number of all observed contacts. The observed values differ
slightly from the expected values. The ratio between the
observed and expected contacts varies between 4.30 for Phe-
Phe to 0.59 for Leu-Gly.

2. Comparison of Binding Energies. To assess the
performance of the various energy calculation methods used
in this study properly for a range of binding energies
spanning 2 orders of magnitude - from the most stable pair,
RD, to the least stable, LG - we employed two types of
statistics: relative and absolute deviation (see the legend of
Table 3). The calculated CCSD(T)|CBS binding energies (see
Methods) are taken to be the “true” binding energies of these
side chain-side chain interactions as they are, to our
knowledge, the most accurate binding energies that can be
systematically obtained for all of the complexes described
in this work. We should add here that the CCSD(T)/CBS
method is the only ab initio method that provides accurate
interaction energies for different types of noncovalent
complexes (keeping in mind that MP2 tends to greatly
overbind dispersion bound structures). All the other wave
function theory (WFT) as well as DFT procedures which
are used in the realm of noncovalent complexes are
parametrized, i.e. contain one or more parameters, making
it possible to fit the obtained values on the benchmark data.
Consequently, using these methods we cannot be certain
whether the interaction energies for different types of
noncovalent complexes are all reliable.

The CCSD(T)|CBS interaction energies vary over a wide
range of values (see column 2 of Table 3). The most stable
pairs in the gas phase are the salt bridges between the charged
residues RD and KE, having interaction energies of the order
of 100 kcal/mol. The second most stable are the DH(N)
interactions representing a charged residue interacting with
an uncharged residue. Neutralizing the charged residues
dramatically lowers the interaction energy, as exemplified
by the next group of interactions - D(N)H(N), R(N)D(N)
and K(N)E(N) - which have energies between 10 and 18
kcal/mol. Interestingly, neutralization affects charged systems
differently: salt bridges R(N)D(N) and K(N)E(N) have only
12% of their former interaction energy, whereas the Asp-
His pair’s interaction energy decreases to only 58%. The
next most stable interaction groups consist of polar contacts,
QN, TT, and TS, whose interaction energies are around 5
kcal/mol, and aromatic systems, YY, LW, YP, FF, and LY,
whose interaction energies cluster around 4 kcal/mol. The
energies of nonpolar pairs containing methionine - MM and
MC - are approximately 1.5 kcal/mol, while the final group
contains the aliphatic nonpolar pairs (LL, VV, IL, II, LT,
VL, VL, AL, and LG), whose binding energies seem to
depend mainly on the contact surface between them, favoring
more lengthy and more “treelike” structures such as those
of leucine or valine.

3. Comparison of Computational Methods. Columns
3-11 of Table 3 show the interaction energies obtained from
the nine other computational methods tested here. As can
be seen, the methods tend to yield similar absolute values
and exhibit a high degree of correlation from the highest to
the lowest energy values. This correlation can be more clearly
seen in Chart 1. However, there are interesting discrepancies
between the methods, which will be discussed next.

For H-bonded complexes, the use of a larger basis set with
the RI-MP2 method yields higher-quality stabilization ener-
gies while overestimating stabilization results for stacking
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complexes. This overestimation is more pronounced when
aromatic systems participate in an interaction. Investigating
different AA pairs containing at least one aromatic residue
(YY, LW, YP, and FF), we found that they exhibit this
systematic overbinding and have larger maximal relative
errors when larger basis sets are employed. Such behavior
when the MP2 method is employed is well-known, with
various examples being possible to find in the S22 data set.19

The spin component scaled perturbation theory, SCSMI-
MP2, performs well on aromatic pair systems but signifi-
cantly underestimates stabilization energies for loosely bound
pairs (interactions whose binding energies are below a
threshold of approximately 2 kcal/mol, which is especially
true for AL, MC, and MM pairs). This is probably a result
of the fitting procedure for this method32 being carried out
in order to obtain minimal errors in the absolute values, and
not in terms of relative numbers (i.e., percentagewise), which
led to a situation in which contributions from the systems
with small binding energies would be underrepresented. Thus

the error of the method is relatively modest (0.60 kcal/mol),
but larger relative errors occur when stabilization energies
are around 1 kcal/mol.

The DFT-SAPT interaction energies are slightly lower than
the MP2 ones. Evidently, the DFT-SAPT method does not
suffer from an overestimation of the stabilization energies
for pairs containing aromatic systems.

The DFT-D method generally overestimates the stabiliza-
tion energies of these complexes. For polar or charged
contacts, the binding energies can be overestimated by up
to 2 kcal/mol (approximately 2% of the total interaction
energy). At the other extreme, the overestimation of the
interaction strength for loosely bound pairs, such as Leu-
Gly, is typically around 0.3 kcal/mol.

The errors seen for results obtained using the SCSMI-
MP2 are similar in magnitude but opposite in sign to those
produced using the DFT-D method. It can also be said that,
in terms of absolute energies, the SCSMI-MP2 produces
more accurate results, while the DFT-D method yields better
results when errors are measured on a relative (i.e., in terms
of percentage) scale. It should also be noted here that, as is
well-known, the traditional DFT method fails to describe
dispersion interactions correctly. Recently introduced modern
density functionals, like e.g. the Zhao and Truhlar’s MO6
suite of density functionals, do cover the dispersion energy
and provide a very good estimate of stabilization energies
and geometries for a large spectrum of noncovalent com-
plexes.44

The OPLS-AA/L force field yields results that are slightly
unbalanced; several residues are not parametrized for the
computation of interaction energies with accuracies similar
to those of previous methods. In particular, histidine and
methionine exhibit relative errors that are higher than those
seen for any other method (DH, DH(N), MM, and MC).

The parm03 force field generally behaves better than the
OPLS-AA/L force field. When omitting neutralized charged
residues (because of parametrization), the parm03 force field
has relative errors comparable to those of the MP2|aDZ
method. As the largest errors can be found for the most
strongly bound complexes (from RD to QN), the absolute
errors of parm03 are significantly higher than those observed
for any of the ab initio quantum mechanics methods
discussed previously.

Surprisingly, both force-field methods were found to
perform generally well. Their major weakness concerns the
parametrization for the neutralized charged residues (D(N)H(N),
R(N)D(N), and K(N)E(N)). It should be noted that the parm03
force field does not even contain a neutralized arginine
residue.

To summarize the results, the most accurate method (other
than the benchmark CCSD(T)/CBS method) for calculations
of interaction energies between amino acid residues in
proteins is MP2|aug-cc-pVTZ, which is also the most
computationally intensive technique considered here. The less
demanding SCSMI-MP2 and DFT-D methods yield similar
accuracy with comparable computational expense. The fastest
ab initio method is RI-DFT-D, which tends to overestimate

Chart 1. Correlations between the Computational Methodsa

a The energies were divided into 5 groups: + - aliphatic-residue-
only systems; × - systems with at least one aromatic residue; ✷ -
systems containing sulfur; . - systems with at least one polar residue;
and * - systems with at least one charged residue. The systems falling
into several groups were arbitrarily added to the more polar group
according to the participating amino acids.
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interaction energies slightly. The best force-field method is
parm03 force field, especially when strongly bound pairs are
omitted.

4. Effects of Different Fragmentation (Cr vs C� Models).
The analysis of interaction energies above was based on our
CR model, i.e. where the amino acid side chains were
methylated at the CR position. Are the results markedly
different if one uses the C� model, i.e. residues starting at
the C� atom, instead?

The last column in Table 3 shows the energies obtained
from the CCSD(T)|CBS calculations for the C� model. The
average difference between the interaction energies from the
two models is approximately 0.3 kcal/mol. Interestingly, this
energy loss caused by removing the CR methyl group is
comparable to the interaction energy for the methane dimer,
which is around 0.33-0.46 kcal/mol for two methane
molecules in close contact.45 The simple explanation of this
fact is that the smaller system - stabilized mainly by
dispersion, the smaller interaction energy is. One additional
feature of the different fragmentation has to be also taken
into account (see Chart 2). In many cases the position of Ca
methyl groups improves contact between interacting residues
which results in higher stabilization energy than expected
based on C� geometry.

The interaction energy loss varies according to the nature
of the interaction. The differences tend to be small for
interactions involving charged residues. In the case of RD,
for instance, the difference is 0.06 kcal/mol, which is
negligible. On the other hand, when at least one aromatic
residue, e.g. LW and YY, participates in the interaction the
interaction energy, loss due to the demethylation is quite sig-
nificant. This may be attributable to a difference in the in-
teraction of the system, with the electronic density of the
π-system caused by the fragmentation.

Last but not least, an interesting interaction is that between
tyrosine and proline (YP). The interaction energy loss here

is strongly affected by the opening of the proline ring due
to the loss of the main-chain CR atom. This effect has recently
been reported by Biedermannova et al.46 in interactions
between aromatic side chains and proline.

5. Cluster Representatives. In all the calculations above,
the geometry used for each side chain pair is that of the
representative of the pair’s largest cluster in the Side Chain
Atlas. It is natural to ask how valid and meaningful this
choice of geometry is. To address this issue we used both
the DFT-D and RI-DFT-D methods to compute the interac-
tion energies for all the members of a single cluster and
compared these against the energy of that cluster representa-
tive. We selected the leucine-tryptophan pair, LW, as it has
an intermediate total number of observed contacts (6487)
and thus should be more typical than such extreme cases as
LL and MC, with 47,638 and 641 contacts, respectively.
Moreover, considering that the number of geometries in the
cluster is 45 (Figure 2), the number of interaction energies
to be computed is sufficiently small for them to be completed
in a reasonable time. Finally, to decrease the total calculation
time even further, only the C� fragments were used.

The DFT-D method gave an interaction energy of -2.76
( 0.550 kcal/mol when averaged over all the Leu-Trp cluster
members, which is identical to the energy obtained from the
cluster representative using both the DFT-D and RI-DFT-D
methods (see Supporting Information Table S1). The RI-
DFT-D method yielded a slightly different average cluster
value of -2.63 kcal/mol. In this method, however, the
median value of the individual energies in the cluster was
much closer to the representative’s energy than the median
value given by DFT-D: -2.75 vs -2.80 kcal/mol, respec-
tively. One can therefore conclude that the geometry of the
cluster representative really does approximate to some
average energy conformation for the two interacting side
chains.

6. Full Optimization of Geometries. To test the rel-
evance of the cluster representative further, we performed a
full optimization of their geometry using the C� model and
RI-DFT-D in Vacuo. In most cases, the geometry changed
only negligibly (see Supporting Information Table S2). The
differences come mostly for the interactions involving
proline, glycine, charged, and polar residues. The largest
changes were observed for charged and polar residues,

Chart 2. Correlation between the Different Fragmentationsa

a The energies were divided into 5 groups: + - aliphatic-residue-
only systems; × - systems with at least one aromatic residue; ✷ -
systems containing sulfur; . - systems with at least one polar residue;
and * - systems with at least one charged residue. The systems falling
into several groups were arbitrarily added only to the more polar
group.

Figure 2. The cluster of LW with a cluster representative.
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suggesting that the contacts between these residues are
shielded by the environment around the charged/polar pair.
In the case of Gly and Pro, the interactions tend to involve
their main-chain rather than side-chain atoms. The geometries
of the nonpolar residue pairs were essentially unchanged
upon the optimization, indicating that the stabilization of
these pairs is mostly of enthalpic origin.

7. SAPT Decomposition of the Interaction Energies.
From the SAPT results shown in Table 4, one can im-
mediately draw a conclusion as to the dominant sources of
pair stabilization. From the data, two different groups of side
chain interactions may be distinguished: (1) polar and
charged residues, which are stabilized mostly by the elec-
trostatic term, and (2) nonpolar residues, which are mostly
stabilized by the dispersion term.

However, several specific examples are worth noting: (1)
the charged and polar residues in contact are mostly stabilized
by the electrostatic term; (2) on the other hand, polar residues
in contact with nonpolar residues (LT, MC) are stabilized
mostly by the dispersion term. The ratio between the
dispersion and electrostatic contributions ranges from 0.05
for charged salt bridges to 9.43 in the case of the Leu-Leu
pair. This ratio corresponds to the nonpolarity of the
interaction. As expected, the lowest value comes from the
salt bridges, while polar contacts have a ratio close to unity
and contacts between aromatic residues are lower than those
for purely nonpolar aliphatic to aliphatic contacts.

8. Effect of the Solvent. There are many methods for
treating amino acid pair interactions within a protein’s

interior. The most common technique of mimicking the
hydrophobic environment in the protein’s core is to use
implicit solvation models: generalized Born models (GB),47,48

nonlinear or linear Poisson-Boltzmann models (PB),49 or a
polarizable continuum model (PCM).50 The most important
parameter is usually the dielectric constant of a particular
solvent (generally water), which represents the influence of
the environment. To model the influence of a protein interior
properly is a more complicated task. Several models have
been proposed - low dielectric constant (ε ∼ 2-4)51 and
high dielectric constant (ε ∼ 20-40)52 as well as more
complex models with variable dielectric constants in the
interior and at the outer regions of a protein.53-55

In this study, we modeled the influence of the protein core
environment as solvation by diethyl ether (ε ) 4.34), whereas
the influence of water was modeled by a dielectric constant
ε ) 80.0.

We calculated the interaction energies for these two values
of dielectric constant using the PCM method (see Table 5
for the results). It appears that the largest influence of the
environment is to cause a steep drop of the binding energy
for interactions involving charged residues and all the
interactions in which the electrostatic contribution is the
major term of the interaction. The values obtained for protein
environment computations decrease to almost 30% of the
gas-phase interaction energy values, whereas, within the
water environment, the binding energies are diminished to
2-5% of their gas-phase values. The charged residues are
only rarely buried in a protein interior and almost exclusively

Table 3. Interaction Energies for Amino Acid Pairs Calculated Using Several Approaches in the Gas Phasea

code
CCSD(T)

CBS
RI-MP2

aDZ
RI-MP2

aTZ
SCSMI-MP2

TZ
DFT-SAPT

aDZ
DFT

TZVP
DFT-D
TZVP

RI-DFT-D
TZVP OPLS parm03b

CCSD(T)
CBS C�

RD -110.80 -109.37 -110.21 -111.71 -107.52 -110.60 -112.93 -112.73 -105.71 -90.37 -110.74
KE -108.40 -107.36 -107.75 -105.64 -105.78 -108.27 -110.90 -110.86 -106.02 -103.57 -104.67
DH(N) -30.64 -29.88 -30.91 -31.06 -28.35 -28.83 -31.47 -31.30 -12.20 -22.36 -29.82
D(N)H(N) -17.97 -16.81 -17.94 -17.68 -16.05 -16.26 -19.29 -19.03 -10.90 -7.80 -17.61
R(N)D(N) -16.32 -15.29 -15.92 -16.18 -14.68 -14.71 -17.17 -17.01 -8.94 -15.57
K(N)E(N) -10.76 -10.36 -10.65 -10.50 -9.87 -9.81 -12.60 -12.51 -8.80 -9.11 -10.38
QN -7.37 -6.41 -6.92 -7.06 -6.83 -5.66 -7.35 -7.31 -8.61 -8.84 -7.14
TT -6.50 -5.74 -6.28 -5.93 -5.27 -4.81 -7.53 -7.32 -7.96 -6.83 -6.15
YY -4.66 -4.99 -5.51 -4.49 -3.94 1.35 -4.35 -4.31 -3.84 -3.62 -3.70
TS -4.50 -4.12 -4.30 -3.99 -4.05 -3.36 -5.47 -5.41 -4.38 -4.40 -4.03
LW -4.04 -4.38 -4.74 -3.88 -3.58 1.00 -3.97 -3.91 -3.46 -3.46 -2.93
YP -3.79 -3.78 -4.11 -3.32 -3.34 0.44 -4.06 -4.09 -3.05 -3.09 -1.67
FF -2.33 -2.85 -3.04 -2.19 -2.01 1.11 -2.07 -2.15 -1.97 -2.26 -1.89
MM -2.03 -1.67 -2.01 -1.27 -1.56 1.22 -2.01 -1.94 -3.14 -2.35 -1.40
LY -1.72 -1.43 -1.66 -1.21 -1.34 0.96 -2.07 -1.88 -1.86 -1.52 -1.17
LL -1.62 -1.54 -1.60 -1.36 -1.52 0.00 -1.93 -1.96 -1.40 -1.66 -1.33
MC -1.46 -1.22 -1.43 -0.93 -1.27 0.25 -1.48 -1.44 -2.01 -1.20 -1.26
VV -1.39 -1.14 -1.28 -0.96 -1.18 0.44 -1.79 -1.83 -1.36 -1.43 -0.90
IL -1.39 -1.28 -1.35 -1.12 -1.29 0.06 -1.68 -1.70 -1.19 -1.41 -1.14
II -1.24 -0.98 -1.11 -0.80 -1.01 0.62 -1.39 -1.47 -1.13 -1.20 -1.14
LT -1.09 -0.95 -1.02 -0.83 -0.99 0.02 -1.40 -1.36 -0.91 -1.05 -0.83
VL -1.08 -0.94 -1.01 -0.81 -0.97 0.11 -1.34 -1.33 -0.81 -1.11 -0.86
AL -1.07 -0.76 -0.93 -0.60 -0.82 0.71 -1.31 -1.32 -1.00 -0.94 -0.51
LG -0.77 -0.66 -0.71 -0.56 -0.71 -0.09 -1.02 -1.00 -0.75 -0.53 -0.30

MRE [%] 10.96 6.52 16.05 12.01 83.61 13.04 12.64 19.54 13.55 19.68
MRX [%] 28.82 -30.62 43.57 23.69 166.28 -32.92 -31.88 60.19 56.58 60.52
MAE 0.47 0.26 0.48 0.79 2.03 0.63 0.58 2.11 2.22 0.66
MAX 1.43 -0.85 2.76 3.28 6.01 -2.50 -2.45 18.44 20.43 3.73
RMS 0.48 0.36 0.60 0.88 1.40 0.73 0.68 4.16 4.78 0.77

a All the energies are in kcal/mol. Descriptive statistics: MRE is the unsigned mean relative error, MRX is the signed maximal relative
error, MAE is the unsigned mean absolute error, MAX is the signed maximal absolute error, and RMS is the signed root mean square error.
b Neutral arginine is not defined in the Amber03 force field.
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play a role there as a part of an active site. Their role as a
stabilization element in a protein interior is highly improbable.

In terms of the modulation of binding energy strengths
with the introduction of solvents, the nonpolar (aliphatic and
aromatic) residues behave quite differently than the polar
ones. The introduction of neither water nor ether (i.e., protein
environment) strongly affects the binding energies for
complexes containing these types of amino acid side chains
(which is especially true for aliphatic-aliphatic interactions).

Generally, solvent effects lower the binding energy of a
complex containing nonpolar residues by at most ∼25%. This
finding has critical implications in terms of the role of
nonpolar interactions in stabilizing a protein.

Conclusion

Here we have calculated the reference binding energies for
24 different pairs of amino acid side chain interactions at
the benchmark level of theory (CCSD(T)|CBS). The geom-
etries of the studied structures were derived from X-ray
crystal structure data to a resolution of 2.0 Å or better. We
expect the resulting interaction energies to be very close to
the (still unknown) true interaction energies and to be equally
reliable for different types of side chain interactions. One
key point concerning the data obtained for these complexes
is that each of the interactions was evaluated as attractive.
This would not be the case for pairs of similarly charged
side chains, and there are no such examples in our set.
However, the fact that all the interactions studied here are
attractive supports the idea that enthalpic stabilization plays
a key role in protein stabilization and that the interactions
are nonrandomly distributed within the protein structure. This
finding is supported by the geometry optimization of the most
populated pairwise interactions, which does not result in any
significant changes to the conformations of the interacting
side chains taken from the atlas. Allow us to emphasize again
that such an essential statement can be made only when using
the highly accurate CCSD(T)/CBS procedure. We are
certainly aware that all these conclusions concern the
stabilization energy and for comparison with experiment it
is inevitable to pass to stabilization enthalpy; i.e. to include
the zero point vibration energy (ZPVE) term. We determined
this term for the weakest pair: the leucine-glycine. Adding
the ZPVE (MP2/TZVP] to ∆E we obtained ∆H)-0.3 kcal/

Table 4. SAPT Decomposition for CR in Comparison with the CCSD(T)|CBS Interaction Energiesa

AA-AA CCSD(T) DFT-SAPT Epol
1 Eexch

1 Eind
2 Edisp

2 δHF Edisp
2 /Epol

1

RD -110.80 -107.52 -101.94 22.28 -14.39 -7.21 -6.25 0.07
KE -108.40 -105.78 -96.03 7.93 -9.99 -4.52 -3.16 0.05
DH(N) -30.64 -28.35 -35.96 35.80 -12.10 -9.24 -6.85 0.26
D(N)H(N) -17.97 -16.05 -26.38 33.71 -8.09 -8.89 -6.40 0.34
R(N)D(N) -16.32 -14.68 -19.51 17.83 -4.04 -6.39 -2.57 0.33
K(N)E(N) -10.76 -9.87 -9.52 6.79 -1.84 -4.20 -1.09 0.44
QN -7.37 -6.83 -10.02 11.23 -2.21 -4.17 -1.66 0.42
TT -6.50 -5.27 -9.85 12.67 -1.76 -4.96 -1.37 0.50
YY -4.66 -3.94 -3.86 8.93 -0.34 -7.88 -0.79 2.04
TS -4.50 -4.05 -3.52 2.92 -0.50 -2.71 -0.25 0.77
LW -4.04 -3.58 -2.42 6.20 -0.25 -6.56 -0.55 2.71
YP -3.79 -3.34 -2.25 5.24 -0.28 -5.61 -0.44 2.49
FF -2.33 -2.01 -0.65 3.12 -0.13 -4.08 -0.26 6.28
MM -2.03 -1.56 -1.96 5.28 -0.11 -4.38 -0.38 2.23
LY -1.72 -1.34 -1.12 3.80 -0.09 -3.70 -0.22 3.30
LL -1.62 -1.52 -0.21 0.71 -0.01 -1.98 -0.03 9.43
MC -1.46 -1.27 -0.98 2.65 -0.12 -2.62 -0.19 2.67
VV -1.39 -1.18 -0.47 2.01 -0.05 -2.53 -0.12 5.38
IL -1.39 -1.29 -0.25 0.85 -0.01 -1.83 -0.04 7.32
II -1.24 -1.01 -0.56 1.89 -0.02 -2.23 -0.09 3.98
LT -1.09 -0.99 -0.29 0.88 -0.02 -1.52 -0.04 5.24
VL -1.08 -0.97 -0.26 0.89 -0.01 -1.55 -0.04 5.96
AL -1.07 -0.82 -0.66 2.18 -0.02 -2.21 -0.10 3.35
LG -0.77 -0.71 -0.12 0.44 -0.01 -0.99 -0.02 8.25

a Epol
1 is the first-order electrostatics, Eexch

1 is the first-order repulsion, Eind
2 is the second-order induction, Edisp

2 is the second-order
dispersion, δHF is the estimate of higher-order terms and Edisp

2 /Epol
1 is the ratio between the dispersion and electrostatic terms. The most

stabilizing terms are boldface.

Table 5. Solvent Effects on the Interaction Energies
Calculated by the DFT-D/TPSS|TZVP with PCM in
kcal/mola

AA-AA vacuum ether water

RD -112.93 -30.70 (27.2%) -3.23 (2.9%)
KE -110.90 -33.24 (30.0%) -7.91 (7.1%)
DH(N) -31.47 -10.88 (34.6%) -2.31 (7.3%)
D(N)H(N) -19.29 -13.86 (71.9%) -10.45 (54.2%)
R(N)D(N) -17.17 -7.36 (42.9%) -2.34 (13.6%)
K(N)E(N) -12.60 -8.38 (66.5%) -5.89 (46.7%)
QN -7.35 -4.45 (60.5%) -2.55 (34.7%)
TT -7.53 -5.56 (73.8%) -4.10 (54.4%)
YY -4.35 -3.77 (86.7%) -3.28 (75.4%)
TS -5.47 -3.18 (58.1%) -1.59 (29.1%)
LW -3.97 -3.46 (87.2%) -3.02 (76.1%)
YP -4.06 -2.84 (70.0%) -2.27 (55.9%)
FF -2.07 -1.55 (74.9%) -1.26 (60.9%)
MM -2.01 -1.73 (86.1%) -1.55 (77.1%)
LY -2.07 -1.84 (88.9%) -1.72 (83.1%)
LL -1.93 -1.87 (96.9%) -1.85 (95.9%)
MC -1.48 -1.04 (70.3%) -0.83 (56.1%)
VV -1.79 -1.73 (96.6%) -1.70 (95.0%)
IL -1.68 -1.64 (97.6%) -1.62 (96.4%)
II -1.39 -1.34 (96.4%) -1.32 (95.0%)
LT -1.40 -1.32 (94.3%) -1.28 (91.4%)
VL -1.34 -1.30 (97.0%) -1.28 (95.5%)
AL -1.31 -1.28 (97.7%) -1.27 (96.9%)
LG -1.02 -0.98 (96.1%) -0.96 (94.1%)

a The percents in parentheses are relative to the vacuum value.
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mol. Evidently, the above-mentioned fact that all interaction
pairs are attractive remains unchanged even when the ZPVE
is taken into account.

In terms of gas-phase binding energies, the strongest
interactions were found to be those between two oppositely
charged side chains. In general, the strength of a gas-phase
interaction is positively correlated with the polarity of the
side chains involved in the interaction. Interactions between
aromatic side chains are generally stronger than those
between aliphatic ones, which has been observed in many
previous studies and is chiefly attributable to π-π and CH-π
interactions. Amazingly, the range of binding energies
observed in this study is extremely large, spanning from
-0.77 kcal/mol (LG) to -110.80 kcal/mol (RD). Although
polar interactions tend to be the strongest in the gas phase,
it is important to keep in mind that these are the types of
interactions that are most strongly affected by the introduc-
tion of a solvents such as water and ether (which mimics
the environment within a protein interior). The introduction
of solvent thus dramatically reduces the overall range of
binding energies, with interaction energies ranging from
-0.83 kcal/mol (MC) to -10.45 kcal/mol (D(N)N(N)) in
aqueous solution (as computed using DFT-D).

There are many computational methods that can be used
to study protein structure; in this work, we have assessed
the performance of several commonly used ab initio and
force-field techniques in terms of their abilities to produce
the accurate binding energies for side chain-side chain
complexes (using the estimated CCSD(T)|CBS results as a
reference). Not surprisingly, it was found that the compu-
tationally intensive MP2|aTZ method yields the most accurate
binding energies. The less computationally demanding SC-
SMI-MP2|TZ and DFT-D|TZVP methods were shown to
prove reasonably accurate binding energy results for these
complexes, with both techniques yielding better values for
strongly bound complexes than for weakly bound ones. The
fastest electronic structure method with reasonable accuracy
was RI-DFT-D|TZVP. In terms of the force-field methods,
the widely used parm03 force field was found to yield the
best-balanced interaction energy results.
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Abstract: A diversity-oriented approach for the generation of thermochemical benchmark sets
is presented. Test sets consisting of randomly generated “artificial molecules” (AMs) are proposed
that rely on systematic constraints rather than uncontrolled chemical biases. In this way, the
narrow structural space of chemical intuition is opened up and electronically difficult cases can
be produced in an unforeseeable manner. For the calculation of chemically meaningful relative
energies, AMs are systematically decomposed into small molecules (hydrides and diatomics).
Two different example test sets containing eight-atom, single-reference, main group AMs with
chemically very diverse and unusual structures are generated. Highly accurate all-electron,
estimated CCSD(T)/complete basis set reference energies are also provided. They are used to
benchmark the density functionals S-VWN, BP86, B-LYP, B97-D, PBE, TPSS, PBEh, BH-LYP,
B3-PW91, B3-LYP, B2-PLYP, B2GP-PLYP, BMK, MPW1B95, M05, M05-2X, PW6B95, M06,
M06-L, and M06-2X. In selected cases, an empirical dispersion correction (DFT-D) has been
applied. Due to the composition of the sets, it is expected that a good performance indicates
“robustness” in many different chemical applications. The results of a statistical analysis of the
errors for the entire set with 165 entries (average reaction energy of 117 kcal/mol, dubbed as
the MB08-165 set) perfectly fit to the “Jacob’s ladder” metaphor for the ordering of density
functionals according to their theoretical complexity. The mean absolute deviation (MAD)
decreases very strongly from LDA (20 kcal/mol) to GGAs (MAD of about 10 kcal/mol) but then
was less pronounced to hybrid-GGAs (MAD of about 6-8 kcal/mol). The best performance
(MAD of 4.1-4.2 kcal/mol) is found for the (fifth-rung) double-hybrid functionals B2-PLYP-D
and B2GP-PLYP-D, followed by the M06-2X meta-hybrid (MAD of 4.8 kcal/mol). The significance
of the proposed approach for thermodynamic benchmarking is discussed and related to the
observed performance ranking also regarding wave function based methods.

1. Introduction

Especially with the rise of the density functional theory
(DFT) based zoo of electronic structure methods in the past
decade, benchmarking has become an intrinsically important
task in quantum chemistry.1-7 With state-of-the-art func-
tionals that approach the accuracy of high-level wave
function theory techniques at least for a variety of “standard”
applications,8,9 it is now becoming more and more obvious
that the evaluation of new or improved methods via bench-

marking suffers from two major problems. First, high-quality
experimental reference data are not always at hand, and it is
often impossible to produce the corresponding theoretical
data as an alternative in reasonable time spans. The
secondsbut sometimes overlookedsproblem is the compo-
sition of the test sets that is often strongly biased by factors
like availability, chemical intuition, and the professional
interest in “good” results, all leading to a pronounced
narrowness of the chemical space under consideration.

An example of the influence of such a bias is the bad
performance of the PBE10 density functional for common
benchmark sets, which stands in opposition to its good
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performance for a variety of real-life problems5 and to its
popularity in solid-state physics. The reason for the discrep-
ancy in this case is also due to the fact that the common
tests rely heavily on atomization energies. This produces a
strong bias toward an accurate description of the free atoms
relative to molecules,11,12 which is not representative for
many chemical applications.

A closer examination of the composition of existing
benchmark sets reveals another problem. For example in the
so-called Gn thermochemistry sets,2 the individual com-
pounds are explicitly selected according to the high accuracy
of the experimental reference data. This leads to an ac-
cumulation of very stable, easily accessible compounds and
thus to a lot of entries without much diverse information
regarding their electronic structure (e.g., a large number of
alkane derivatives with very similar electronic properties).
In recent years, the composition of these sets was questioned
and new benchmarks with model systems and theoretical
reference values came up.3,5,9 Because their composition is
also guided by chemical intuition, these sets are nevertheless
limited to the known chemical space, which has been proven
to be very narrow in comparison with the chemical universe
of possible compounds.13

An obvious way to open up the chemical space of test
sets is to make use of random procedures in their generation.
On the other hand, a completely randomized ansatz is not
only impractical but also counterproductive: many biases
correspond to some partial knowledge about the system of
interest and the neglect of this knowledge results in a greatly
diminished efficiency for the construction of test sets.
Therefore, the only possible way of dealing with biases in
benchmarking is the preferably complete transformation of
unperceiVed biases into known constraints. In this spirit, one
can make use of random elements constrained by systematic
and controllable specifications to avoid unsystematic and
uncontrolled criteria for the construction of benchmark sets.

On the basis of this insight, we here make a first suggestion
of how to address the “selection” problem in practice and
propose a diversity-oriented benchmarking procedure that
is inspired by the “mindless chemistry” approach of Bera et
al. for the problem of isomer-minima search.14 Our ansatz
is to randomly generate molecular systems for the calculation
of relative energies, which are then used for thermochemical
benchmarking purposes. Our goal is to produce theoretically
demanding test cases in an unforeseeable manner through
an opening of the chemical space beyond chemical intuition.
This work is also rooted in the strong belief that only robust
electronic structure methods will be useful in practice. The
term “robust” here means that reliable results are provided
even in electronically complicated situations (“extrapolative
power”). It can be expected that only robust quantum
chemical methods will provide good results also in an opened
chemical space. The interest in molecular systems and
relative energies reflects the “chemical” orientation of our
approach, but algorithms for different properties and systems
can surely be set up analogously.

2. Theory of Diversity Oriented
Benchmarking

The basic idea of our approach is the generation of what we
will call an “artificial molecule” (AM). An AM is not a
molecule in the classical sense but a randomly generated
minimum on an energetic hypersurface for a random
conglomerate of a (predefined) set of atoms. To make sure
that the generated systems are of use for quantum chemical
research, we developed the following procedure for the
generation of AMs. In the first step, the benchmark speci-
fication parameters are chosen to determine the general
conditions (i.e., the constraints to randomness) of the test
set:

1 How many systems are generated?
2 How many atoms does one AM contain?
3 How are the atoms chosen from the periodic system of

elements?
4 How are the atoms arranged in space?
5 What is the desired complexity of electronic structure

(e.g., total charge, number of open shells, or multiref-
erence character)?

6 What reaction scheme is applied?
The second step is the generation of structures, in

accordance with the answers to the first four questions. In
the third step, one has to ensure that the intended number of
molecules has the specified electronic structure according
to the fifth question. The fourth step is the generation of
reference data. This way, a vast amount of completely
different benchmark sets can be systematically generated,
characteristically depending on the countless possible an-
swers to the above named questions. It has to be kept in
mind that while the basic principle of our approach is
completely general and unbiased, any generated benchmark
set itself is necessarily constrained. We would like to
emphasize that the restrictions we have applied for the
generation of the example benchmark sets that we present
in the following paragraphs (e.g., single reference cases and
CCSD(T) reference values) are limitations of the generated
test sets but not of the mindless benchmarking approach
itself. While it would surely be a tedious task (that we found
unreasonable to undertake for the benchmarking of current
DFT methods), the use of multireference methods is in no
way incompatible with our benchmarking approach. Along
these lines, we have also excluded complicated spin states
to keep the example benchmark set generation simple, not
because our approach is generally limited in this direction
(comparison of different density functionals also becomes
problematic because they may yield different spin states as
the lowest state). When speaking of the generation of
electronically demanding test cases, it has to be kept in mind
that alongside multireference character other reasons for
electronic complexity (e.g., unusual bonding, small gaps, spin
contamination) exist. In general, one cannot say that all
multireference cases are necessarily electronically difficult
(the multiplet of an atom being an example) and vice versa
for single-reference molecules. The advantage of “mindless”
benchmarking is the transparency of the process, which turns
unperceived biases into known constraints, i.e. that it forces
the originator of a benchmark set to explicitly determine the
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boundary conditions to all dimensions of complexity found
in the test set.

We have generated two different test sets for the illustra-
tion of our approach. For both sets we initially generated
300 random AMs. All systems contain exactly eight atoms,
and only main group elements up to chlorine, excluding the
noble gases helium and neon, are considered. The two test
sets differ in their elemental composition; i.e., the atoms were
chosen randomly with different probabilities for the different
elements. For the first set, termed “MB08-931”, the elemental
probabilities were chosen so that the occurrence of the atoms
Na to Cl is one-third of the occurrence of the atoms Li to F,
which in turn is one-third of the occurrence of hydrogen (see
Table 1). For the second set, termed “MB08-ORG”, the
element probabilities were chosen to roughly reproduce the
element distribution found in organic compounds (see Table
1).15

The atoms were always placed randomly on the corners
of a cube with an initial edge length of 2 b and then freely
optimized on the PBE/TZVP10,16 level. All systems were
chosen to be uncharged, and open-shell calculations were
restricted to (low-spin) doublet states.

Only systems that converged within a limit of 100 SCF
and 100 geometry optimization steps and had a HOMO/
LUMO gap of more than 0.5 eV (PBE/TZVP) were
considered further. The number of open-shell AMs were
chosen to be about 25% of all systems. To screen out
multireference cases, an RCCSD(T)/cc-pVDZ17 calculation
was performed and systems with a T1-diagnostic larger than
0.02 or a D1-diagnostic larger than 0.10 were dropped (with
both diagnostics rounded to two digits after the decimal
point). Note that, when done automatically, checks for double
entries and correct spin states have to be included in the
benchmark set generation algorithm.

For both sets, a systematic decomposition into hydrides
(for the group 1-4 elements) and homonuclear diatomic
molecules (for the group 5-7 elements) was chosen as the
reaction scheme. The only allowed reactant beside these
products and the reactant AM is molecular hydrogen.

The stoichiometry is restricted to integer numbers. The first
three reactions from the MB08-931 set are given as an
example:

2AM(HHHCOHHH) + 0H2 f 2CH4 + 1O2 + 2H2

2AM(HHOHPHNH) + 0H2 f 1N2 + 1O2 + 1P2 + 5H2

2AM(NLiBHCHHB) + 8H2 f 4BH3 + 2CH4 + 2LiH + 1N2

The above-described settings were chosen to restrict the
test sets to small single-reference main group molecules, as
these routinely applicable (black-box type) reference methods
like CCSD(T) are known to yield results of high accuracy.
A large number of initial structures was generated because
we expected a lot of optimizations not to converge and aimed
at a set size of about 100 entries. Of course, if the size of
the test set is of importance, one can alter the scheme to
generate random systems as long as enough systems have
passed the following tests. Systems with a fixed number of
eight atoms were chosen because a variable number of atoms
seemed to be an unnecessary complication in this first study.
Furthermore, eight-atom systems are just routinely manage-
able with high-level methods. Main group elements out-
weighing chlorine were also regarded as an unnecessary
complication and the noble gases on the other side were
viewed as too uninteresting for our purpose. Transition metals
were excluded because even high-level coupled-cluster
methods are known to have problems with the complex
electronic situations in transition metal compounds, so the
generation of a high-quality reference itself would be too
demanding. The use of a cube for the initial starting
geometries was believed as simple and sufficient after a few
initial tests. An interesting alternative would be a “kick”
procedure comparable to the one of Saunders,18 which was
also used by Bera et al.14 for their isomer-minima search.
The choice of the GGA for the optimization and initial
screening is further to our disposal and might introduce a
subtle bias toward single-reference cases. The SCF and
structure optimization iteration limits were chosen to be quite
high to avoid the introduction of additional biases through
these limits. The goal of the applied threshold (gaps,
diagnostics) was to completely screen out cases with very
complex electronic structures, where CCSD(T) cannot be
assumed to yield accurate reference values.

The basis set converged T1-diagnostic is known to be a
reliable indicator for the inherent importance of nondynami-
cal electron correlation, and it is furthermore known that
multireference effects are negligible for T1-diagnostic values
of less than 0.02.19 The convergence of the T1-diagnostic
with respect to the basis set improvement is a measure for
the coupling between the one- and N-electron basis sets,
which is likely to be small for the single-reference molecules
we aim at. In any case, as the T1-diagnostic decreases with
larger one-particle basis sets (because more orbital relaxation
is necessary for the more incomplete smaller basis sets), we
can assume the T1-diagnostic already at the RCCSD/cc-
pVDZ level to be a good threshold for the rejection of
multireference cases. While the T1-diagnostic can be seen
as an average measure over the whole molecule (for which
contributions from a small problem area can be swamped

Table 1. Initial and Final Element Distributions (in percent)
for the MB08-931 and MB08-ORG Benchmark Sets

MB08-931 MB08-ORG

element initial final ratioa initial final ratioa

H 69.2 64.8 0.94 61.8 58.2 0.94
Li 3.3 3.5 1.061 1.9 1.0 0.53
Be 3.3 3.6 1.091 0.5 0.0 0.00
B 3.3 4.7 1.42 1.0 1.8 1.80
C 3.3 3.9 1.18 15.5 17.6 1.14
N 3.3 3.8 1.15 3.9 4.3 1.10
O 3.3 2.9 0.88 3.9 4.5 1.15
F 3.3 3.2 0.97 1.0 1.3 1.30
Na 1.1 1.1 1.00 1.0 0.3 0.30
Mg 1.1 1.2 1.09 1.0 1.2 1.20
Al 1.1 2.0 1.82 1.0 1.5 1.50
Si 1.1 1.4 1.27 1.9 2.4 1.26
P 1.1 1.2 1.09 1.9 2.7 1.42
S 1.1 1.7 1.55 1.9 1.9 1.00
Cl 1.1 1.4 1.27 1.9 1.3 0.68

a Ratio of final to initial distribution.
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by that of the well described rest of the molecule), the D1-
diagnostic is designed to yield a large value for systems with
only a small problematic area20 and is used as a complement
for the T1-diagnostic here. We found that a cutoff of 0.10
for the D1-diagnostic leads to results that are consistent with
the 0.02 value for the T1-diagnostic. We would like to
mention that the T1- and D1-diagnostics are not foolproof
and that it could be a possible refinement for our screening
approach to use the percentage of atomization energy
accounted for by the (T) component as a predictor for higher-
order correlation effects, as suggested by Karton et al. (which
nevertheless seems to lead to quantitatively comparable
results in almost all cases).21

As a general reaction scheme, the decomposition of the
AMs to small (mainly closed-shell) molecules was chosen.
As already mentioned, we think that this is closer to everyday
chemistry than the commonly employed atomizations which
furthermore introduce a bias for the correct description of
the molecule compared to the (mostly) open-shell atoms.
However, we have included reference values for the atomi-
zation of the AMs in the Supporting Information. While in
the present form our approach cannot deal with barrier
heights, future benchmarks will include charged compounds
with an odd number of electrons to allow investigations of,
for example, self-interaction errors in DFT.

To summarize, both sets consist of reactions with small
single-reference main group molecules, roughly three-
quarters of them being closed-shell cases. The first set was
generated with a general chemistry motivated “931” element
distribution. The second one resembles element distribution
in organic molecules more closely. Despite being single-
reference main group molecules, the generated AMs show
a large structural diversity with interesting bonding features,
and many of them are chemically very unusual (see Figures
1 and 2; example AMs are discussed in section 4.1).

3. Computational Details

After the initial DFT geometry optimizations at the PBE/
TZVP level10,16 and RCCSD/cc-pVDZ17 single point cal-
culations for the T1- and D1-diagnostics, the reference
reaction energy values were produced for the remaining
systems as follows.

The RCCSD(T) complete basis set (CBS) limit correlation
energy was extrapolated according to the method of Halkier
et al.22 using cc-pVTZ and cc-pVQZ17 data points and added
to the extrapolated SCF energy.23 Core correlation/polariza-
tion effects were estimated by using the relative energy
differences of valence RCCSD(T)/cc-pVTZ and all-electron
RCCSD(T)/cc-pCVTZ17 calculations as a correction to the
valence RCCSD(T)/CBS results. Our final reaction energies
thus correspond to all-electron CCSD(T)/CBS estimates.

These values serve as reference data for DFT single-point
calculations with the S-VWN,24,25 B97-D,26 B-P86,27

B-LYP,28,29 PBE,10 TPSS,30 PBEh31 (also known as PBE0
or PBE1PBE), BH-LYP,32 B3-PW91,33 B3-LYP,33,34 B2-
PLYP,35 B2GP-PLYP-D,36 BMK,37 MPW1B95,38

PW6B95,39 M05,9,40 M05-2X,9,41 M06,9,42 M06-L,9,43 and
M06-2X9,42 density functionals using TZVPP16 and QZVP44

Gaussian AO basis sets. In standard notation these are written

as (5s2p1d)/[3s2p1d] and (7s3p2d1f)/[4s3p2d1f] for hydro-
gen, (11s3p)/[5s3p] and (15s6p2d1f)/[6s4p2d1f] for lithium,
(11s4p)/[5s3p] and (15s7p2d1f)/[7s4p2d1f] for beryllium,

Figure 1. Examples for artificial molecules (AMs) from the
MB08-931 benchmark set.

Figure 2. Examples for artificial molecules (AMs) from the
MB08-ORG benchmark set.
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(11s6p2d1f)/[5s3p2d1f] and (15s8p3d2f1g)/[7s4p3d2f1g] for
boron to fluorine, (14s8p1d)/[5s4p1d] and (20s12p4d2f)/
[9s5p4d2f] for sodium, (14s8p1d)/[5s4p1d] and (20s12p5d2f)/
[9s5p5d2f] for magnesium, and (14s9p2d1f)/[5s5p2d1f] and
(20s14p4d2f1g)/[9s6p4d2f1g] for aluminum to chlorine.

All DFT treatments of open-shell species were performed
unrestricted. For the local and semilocal functionals and for
the second-order perturbation correction of the double-
hybrids, the RI approximation for two-electron integrals45,46

has been used. For all functionals except S-VWN, PBEh,
TPSSh, BH-LYP, B3-PW91, BMK, MPW1B95, M05, M05-
2X, PW6B95, M06, M06-L, and M06-2X, the DFT-D26

correction for London dispersion energy was applied (added
suffix “-D”). Its impact is small to moderate for the tested
functionals (for a more detailed discussion, see below) mainly
because relatively small eight-atom systems have been
considered. All coupled-cluster calculations were done using
Molpro 2006.1,47 for the MPW1B95 and B3-PW91 calcula-
tions, we employed Gaussian 03,48 and the PW6B95, M05,
M05-02X, M06, M06-L, and M06-2X calculations were
carried out with NWChem 5.1.49 For all other calculations
we used Turbomole 5.10.50,51

4. Results and Discussion

4.1. Benchmark Set Generation. For the MB08-931
example set, 162 (out of 300) geometry optimizations
converged, but four of them had a HOMO/LUMO gap
smaller than 0.5 eV. From the remaining 75 closed-shell and
83 open-shell systems, all closed-shell and the first 25
randomly generated open-shell systems were chosen. Twelve
of these systems were identical to others, four had substantial
multireference character, and for one system the RCCSD(T)/
cc-pVQZ calculation did not converge. As a result, the first
set contains 83 entries, with 21 (25%) open-shell cases,
ranging in size from 11 to 44 electrons.

For the MB08-ORG example set, 176 (out of 300)
geometry optimizations converged, but for three of them the
RCCSD(T)/cc-pVDZ calculations did not converge, and three
of them had a HOMO/LUMO gap smaller than 0.5 eV. From
the remaining 82 closed-shell and 88 open-shell systems, all
closed-shell and the first 27 randomly generated open-shell
systems were chosen. Eleven of these systems were identical
to others, six had substantial multireference character, and
for eight systems the all-electron RCCSD(T)/cc-pCVTZ
calculation did not converge. As a result, the second set
contains 84 entries, with 19 (23%) open-shell cases, ranging
in size from 12 to 50 electrons.

Two AMs of the organic set were also generated within
the MB08-931 set (MB08-931 entries 12 and 49), so that
the merging of MB08-931 and MB08-ORG leads to a
benchmark set with 165 entries that is dubbed in the
following (and for future reference) MB08-165. This set
contains 39 open-shell systems of which nine have a
significant amount of spin contamination (>0.03 deviation
from the expected 〈 Ŝ2〉 value of 0.75 at the HF-level).

Not surprisingly, after the generation and selection process,
the final element distributions turned out to be different from
the one used as guideline. The initial and resulting distribu-

tions are both given in Table 1. For the MB08-931 set no
element is clearly underrepresented (less than 75% of the
guideline distribution), while only aluminum and sulfur are
clearly overrepresented (more than 150% of the guideline
distribution). For the organic set, Li, Na, and Cl atoms are
underrepresented and beryllium was completely screened out,
while only boron is clearly overrepresented. The resulting
distributions thus reflect the finite size of the sets, but another
factor that also seems to be of influence is the element-
specific different complexity of possible interactions. For
instance, beryllium is found in seven out of the 300 initially
generated “organic” structures, whereof three could not be
optimized and the other four are skipped as open-shell
systems, so that none is found between the finally selected
ones. It is important to notice that the resulting distributions
nevertheless nicely follow our initial intentions for the
composition of the two example benchmarks as “931” and
“ORG” sets.

Figures 1 and 2 show eight systems as examples from each
test set. Both sets contain a number of chemically reasonable
systems like e, f, and l, but while the organic set includes
some “conventional molecules” like i (ethane) and k (metha-
nol/H2), nearly 30% of the 931 set are made up by
fragmented systems like h and j. A handful of systems in
both sets are quite complex like d and o, and a good part of
both sets consists of chemically very unusual systems, like
a, g, and n. The coordinates of all systems can be found in
the Supporting Information.

4.2. Benchmark Calculations. OVerView and
Discussion of the Reference Values. For the given single-
reference main group systems, already our valence CCSD(T)/
CBS reference data can be assumed to be of high accuracy.
In addition, because DFT functionals include core-correla-
tion, we added an estimate for these effects to our reference
data. It is based on the relative energy difference between
valence RCCSD(T)/cc-pVTZ and all-electron RCCSD(T)/
cc-pCVTZ calculations. As expected, this difference is small
(about 1 kcal/mol on average with a maximum of 5 kcal/
mol, compared to mean absolute reaction energies of 117
kcal/mol). For a typical density functional, it has little impact
on the MAD if valence or all-electron data are taken as
reference (e.g., a difference of less than 0.5 kcal/mol for PBE-
D/QZVP).

The reference reaction energies should be briefly discussed
first. The 931 set contains reaction energies between -199
and 434 kcal/mol and the organic set contains reaction
energies between -571 and 302 kcal/mol. Opposed to the
commonly employed atomization benchmarks that exclu-
sively consider endothermic reactions, our data contain
almost evenly around zero distributed reaction energies (see
Figure 3). This means that without any applied bias in this
direction our algorithm has generated simultaneously very
stable and very unstable AMs. This is a greatly appreciated
feature for a general thermodynamic benchmark set for
chemistry where endothermic as well as exothermic reactions
are of interest.

OVerView of the DFT Data. This paragraph gives a short
overview of the tables and figures with DFT data that are
discussed in detail in the next paragraph.
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Figure 4 shows the root-mean-square deviation (rmsd) over
11 density functionals (S-VWN, PBE-D, B97-D, TPSS-D,
PBEh, B3-LYP-D, M05, M05-2X, BMK, MPW1B95, and
B2PLYP-D with the QZVP basis set) for the different entries
of the two benchmark sets. This analysis is used to spot and
check exceptionally problematic cases in the test sets, but it
can clearly be seen that both sets are free from sizable
outliers.

The mean absolute deviation (MAD), mean deviation
(MD), rmsd, and the error spread (∆, difference of maximum
and minimum deviations) for representative density func-
tionals (and for comparison also for HF and some coupled-
cluster approximations) for both sets and the combined set
are presented in Table 2. Low-order perturbation theory (i.e.,
MP2) has also been considered, but as expected, this and
related methods suffer from spin-contamination in some of
the open-shell systems. This makes a comparison with the
DFT methods difficult, and therefore, we omit these methods
in the present work. The MADs for DFT are also shown
graphically in Figure 5. These statistical data are used for
the evaluation of the different functionals and to find
indicators for the example benchmark set quality. Additional
information can be extracted from the histograms in Figure
7, where the error distribution for the functionals with the

lowest overall MAD (M06, MPW1B95, BMK, M06-2X,
PW6B95, and B2-PLYP-D) is shown. To summarize the
results, Table 3 shows DFT and WFT methods in order of
their accuracy for the combined MB08-165 set. A complete
listing of all results can be found in the Supporting
Information.

Discussion of the DFT Data. Turning to Table 2, we first
note the very similar performance of all tested density
functionals for the two different test sets. It can therefore be
concluded that a specific element distribution does not have
a substantial impact on the difficulty of the AMs. This clearly
supports previous experience that the main distinction for
modern electronic structure methods is between main group
chemistry and transition metal compounds. Methods that
perform well for organic chemistry are usually also applicable
to general main-group systems.

In Figure 6 we plotted the relative MAD per element in
order to investigate possible element-specific characteristics
of the observed errors. These values were obtained by
dividing the absolute reaction energy errors between the
atoms of the AM according to their number, taking the
average over all reactions and 11 functionals, weighting this
value with the element occurrence in the set, and dividing it
by the corresponding value for hydrogen (which is set to
unity in this way). Values larger (smaller) than unity thus
indicate higher (smaller) “difficulty” for the corresponding
element. While not much can be concluded for the MB08-
931 set, it looks as if oxygen is rather problematic (presum-
ably because of the open-shell reaction product O2) in the
MB08-ORG set. A trend can be observed for the second-
row where the errors increase with atomic number. A
possible reason why sodium is a particularly easy case in
both sets could be that it only occurs in simple ionic
structures. We expect that a similar error analysis would be
extremely helpful for semiempirical approaches where often
atom-specific parameters are used. The finding that DFT does
not produce very pronounced elemental error distributions
is in agreement with its fundamental “ab initio”-like character.

The second conclusion that can be drawn from Table 2 is
that albeit basis set incompleteness effects are less severe
for DFT than for WFT methods, a thorough analysis should
be made at the QZVP one-electron basis set level. Note that
the CCSD(T)/cc-pVDZ level of theory (which is quite often
used in the literature) performs a lot worse than any tested
DFT approach (except LDA)! On the other hand, the
extrapolated CCSD(T)/cc-pV(DT)Z data are comparable
even to CCSD(T)/cc-pVQZ, which seems to be an important
result for future generation of similar reference data for larger
systems.

In some cases the now well-established DFT-D method26

to account for nonlocal London dispersion effects has been
applied, which is indicated by the suffix “-D” after the
functional name. The MAD values with and without the
dispersion correction for selected functionals are given in
Tables 2 and 3 for comparison. Because of the relatively
small size of the systems studied, dispersion effects are
moderate. Except for PBE, application of this correction
always leads to a lowering of the MAD ranging from 0.7
kcal/mol (TPSS) over 1.7 kcal/mol (B2-PLYP) to 2.2 kcal/

Figure 3. Distribution of reaction energies of both benchmark
sets.

Figure 4. Rmsd averaged over 11 density functionals with
the QZVP basis (see the text) for all reactions of both
benchmark sets.
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mol (B3-LYP). This is consistent with previous experience
about the implicit account of dispersion effects by the
electronic part of the functionals.52

Comparing the performance of the different functionals
(Table 2 and Figure 5), one finds that the observed accuracy
fits nicely to the “Jacob’s ladder” metaphor of Perdew et
al.53 for the ordering of density functionals based upon the
information of electron density they use. Suited on the first
rung (local density approximation, LDA), the S-VWN
functional yields quite bad results, with MADs of 22.4
(MB08-931 set), 17.9 (MB08-ORG set), and 20.3 kcal/mol

(MB08-165 set), respectively. Note that exchange-only LDA
(Slater-Dirac exchange) produces significantly better results
than S-VWN.

The biggest improvement is found when climbing up
to the second rung (generalized gradient approximation,
GGA). Our examples PBE-D (MADs of 10.0, 9.6 and 9.8
kcal/mol) and B97-D (9.7, 10.9 and 10.3 kcal/mol) yield
similar results, although we note a slightly better perfor-
mance of the nonempirical (PBE) compared to the
empirically parametrized functional. The next step up the
ladder to the third rung (meta-GGA) with TPSS-D (9.2,

Table 2. Statistical Performance Indicators (in kcal/mol) for the MB08-931, MB08-ORG, and Both (MB08-165) Benchmark
Sets

MB08-165

MB08-931 QZVP MB08-ORG QZVP TZVPP QZVP

entry method MAD rmsd MAD rmsd MAD MD rmsd ∆Min-Max MAD MD rmsd ∆Min-Max

DFT
1 S-VWN 22.4 28.7 17.9 24.4 19.4 14.1 25.5 134.9 20.3 16.2 26.8 138.5
2 Slater-Dirac 16.2 20.9 14.2 18.6 14.9 7.6 19.4 112.5 15.1 9.9 19.8 95.9
3 PBE-D 10.0 12.4 9.6 12.0 9.6(9.2) a 2.8 12.4 86.0 9.8 4.9 12.2 69.6
4 B97-D 9.7 12.3 10.9 14.6 11.5 -5.7 15.2 92.3 10.3 -3.5 13.5 87.1
5 TPSS-D 9.2 11.8 10.7 13.7 10.4(11.1) a -2.7 14.1 79.5 10.0 -0.7 12.8 66.3
6 PBEh 8.0 10.0 9.1 12.0 9.3 -2.9 12.7 86.9 8.6 -0.5 11.1 69.6
7 B3-LYP-D 6.2 8.0 7.0 9.4 7.8(10.0) a -4.8 10.5 55.4 6.6 -2.7 8.8 49.1
8 M05 6.4 8.0 7.5 9.6 8.0 -3.7 10.1 58.7 7.0 -1.3 8.9 57.6
9 M05-2X 7.8 11.3 5.7 8.2 6.3 1.2 8.9 70.0 6.8 3.5 9.9 72.2
10 BMK 5.1 6.3 5.9 8.0 6.5 -2.8 8.8 54.4 5.5 -1.1 7.3 50.9
11 MPW1B95 5.6 6.9 5.6 7.3 6.1 -1.9 8.2 54.7 5.6 0.1 7.1 40.8
12 M06 6.3 8.1 5.6 7.0 7.2 -4.3 9.6 48.5 6.0 -2.2 7.6 40.4
13 M06-2X 5.0 7.1 4.6 6.0 4.6 2.1 6.2 44.6 4.8 3.9 6.6 33.1
14 PW6B95 4.5 5.8 5.1 6.5 5.5 -2.8 7.7 48.6 4.8 -0.7 6.1 33.9
15 B2-PLYP-D 3.7 4.8 4.5 6.1 6.2(7.9) a -5.6 8.4 38.7 4.1 -2.6 5.5 29.7

WFT
16 HF 24.0 29.6 28.0 37.0 26.6 -23.0 33.6 133.2 26.1 -22.4 33.7 158.7

MAD MD rmsd ∆Min-Max

17 CCSD/cc-pVQZ 5.6 -5.2 7.7 34.3
18 CCSD(T)/cc-pVDZ 14.2 -13.9 18.2 78.3
19 CCSD(T)/cc-pVTZ 5.5 -5.3 7.0 24.6
20 CCSD(T)/cc-pVQZ 2.6 -2.5 3.4 11.8
21 CCSD(T)/cc-pV(DT)Z 2.8 -2.4 3.8 17.8

a Values without DFT-D26 dispersion correction in parentheses.

Figure 5. MAD of different density functionals for the MB08-165 set.
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10.7, and 10.0 kcal/mol) shows no advancement at all,
which is in agreement with the results of two recent
studies5,12 on “real” molecules.

The inclusion of nonlocal information from occupied
orbitals by adding Fock-exchange on the fourth rung (hyper-

GGA or hybrids) with PBEh (8.0, 9.1 and 8.6 kcal/mol) and
B3-LYP-D (6.2, 7.0, and 6.6 kcal/mol) represents again a
big step toward higher accuracy. However, less is gained
from the GGA level to hybrids than from LDA to GGAs,
i.e., it becomes more and more difficult to climb up the
ladder.

Turning to the performance of the hybrid-meta-GGAs
(which are mostly represented by highly parametrized forms),
one finds a mixed picture. For the M05 and M06 family of
functionals, it was possible to incorporate dispersion effects
through flexibility and parametrization, and therefore no
dispersion correction was applied for these functionals.
Compared to conventional hybrids like B3-LYP-D, the MAD
increases even slightly for M05 and M05-2X. BMK and
MPW1B95 perform a bit better and the best results in this
class are found for the PW6B95 (4.5, 5.1, and 4.8 kcal/mol)
and M06-2X (5.0, 4.6, and 4.8 kcal/mol) functionals.
However, in the SCF calculations with the M06 functionals,
we noted in several cases convergence problems, and a few
AMs therefore had to be omitted. This behavior is known
in the literature.54 Note also how well MAD, rmsd, and
maximum errors provide the same picture about performance,
which is a clear indication for the statistical quality of the
sets.

The B2-PLYP-D and B2GP-PLYP-D double-hybrid func-
tionals include nonlocal information about correlation, which
is absent in any of its competitors, via the second-order
perturbation correction. They can therefore be classified as
true (but empirical) fifth-rung density functionals. This view
is indeed supported by the very good performance of B2-
PLYP-D for all benchmark sets with MADs of 3.7, 4.5, and
4.1 kcal/mol, which is again an appreciable step into the right
direction. B2GP-PLYP-D that contains more nonlocal in-
formation compared to B2-PLYP-D (65 vs 53% Fock-
exchange and 36 vs 27% MP2-type correlation) shows
indistinguishably good performance. Note that also the
maximum errors for the double-hybrids are lower than for
any other tested functional (28-30 vs 33.1 kcal/mol for the
best other, which is M06-2X).

While the conventional DFT approaches are shown to have
reached the basis set limit already at the TZVPP level, the

Figure 6. Relative MAD as distributed over the elements (for
details, see the text) for the MB08-931 and the MB08-ORG
set.

Table 3. Performance (statistical descriptors in kcal/mol) of
DFT and WFTa Methods for the Combined MB08-165
Benchmark Set

method rmsd MAD

CCSD(T)/cc-pVQZ 3.38 2.61
CCSD(T)/cc-pV(DT)Z 3.80 2.82

B2-PLYP-D/QZVP 5.49 4.09

PW6B95/QZVP 6.14 4.78
M06-2X/QZVPa 6.59 4.82
B2-PLYP/QZVP 6.63 5.12

CCSD(T)/cc-pVTZ 7.01 5.45
MPW1B95/QZVP 7.13 5.64
BMK/QZVP 7.26 5.53
M06/QZVPa 7.60 5.96
CCSD/cc-pVQZ 7.69 5.64

B3-LYP-D/QZVP 8.75 6.58
M05/QZVP 8.88 6.95
B3-PW91/QZVP 9.31 7.04
M05-2X/QZVP 9.89 6.83

B3-LYP/QZVP 10.61 8.19
TPSSh/QZVP 10.98 8.38
PBEh/QZVP 11.09 8.62

B-P86-D/QZVP 11.50 9.27
B-LYP-D/QZVP 12.14 9.23
PBE-D/QZVP 12.24 9.81
TPSS-D/QZVP 12.85 9.97
B97-D/QZVP 13.54 10.27

BH-LYP/QZVP 16.66 12.03
M06-L/QZVPa 17.17 11.13
CCSD(T)/cc-pVDZ 18.24 14.25
S-VWN/QZVP 26.78 20.31
HF/QZVP 33.68 26.07

a Only valence electrons have been correlated. b Two (four for
M06-L) entries have been omitted because SCF convergence is
lacking.

Figure 7. Error distribution for the density functionals with
the lowest MADs. The binning interval is 2 kcal/mol.
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double-hybrids substantially benefit from a further basis set
enlargement because of the included perturbation correction.

Additional information about the performance of the
functionals with the lowest MADs (M06, MPW1B95, BMK,
M06-2X, PW6B95, and B2-PLYP-D) can be taken from
Figure 7, which displays error distributions in a 5 kcal/mol
interval. The hybrid-GGAs M06, MPW1B95, and BMK
show a behavior very similar to each other, while the M06-
2X and the PW6B95 functionals seem to be slightly superior.
Nevertheless, they cannot reach the accuracy of B2-PLYP-
D, which shows the sharpest and most well-behaved Gaus-
sian-shape error distribution.

This view is further supported by Table 3, where DFT
and WFT methods are shown in order of their accuracy for
the combined MB08-165 set. As additional functionals, BH-
LYP, B3-PW91, and M06-L are included here for compari-
son. On the basis of the MAD, we tried to identify groups
of methods with similar performance. Perusing Table 3, one
finds that B2-PLYP-D outperforms the highly parametrized
meta-hybrid GGAs, which in turn are even better than
CCSD(T) with a sizable AO basis. In the next group, we
find three other meta-hybrids that are better than B3-LYP,
even when it is corrected for missing dispersion effects. Two
almost nonempirical hybrids (TPSSh and PBEh) and uncor-
rected B3-LYP follow, which are only slightly better than
typical GGAs. Here, the old B-P86 seems to be most robust,
although we note only a small (probably statistically
insignificant) difference between the best and worst (B-P86
and B97-D) GGAs. This seems to be important in many
solid-state or surface-science applications, where semilocal
functionals are dominant.

5. Concluding Remarks

We present a diversity-oriented approach for the preferably
unbiased generation of thermochemical benchmark data. We
have addressed the “selection” problem through the random
generation of “artificial molecules” (AMs) in accordance with
systematic and controllable generation specifications. The
most appealing feature of our approach in comparison to
existing test sets is the opening of chemical space, which
produces electronically demanding cases in an unforeseeable
manner. It is hoped that these sets can provide a clear,
unbiased, statistically significant, and comprehensive picture
about the performance of electronic structure methods at a
minimum of computational effort.

For the generation of two example sets, we have chosen
several strict constraints (that could have been released or
further “randomized”) to keep the examples simple and to
ensure a high accuracy of the reference data. We ended up
with two test sets with chemically very diverse and unusual
structures, despite the single-reference main group nature of
all generated AMs. For the evaluation of the benchmark sets,
we performed DFT calculations, applying several different
density functionals, and compared them to highly accurate
CCSD(T)/CBS(all electron) estimates. We have found a
systematic improvement along “Jacob’s ladder” for most of
the tested functionals, which is a promising first result for
our “mindless” approach and supports the significance of
Perdew’s metaphor.

Concerning individual density functionals and wave func-
tion based methods, the following main conclusions can be
drawn:

1. Even for these relatively small systems, B3-LYP is not
better than other simple hybrids. Only when the relatively
large effect of the dispersion correction (about 2 kcal/mol
lowering of the MAD) is included does it outperform the
modern and highly parametrized M05 meta-hybrid GGAs
that seem to represent relatively inaccurate points in the
M0X-parameter space (this also holds for M05-L). However,
the performance of B3-LYP for larger molecules is known
to deteriorate substantially, and since more accurate and
robust alternatives are available, we cannot recommend its
application in general.

2. Although no atomizations have been considered, the
PBE family of functionals (including TPSS and hybrid
versions) performs slightly worse than B3-LYP. This is
contrast to some recent applications in, for example, organic
chemistry where they outperform B3-LYP and is likely a
result of the relatively small size of the systems. As known
from previous work on van der Waals complexes, the PBE(h)
functionals simulate to some extent medium-range correlation
effects related to short-range dispersion55 that seem to be of
some importance even in eight-atom systems.

3. Concerning the meta-hybrid GGAs, the M06 param-
etrization seems to be a clear step forward, although we also
note the good performance of the less parametrized PW6B95
functional. However, meta-GGAs or meta-hybrid-GGAs do
not in general represent improvements compared to their
GGA counterparts, as seen for the PBE(h)/TPSS(h) pairs.

4. The best functionals contain a relatively large fraction
of nonlocal Fock-exchange (about 40-60%) and adding
more seems to improve the results (the only exception to
this rule is BH-LYP). This is consistent with our choice that
only main-group systems have been considered. By con-
struction the sets do not contain cases with strong correlation
effects (for which semilocal functionals should work better)
but seem to be dominated by self-interaction error including
cases (which are better described with “high-X” functionals).
This bias is not rooted in the basic ansatz of “mindless”
benchmarking but a result of the choice of the necessary
(single) reference CCSD(T) method as a basis for evaluation.

5. The dispersion-corrected double-hybrid functionals,
despite having only three (two “electronic”) adjustable
parameters (not counting the global, “black-box”-type disper-
sion correction), outperform all other tested DFT approaches
by a significant margin and yield results in between
CCSD(T)/cc-pVTZ and CCSD(T)/cc-pVQZ quality. The fact
that two different parametrizations (B2-PLYP and B2GP-
PLYP) provide similar rmsd values indicates the robustness
of the general idea. This could not be expected, because
standard MP2 often breaks down in electronically compli-
cated situations. This supports the previous claim that the
Kohn-Sham orbitals greatly improve the behavior of the
perturbation treatment used in the double-hybrids.

6. The more approximate coupled-cluster treatments
provide results for the MB08-165 set, in full agreement with
common knowledge about their behavior: the (T)-correction
is of utmost importance (e.g., CCSD/cc-pVQZ is not better

“Mindless” DFT Benchmarking J. Chem. Theory Comput., Vol. 5, No. 4, 2009 1001



than the best meta-hybrids), single DZ (or even TZ) AO basis
set computations are a waste of computer time, and two-
point extrapolations provide results that improve like one
step in cardinal number (i.e., DT-extrapolation yields results
comparable to a single QZ calculation). This further supports
the significance of the proposed test set.

All in all, it is hoped that this work will help to pave the
way for improved electronic structure methods in chemistry.
Future work in this promising direction will explore in
particular larger AMs than the eight-atom systems considered
herein.
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Abstract: We demonstrate the use of graphical processing units (GPUs) to carry out complete
self-consistent-field calculations for molecules with as many as 453 atoms (2131 basis functions).
Speedups ranging from 28× to 650× are achieved as compared to a mature third-party quantum
chemistry program (GAMESS) running on a traditional CPU. The computational organization
used to construct the Coulomb and exchange operators is discussed. We also present results
using three GPUs in parallel, combining coarse and fine-grained parallelism.

Introduction

Graphical processing units (GPUs) and related massively
parallel processors are rapidly emerging as a promising
architecture for many methods in computational chemistry,
including molecular dynamics1,2 and quantum chemistry.3-9

Previously, we demonstrated5,6 that gains in efficiency of
up to 130× over conventional CPUs could be achieved for
two-electron Coulomb repulsion integral (ERI) evaluation
using NVIDIA graphics cards with algorithms well-tuned
to the stream processing10 architecture underlying modern
GPUs. Here, we extend our initial implementation to
complete formation of the Fock matrix, which forms the
dominant computational step in both Hartree-Fock and
density functional self-consistent-field calculations. Our
implementation as described here is limited to s- and p-type
atom-centered Gaussian basis functions, although exten-
sion to higher angular momenta is underway. We assess the
efficiency of the resulting code by comparison to
GAMESS,11 a mature third-party quantum chemistry pack-
age. Because of the observed 2 order-of-magnitude increase
in efficiency, we are able to carry out “on-the-fly” ab initio
Monte Carlo simulations of water clusters, and the resulting
equilibrium structures are in good agreement with previous
studies using local optimization. We also carry out direct
SCF calculations on a variety of molecules containing up to

453 atoms (2131 basis functions). These calculations show
that the GPU can be as much as 650× faster than conven-
tional CPUs, and calculations on molecules with hundreds
of atoms can be completed in minutes. Precision remains a
critical issue that limits the size of molecules that can be
treated accurately. The newest generation of NVIDIA cards
includes double-precision (DP) support, and we comment
on this briefly.

We begin with a brief overview of the GPU architecture,
focusing on the issues that are most relevant to the current
work. More detailed descriptions can be found elsewhere.12

We then describe the J- and K-matrix formation algorithms,
followed by results and discussion. All numerical results were
first obtained on a single GeForce 8800GTX card. However,
as we were preparing the manuscript, NVIDIA released a
new generation of GPUs (G200) that supports DP floating
point operations in hardware. Thus, we also present results
obtained on one GeForce 280GTX card as well as on a multi-
GPU system containing three such cards running in parallel.
The hardware overview and performance sections refer to
the G80 GPU hardware. Some parts of our code invoke DP
calculations on the GPU, and we comment on this briefly.
Everywhere in this Article we use NVIDIA’s CUDA12

(Compute Unified Device Architecture) programming inter-
face that allows control of the GPU via an extension of the
standard C language.

Overview of Graphics Hardware

GPUs are an example of a stream processing architecture,10

emphasizing fine-grained parallelism and efficient utilization
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of the memory hierarchy. Typical GPUs contain many
arithmetic units, which are arranged in groups that share fast
access memory and an instruction unit. For example, the
GeForce 8800GTX graphics card, which was released in late
2006, has 128 arithmetic units (also referred to as streaming
processors, or SPs) organized into 16 streaming multiproces-
sors (SMs). Each SM (consisting of 8 SPs in the 8800GTX)
has its own instruction unit and thus operates independently
of the other SMs. The SPs comprising an SM operate
together in single instruction multiple data (SIMD) fashion.
In other words, at any moment, all 8 SPs on an SM are
executing exactly the same instruction on different data
streams.

Because the computational units of the GPU operate in
parallel, problems should be split into a set of smaller tasks
(threads) that are distributed among the different processors.
In NVIDIA’s CUDA paradigm, all threads are organized into
a 1D- or 2D-grid of 1-, 2-, or 3D blocks with up to 512
threads in each block. The choice of grid topology is dictated
by the particular problem under consideration; in our case,
we use a 2D grid of 2D blocks. Threads in the same block
are always executed on the same multiprocessor, providing
them access to the SM’s shared memory for fast data
exchange. In contrast, distinct blocks are not guaranteed to
be executed on the same SM. This means that distinct blocks
must communicate through the main GPU memory, which
is much slower (by 2 orders of magnitude) than the shared
memory. In addition, block execution cannot be efficiently
synchronized. Therefore, any efficient GPU algorithm should
avoid expensive interblock data transfer, having all inter-
thread communication, if any, occur within blocks. The
hardware splits the thread blocks into warps with 32 threads
in a warp, which are processed by SMs in SIMD fashion
with all 32 threads executed by 8 streaming processors in 4
clock cycles. This SIMD execution model requires additional
effort when developing GPU-based algorithms, because all
threads in the same warp must execute exactly the same set
of instructions. A typical case demonstrating violation of this
requirement and subsequent deleterious consequences is a
simple loop where the number of iterations is determined at
runtime. If there are threads in a warp that complete their
loop as the others continue iterating, the idle threads will
still execute the unnecessary loop instructions until the last
thread in the warp is done. Such idle threads, thereby, occupy
the hardware resources, which otherwise would be used for
useful work, and degrade the algorithm performance.

Several basic strategies for efficient execution on the GPU
architecture can be delineated.

(1) The first is data localization. Contiguous threads should
access contiguous DRAM addresses to coalesce multithread
memory instructions into one memory load/store operation.
Otherwise, the overall memory bandwidth can drop by a
factor of 10 or even more, completely obviating the com-
putational advantage of the GPU.

(2) The second is little interthread communication. Most
streaming-type architectures (including NVIDIAs) do not
provide efficient tools for fast interthread data exchange,
except when threads belong to the same block. All com-

munication must be restricted to threads within the same
block, and ideally there is no communication between
threads.

(3) The third is elimination of memory access collisions.
Neither CUDA nor the NVIDIA hardware support floating-
point atomic memory operations. In other words, if two or
more threads write to the same memory address at the same
instant of time, the result is unpredictable. It is therefore
critical to ensure that potential memory access collisions are
avoided, which requires careful attention to the relationship
between a thread and the memory it will write to.

(4) The fourth is dense computing. Because thread warps
are processed in SIMD fashion, it is imperative to keep the
whole warp busy. If some threads in a warp are not carrying
out useful work, performance degradation will occur. Be-
cause of the efficient warp scheduler, there is little penalty
if all threads in a warp are idle; in this case, the entire warp
will be removed from execution scheduling.

Self-Consistent-Field Calculations

The evaluation of a large number of two-electron repulsion
integrals (ERIs) over N atom-centered basis functions is one
of the most computationally intensive tasks in any ab initio
Molecular Orbital (MO) or Density Functional Theory (DFT)
approach. These integrals are given by:

where the φ are linear combinations (contractions) of atom-
centered Gaussian basis function primitives. In our previous
work,6 we explored three different algorithms for ERI
evaluation on GPU. The algorithms possess different granu-
larity of the problem decomposition and cover a wide range
of possible thread-integral mapping strategies. It was found
that the so-called “1 Thread - 1 Contracted Integral” (1T1CI)
algorithm was the most efficient at generating the set of all
contracted integrals. Another approach, “1 Thread - 1
Primitive Integral” (1T1PI), was the fastest in primitive
integral evaluation. However, the subsequent integral trans-
formation step, leading to the final set of contracted integrals,
was not very efficient and sometimes required so much labor
as to mitigate the advantage of the 1T1PI mapping strategy.
We also observed that the time required to transfer calculated
ERIs from GPU to CPU memory can be comparable to the
ERI calculation time due to limited CPU-GPU bus band-
width.6

This removes the need for the problematic primitivef
contracted integral transformation and limits the GPU-CPU
communication to matrices of size O(N2), where N is the
number of primitive basis functions. In this case, GPU-CPU
communication requires a negligible amount of the total time.
We also use an incremental Fock matrix formation procedure
(“Fock matrix updating”),13 where the GPU computes only
the difference between Fock operators in successive itera-
tions. This has the usual advantage of minimizing the number
of Fock matrix elements that need to be computed, especially
as convergence is reached in later iterations. However, an

(φµφν|φλφσ) )

∫∫φµ( rb1)φν( rb1)
1

| rb1 - rb2|
φλ( rb2)φσ( rb2) d rb1 d rb2 (1)
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additional advantage in the present context is that the
incremental Fock matrix procedure is numerically more
accurate when integrals are generated with limited, that is,
32-bit, precision.

In Hartree-Fock (HF) calculations for molecules with up
to a few thousand basis functions, most of the computational
time is spent on formation of the Fock matrix, comprised of
one-electron, Coulomb, and exchange contributions:

where C is the matrix of the molecular orbital (MO)
coefficients in the atomic orbital (AO) basis, and Hcore

includes all one-electron terms. We construct the J- and
K-matrices entirely on the GPU and transfer the resulting
matrices to the CPU, where they are augmented with the
one-electron term to yield the final Fock matrix. Subsequent
SCF operations, such as the transformation of F to an
orthogonal basis set and its subsequent diagonalization, are
performed either on the GPU (dgemm calls to the NVIDIA
CUBLAS library) or on the CPU (dsyevd calls to the Intel
MKL 10.0.3.020 library). All operations performed on the
CPU are carried out in full 64-bit arithmetic, while the
operations on the GPU may be carried out in 32-bit, 64-bit,
or hybrid of 32-bit and 64-bit arithmetic as discussed below.

Organization and Prescreening of Integrals

Efficient algorithms on the GPU require careful attention to
the relationship between data storage and computation. We
view the fundamental data structure in the direct SCF
problem as an N2 × N2 matrix of integrals, where the row
and column indices correspond to [µν| (bra) and |λσ] (ket)
pairs; two such pairs, when combined together, index a
primitive [µν|λσ] integral. For each bra and ket pair, one
can define a Schwartz upper bound14 such that the product
of the bounds for bra and ket provides an upper bound to
the corresponding [bra|ket] integral. The left panel of Figure
1 depicts this structure graphically for the specific case of

the ethane molecule, using blue-pink coloration to denote
the magnitude of the corresponding bound. The bra and ket
pairs are sorted according to µν and λσ basis function types
(our code currently supports s- and p-type basis functions,
although implementation of higher orbital momentum func-
tions is underway; and there are three possible combinations
if s- and p-functions are involved, ss, sp, and pp), resulting
in an ERI grid that is well ordered with respect to [µν|λσ]
integral types. As we have discussed previously,6 this
grouping makes it possible to efficiently calculate the
different angular momentum classes of integrals. However,
incorporating prescreening into the algorithm (ignoring
integrals that are known by the Schwartz bound to be below
a given numerical threshold) leads to load balancing prob-
lems because the integrals that still need to be computed are
scattered in irregular fashion throughout the integral matrix.
Thus, we further presort the bra and ket pairs (within each
angular momentum class) according to the pair’s contribution
to the Schwartz bound. This leads to a well-ordered integral
grid as shown in the right panel of Figure 1. This arrangement
of the integral matrix leads to efficient algorithms on the
GPU, as discussed below.

J-Matrix Algorithm

The J-matrix is formed directly from primitive ERIs using
the 1T1PI algorithm, in which each GPU thread evaluates
one primitive ERI (or, as we have discussed previously,6 a
batch of ERIs when higher than s angular momentum basis
functions are involved). The elements of the J-matrix are
given as:

Following conventional usage,15-17 we use parentheses or
brackets throughout to indicate that the Greek indices refer
to contracted or primitive basis functions, respectively. We
build the J-matrix directly from primitive integrals as:

Figure 1. Illustration of ERI organization for J- and K-matrix construction, using data obtained from a representative calculation
on ethane. The row and column indices correspond to bra and ket pairs of a given primitive integral, and the coloration indicates
the magnitude of the Schwartz upper bound for a given integral. After the ket and bra pairs are ordered by angular momentum,
the grid on the left is obtained. The sparse structure of the resulting grid hampers effective parallelization because of load
imbalance. Further sorting of the ket and bra pairs within each angular momentum class according to the magnitude of each
pair’s contribution to the Schwartz upper bound leads to the grid on the right, which is well-suited for computations on the GPU.

F(C) ) Hcore + J(C) - 1
2

K(C) (2)

J(µν) ) ∑
(λσ)

P(λσ)(µν|λσ) (3)
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which is then contracted into the final J-matrix:

where µi denotes the ith primitive function contributing to
the µth contracted function. Following Ahmadi and Almlof,18

we first expand the Cartesian Gaussian primitive pair
products in terms of a Hermite Gaussian basis set and
preprocess the corresponding density matrix elements P[λσ]

accordingly. For example, each ss pair can be expressed with
a single (Λ0) Hermite basis function, while the three products
in an sp pair (spx, spy, and spz) are expanded over four
Hermite basis functions (Λ0, Λx, Λy, and Λz). Denoting bra
and ket primitive Hermite products as [p| and |q], eq 4 can
be written as:

where E[p]
[µν] are the expansion coefficients of the Hermite

pair primitive functions in terms of the primitive Cartesian
Gaussian basis functions, and the second line defines the
preprocessed density matrix in terms of Hermite primitive
pair products, P[q]. Generation of all required information
about the Hermite primitive pair products and preprocessing
of the density matrix is carried out on the CPU. The [p|q]
integrals are calculated using the McMurchie-Davidson
algorithm19 on the GPU and contracted with the preprocessed
density matrix elements to generate J [p]

Hermite. Although the
integrals are calculated with 32-bit arithmetic, their ac-
cumulation is done with double precision accuracy to
minimize numerical error accumulation during the summa-
tion.20 The J [p]

HermitefJ[µν] postprocessing (transformation from
Hermite to Cartesian) and subsequent J[µν]fJ(µν) contraction
are done on the CPU, leading to the final J-matrix.

It is well-known that efficient evaluation of two-electron
integrals requires different subroutines for differing angular
momentum classes, for example, (ss|ss) or (ss|sp). Because
efficient execution on the GPU requires maximizing the
amount of work for a given kernel (which can loosely be
regarded as a subroutine), we have previously described6 a
supergrid representation of the two-electron integrals that
allows one to easily treat integrals of the same type together
(see Figure 1). For purposes of computational organization,
we imagine the primitive integrals [p|q] arranged in a square
grid, shown in Figure 2. The µνTνµ and λσTσλ index
permutation symmetries for the [µν|λσ] integrals are easily
incorporated by pruning the list of [p| and |q] pair products,
which comprise the rows and columns and the usual
postprocessing (e.g., doubling off-diagonal contributions).

Thus, the final two-dimensional grid of primitive integrals
is of dimension N(N + 1)/2 × N(N + 1)/2. The index-
symmetry pruned list of [p| and |q] pair products are sorted
according to their Schwartz upper bounds:

|q]Schwartz ) |Pλσ|max√[q|q] (7b)

where we note that the order of the bra and ket arrays may
be different because we include the density matrix element
contribution in the ket bound. When the angular momentum
of one or both of the basis functions involved in a pair
product is greater than s, we follow the usual practice of
using a single [p|p] in eq 7 corresponding to the pair product
with l ) 0. We also use the maximum of the density matrix
elements over all angular momentum components (in the
Cartesian representation) in the second line of eq 7. If one
considers a basis set containing at most l ) 1 angular
momentum basis functions, the procedure thus boils down
to first grouping the [p| and |q] lists by the angular momentum
of the Cartesian Gaussians (µν and λσ) leading to ss, sp,
and pp groups for each of [p| and |q]. Each of the resulting
six lists is then sorted according to the Schwartz bounds
given in eq 7. Nine GPU kernels are then called, one for
[ss|ss], [ss|sp], [ss|pp], [sp|ss], and so on. All of the GPU
kernels were hand-coded; however, an automatic GPU code
generation tool for basis sets with higher angular momentum
is currently under development in our group.

At this point, we simplify the description of our imple-
mentation by considering only one of the integral classes,
for example, [ss|ss]. All other integral classes are treated
similarly. Figure 2 depicts the primitive integral grid for a
representative integral class, with the pink/blue color scheme
denoting the magnitude of the primitive integral Schwartz
upper bounds as in Figure 1. The triangles above and to the
left of the grid represent the Schwartz bounds for ket and
bra, respectively. Each small cyan-bordered square in Figure
2 represents a single [p|q] primitive integral. It is easily seen
that each row of this integral matrix contributes to a single
matrix element of JHermite. As mentioned above, each primi-
tive integral will be computed by a single GPU thread; that
is, each small square will translate to a GPU thread. The
organization into thread blocks is indicated by the orange
squares; that is, each orange square translates to a thread
block. We show a 2 × 2 arrangement of threads into thread
blocks for illustration in Figure 2, but the actual implementa-
tion uses an 8 × 8 arrangement, which we found to be
optimal. To utilize memory effectively, the integral matrix
is processed by columns, assigning thread blocks to each
column. Each thread in each thread block calculates the
appropriate primitive integral multiplied by the appropriate
preprocessed density matrix element. When all threads in
these thread blocks are complete, the next group of columns
in the integral matrix is processed. The same thread blocks
will treat the integrals in a given row, which ensures that
they already have the partially formed matrix elements of
JHermite in shared memory. Once all columns have been
processed, reduction along the threads in each row of the

J[µν] ) ∑
[λσ]

P[λσ][µν|λσ] (4)

J(µν) ) ∑
i,j

J[µiνj]
(5)

J[µν] ) ∑
[pqλσ]

E[p]
[µν]E[q]

[λσ]P[λσ][p|q]

) ∑
[pq]

E[p]
[µν]P[q][p|q]

) ∑
[p]

E[p]
[µν]J[p]

Hermite (6)

[p|Schwartz ) √[p|p] (7a)
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thread block leads to the final matrix element of JHermite. These
elements are sent to the CPU for postprocessing.

This approach evaluates approximately twice as many
integrals as minimally required, because the same integrals
are present in distinct rows due to the [p|q]T[q|p] index
permutation symmetry that we do not account for. Our choice
was dictated by the interblock communication and memory
access collision requirements discussed above, and our
implementation completely satisfies both of these require-
ments. Additionally, this row-wise model is perfectly suitable
for multi-GPU parallelization because distinct rows can be
sent to different GPUs. Expensive internode communication
is avoided because each GPU has all of the data needed to
complete its share of the work (these data consist of the pair
quantities corresponding to the [p| and |q] lists discussed
above).

K-Matrix Algorithm

The computation of the K-matrix has very different memory
access requirements as compared to the J-matrix. Addition-
ally, it is not possible to easily split the work using the pair
product representation as outlined for the J-matrix above.
Therefore, we make no attempt to use the integrals calculated
during J-matrix construction in the computation of the
K-matrix. Instead, the K-matrix calculation is completely
independent of the J-matrix calculation. As will be seen
below, the data organization is also completely different, and
therefore the pair quantities are generated and sorted

completely separately. The basic organizational strategy that
we use eliminates both interblock communication and
memory access collisions by having just one block of GPU
threads calculate one Kµν matrix element.

Unlike the J-matrix algorithm, the µλTλµ and νσTσν
symmetries cannot be exploited because, for example,
[bra|νσ] and [bra|σν] integrals contribute to distinct K-matrix
elements and thus reside in different GPU blocks. Exploiting
this symmetry would necessitate expensive interblock com-
munication. All [bra| and |ket] pair-quantities are thus
grouped into four rather than three segments (assuming that
only s- and p-type basis functions are employed), ss, sp, ps,
and pp, producing 16 distinct ERI subgrids instead of the
nine distinct subgrids depicted in Figure 1. Exploiting the
[bra|ket]T[ket|bra] symmetry reduces this to 10 subgrids,
because only the upper triangle needs to be considered.

Figure 3 provides more details on the K-matrix algorithm
using one of the 10 angular momentum subgrids as an
example. For each of the angular momentum ERI subgrids,
we further group the basis function pairs by the first primitive
index. The pair quantities are then sorted by the Schwartz
upper bound within each of these classes (angular momentum
class and first primitive index), where we do not include the
density matrix estimation in the bound computed for either
[bra| or |ket]. Thus, we have a series of [µ...|ν...] blocks (with
size N × N) of the integral matrix, each of which contributes
to one Kµν matrix element. One GPU thread block is tasked
with the evaluation of each Kµν matrix element and winds

Figure 2. J [p]-Matrix formation algorithm for a given angular momentum block, e.g., [ss|ss]. Cyan-bordered squares depict
primitive integrals that need to be evaluated and further contracted into the matrix elements. The bra- and ket-pair quantities
(left and upper triangles) are presorted and lead to a well-organized grid of integrals, whose upper bound is represented by the
blue-pink (with pink being largest) color scheme. The orange-bordered squares show those integrals that are evaluated by one
block as it scans the integral grid from the left to the right and accumulates the results. Those integrals with Schwartz bound
lying below the prescreening threshold (lower-right part of the grid) are ignored. Yellow arrows illustrate the GPU memory load
operations.
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its way through the corresponding [µ...|ν...] block as shown
for K12 in Figure 3. As for the J-matrix above, we depict a
2 × 2 configuration of threads in each thread block, but we
use an 8 × 8 configuration in the code. Even though the
Schwartz bounds for neither [bra| nor |ket] are weighted with
the density matrix elements Pλσ, we do utilize the P-matrix
sparsity. As a thread block scans its way through the [µ...|ν...]
block, we monitor the product of the Schwartz upper bound
and the density matrix element Pλσ. Once this product falls
below the standard ERI threshold (10-11 au) multiplied by a
“guard” parameter (chosen to be 10-5) for all threads in a
warp, we abort the scan of the row and the warp proceeds
to the next one. We verified that this procedure does not
affect the final SCF energies, while it leads to considerable
computational savings. In addition, the integrals are ac-
cumulated with double precision accuracy, as described
above for Coulomb matrix formation. The McMurchie-
Davidson algorithm was used to calculate the ERIs with pre-
and postprocessing steps performed inside the GPU kernel.
In our K-matrix implementation, O(N4/2) integrals are
evaluated. Together with O(N4/4) ERIs calculated to form
the J-matrix, the number of integrals calculated at each Fock
matrix formation step is O(3N4/4), that is, 6 times more than
the number of unique ERIs. Despite this apparent compu-
tational inefficiency, the GPU is still able to achieve
significant performance gains as compared to traditional CPU
implementations. In addition, the K-matrix algorithm pos-
sesses the same level of parallelism as does the J-matrix
algorithm, making the whole Fock matrix formation step
suitable for implementation on multi-GPU platforms.

Multi-GPU Parallelization

We have also investigated the possibility of using multiple
GPUs in parallel. Our parallel J-matrix algorithm maps

different rows of the [p|q] Hermite integral matrix to different
GPUs cyclically. Each GPU thus computes its own subset
of the J[p]

Hermite matrix that is then copied to the host. In the
parallel K-matrix algorithm, different GPUs calculate dif-
ferent rows of the K-matrix, which are also mapped to the
devices cyclically. Tests performed on a 3-GPU (GTX280)
system, vide infra, show reasonable speedups of 2.0-2.8×
over a single GPU board for both J- and K-matrix algorithms.
We have not made any attempt at dynamic load balancing
in our current implementation, and this is expected to
improve the scalability even more, bringing it closer to the
ideal 3× speedup.

Results and Discussion

A detailed analysis of the performance obtained during
J-matrix formation for a representative test case is presented
in Table 1. Statistics are shown for four of the two-electron
integral kernels, which are grouped by the angular momen-
tum of the basis functions involved. The number of floating-
point and memory operations (FLOPs and MOPs, respec-
tively) for each kernel were determined by hand-counting

Figure 3. K-Matrix formation algorithm. Similar to the J-matrix algorithm, but in this case, each GPU thread block scans its own
square segment of the integral grid rather than several rows of the whole grid. Each square segment ([1...|1...], [1...|2...], or
[2...|2...]) leads to one K-matrix element.

Table 1. Specifications of Several GPU Kernels Invoked
during J-Matrix Formation on GeForce 8800GTXa

kernel FLOPs MOPs

registers
per

thread

active
threads
per SM

performance
(GFLOPS)

bandwidth
(Gbytes/s)

ssss 30 12 20 384 88 (175) 131
sssp 55 15 24 320 70 (174) 71
sspp 84 21 24 320 69 (227) 64
pppp 387 21 56 128 97 (198) 20

a Four out of nine kernels are presented. The performance
values in parentheses correspond to the test code where some
memory load operations were removed as described in the text.
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instructions in the intermediate assembly level code generated
by the compiler. All floating-point instructions (including
division and exponentials) were counted as a single FLOP
with the exception of fused multiply add (MAD), which was
counted as two FLOPs. For memory operations, we have
counted 32-, 64-, and 128-bit memory loads/stores as 1, 2,
and 4 MOPs, respectively. Because there is limited local
memory (registers) on each SM, the amount of local memory
required by each thread executing a kernel impacts the
number of threads that can execute simultaneously on a single
SM. Thus, we show the number of registers required for each
thread by the different kernels in Table 1. As this number
increases, the number of threads that can be active on a single
SM decreases. This is generally expected to reduce the ability
to hide memory access latency effectively.

The GPU hides on-board memory access latency (typically
constituting hundreds of clock cycles) by time-sliced execu-
tion of a large number of parallel threads (up to 768 parallel
threads can run on each SM, and one GeForce 8800GTX
card has 16 SMs). Once a thread issues a memory access
instruction, the warp scheduler switches to other warps, thus
keeping the whole device busy. If the number of active warps
is not large enough, the computation can stall because all
active warps will eventually be waiting for data to return
from memory accesses. In fact, the number of active warps
is solely determined by the amount of resources (registers,
shared memory, etc.) the GPU kernels consume, and it is
highly desirable to develop “light” kernels to ensure that
many GPU threads can execute in parallel. We present both
the number of registers allocated per thread and the
consequent number of active threads running on one SM in
Table 1. Obviously, the more registers a kernel consumes
the less threads are active (i.e., run in parallel), and memory
latency hiding becomes less efficient. This adversely affects
the sustained bandwidth21 (last column in Table 1).

A single GeForce 8800GTX card can provide up to 350
GFLOP/s (GFLOPS) computational performance. How much
of this power can be harnessed in quantum chemistry
calculations? The results from our current implementation
are shown in the “performance” column in Table 1. The
kernels sustain close to 30% of the theoretical peak perfor-
mance. Although we consider this level of performance to
be quite reasonable for a complex task like Fock matrix
formation, one might wonder how to further improve. To
determine the extent to which memory bandwidth is control-
ling the observed performance, we removed the fundamental
integral interpolation table and density matrix element loads,
replacing the corresponding variables by arbitrary constants.
The resulting performance is represented in parentheses in
the “performance” column of Table 1. Even though this code
transformation does not change the number of FLOPs
executed by each kernel, the sustained performance increases
by a factor of 2 or even more. This demonstrates that our
current implementation is limited by memory bandwidth.
Presumably, some part of the memory latency effect is
generated by the fundamental integral interpolation table
lookup routines that access the device memory in random
fashion, making it difficult for the hardware to coalesce such
random loads into one memory operation. We are currently

developing a scheme that better meets the GPU memory
access requirements.

A series of J-matrix formation benchmarks has been
performed on duplex-strands of DNA, containing an increas-
ing number of base pairs using the 3-21G basis set. The
J-matrix formation timings are presented in Figure 4 as a
function of the total number of basis functions. Significant
acceleration is achieved, allowing the calculation of electronic
structure for molecules with up to a thousand basis functions
in a matter of seconds. Moreover, the timings are accurately
fitted by a quadratic polynomial showing that our algorithm
exhibits perfect quadratic scaling already for a few hundred
basis functions. This is because of the efficient treatment of
prescreening arising from the sorting of the [bra| and |ket]
lists described above. The timings reported in Figure 4
include CPU-side work, for example, sorting and calculation
of pair quantities, as well as GPU-CPU data exchange. One
can see from Figure 4 that the latest GeForce 280GTX card
is significantly faster than the GeForce 8800GTX and
furthermore that our parallel implementation achieves a 2.8×
speedup using three 280GTX cards.

As pointed out earlier, the GPU architecture is very
different from that of CPU, and one might therefore expect
that programs optimized for CPU architectures will not fully
benefit from the computational power provided by modern
streaming processors. Recently, Yasuda7 reported GPU
acceleration of J-matrix formation in a development version
of the Gaussian electronic structure code. Comparison with
the present results allows one to get a sense of the
performance gains that can be achieved by careful choice
of “stream-friendly” algorithms, as opposed to retrofitting
existing CPU algorithms. Thus, we obtained timings on the
same GPU hardware used by Yasuda (8800GTX) for
J-matrix formation for taxol and valinomycin using the
3-21G and 6-31G basis sets. The comparison with timings
from our code (including pre- and postprocessing steps
performed on the CPU and CPU-GPU data transport
overhead) is shown in Table 2. Yasuda’s implementation uses

Figure 4. Timings for J-matrix construction on a GPU for a
series of DNA duplexes using the 3-21G basis set. The solid
line is a quadratic fit, showing that our GPU algorithm exhibits
ideal quadratic scaling with as few as 500 basis functions.
The performance of the algorithm on a multi-GPU system is
also shown, indicating its efficient parallel performance.
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multipole methods on the CPU for all far-field contributions
(not included in the timings in Table 2), while we evaluate
all two-electron integrals explicitly. Thus, this comparison
is strongly tilted in favor of Yasuda’s implementation.
Nevertheless, we find that our code is between 20 and 30
times more efficient than the previous implementation. Of
course, neither of these implementations is fully optimized,
but the results suggest that there is compelling reason to
rethink electronic structure algorithms in the context of
streaming processor architectures.

To further demonstrate the effectiveness of quantum
chemistry on the GPU, we performed ab initio Monte Carlo
(AIMC) simulation of two molecular systems on one
GeForce 8800GTX card using the 3-21G basis set: (1) a
cluster of 10 rigid water molecules, and (2) the neutral
photoactive yellow protein (PYP) chromophore22 solvated
by 45 rigid water molecules. In both cases, the temperature
was set at 300 K. Two AIMC runs were performed for the
water cluster, and one AIMC run for the solvated PYP
chromophore with fixed geometry. Following Wales and
Hodges,23 all MC iterations were grouped into two sets:
displacements and rotations, each containing 30 successive
MC steps. In the former set, all water molecules were
randomly displaced along the three axes, while in the latter
set, each water molecule was randomly rotated about the
oxygen atom. The displacement and rotation parameters were
independently adjusted during the simulations to provide an
acceptance ratio of 30-40% in both sets. All water molecules
were displaced or rotated in each MC iteration. The initial
positions of the water molecules in all three runs were
generated randomly; that is, we did not use any pre-
equilibration techniques like simulated annealing. The left
panel in Figure 5 shows two of the (H2O)10 configurations
found after the MC procedure. When further optimized to
the nearest energy local minimum, both of these form well-
known structures that have been previously characterized.24

The right panel of Figure 5 shows a snapshot from the
solvated PYP chromophore simulation. On average, one MC
step required 0.5 and 14 s for the water cluster and solvated
chromophore simulations, respectively. Out of these 14 s for
the solvated chromophore, a noticeable part of the time was
spent on the one-electron integral evaluation (3.4 s) and Fock
matrix diagonalization (2.4 s) steps that are currently
performed on the host CPU. For bigger systems, the impact

of linear algebra (matrix multiplication and diagonalization)
will grow in significance because of its cubic scaling as
compared to the quadratic scaling of Fock matrix formation.
A similar problem emerged as linear scaling electronic
structure methods25 were developed, and we are currently
investigating the use of alternatives to diagonalization such
as pseudodiagonalization and density matrix purification.26

Furthermore, we performed a series of restricted Hartree-
Fock direct-SCF benchmarks on caffeine (C8N4H10O2),
cholesterol (C27H46O), buckyball (C60), taxol (C45NH49O15),
valinomycin (C54N6H90O18), CLN025 (a recently reported27

“artificial protein,” C62N11H97O32), and olestra (C156H278O19)
test molecules, depicted in Figure 6, using the 3-21G and
6-31G basis sets and incremental Fock matrix formation
procedure.13 These tests are run on three different GPU
systems: one GeForce 8800GTX, one GeForce 280GTX, and
three GeForce 280GTX cards that operate in parallel.
Because the GeForce 280GTX supports 64-bit DP floating
point operations in hardware, we modified the original
J-matrix code to perform DP accumulation of the Jp

Hermite and
Kµν matrix elements to avoid additional error introduced by
summation of two-electron integrals of widely varying
magnitudes. In this case, the ERIs themselves are still
evaluated in 32-bit arithmetic on the GPU. All GPU
calculations on the 8800GTX card were performed with 32-
bit single precision (SP) accuracy. In all of the benchmarks,
an integral screening threshold of 10-11 au was used.

Tables 3 and 4 summarize the performance results. The
“speedup” column represents the speedups achieved in the
first (and generally most time-consuming) direct SCF itera-
tion, as compared to GAMESS ver. 11 Apr 2008 (R1) linked
to Intel MKL ver. 10.0.3.020 running on a single Intel
Pentium D 3 GHz core. Even though our algorithm calculates
a significant number of redundant two-electron integrals (6
times more than the number of unique ERIs), the resulting
performance is remarkable. In many cases, the GPU code
using a single GTX280 card is more than 100× faster than
the CPU. Numbers in parentheses in the “GPU” column of
Table 3 represent the fraction of one SCF iteration time
required to construct the Fock matrix. For small- and
medium-sized molecules, most of the SCF time is devoted
to Fock matrix formation. However, for large molecules, the
linear algebra calls (we use standard dgemm and dsyevd
routines from the NVIDIA CUBLAS and Intel MKL library,
correspondingly) become a bottleneck. The olestra molecule
is a typical example that experiences such performance
degradation (Table 5); the linear algebra functions (on the
GPU and CPU) take as much as 50% of the Fock matrix
computation time (on the GPU). Because general matrix
multiplication and diagonalization algorithms scale cubically
with the number of contracted basis functions, this impact
will be even larger for larger molecules.

In Table 5, we provide detailed timing information for
different parts of the SCF procedure. For small and
medium molecules, most of the SCF iteration time is spent
on the Fock matrix construction that is done on the GPU.
However, for the larger molecules, we find that the linear
algebra (performed on the GPU and CPU) begins to
constitute a major part of the SCF iteration time. We also

Table 2. J-Matrix Formation Time (in seconds) for Taxol
and Valinomycin Molecules Using 3-21G and 6-31G Basis
Setsa

J-matrix formation time (s)

Gaussian on GPU7 present work

molecule 3-21G 6-31G 3-21G 6-31G

taxol 16.8 31.9 0.60 1.65
valinomycin 23.8 57.4 1.05 3.05

a Previously reported GPU-accelerated timings based on
modifying an existing code (Gaussian) are compared to timings
from our code, which has been completely redesigned for stream
processors. This comparison emphasizes the gains that can be
achieved by redesigning an entire SCF code for stream
processing, as opposed to porting an existing CPU algorithm. All
timings were obtained on one GeForce 8800GTX card.
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demonstrate that the amount of time required for the
presorting of pair quantities is a completely negligible
portion of the SCF iteration time. We have pointed out

that the dense integral grid resulting from this presorting
is critical for efficient GPU computation. However, this
step may also be beneficial for traditional CPU imple-

Figure 5. Equilibrated structures from ab initio Monte Carlo simulations at 300 K on the GPU. (Left) Two (upper and lower)
representative structures of a cluster with 10 water molecules. (Right) Representative equilibrium structure of the neutral form
of the photoactive yellow protein (PYP) chromophore microsolvated with 45 water molecules.

Figure 6. Structures of seven molecules used in the direct-SCF benchmark.
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mentations, because it will improve cache utilization and
the efficiency of integral prescreening.

Another important question under consideration is the
accuracy one can attain on the GPU. The 8800GTX hardware
used in our first calculations natively supports only 32-bit
arithmetic operations; thus only 6-7 significant figures of
accuracy should be expected in the final result. This may
not be enough for large molecules where the absolute total
energy exceeds 104 hartree, because one wants energy
differences to be accurate at the millihartree level or better.
The absolute energy error generated by 32-bit GPU arith-
metic (and 32-bit accumulation of the Fock matrix elements)
as compared to 64-bit calculations on the CPU (GAMESS)
using 6-31G basis sets is shown in the column labeled ∆E32

of Table 4. The GPU provides submillihartree accuracy for

the taxol molecule, but the absolute errors exceed the
millihartree level for larger molecules.

The major contribution to the resulting energy error is
made by two-electron integrals with relatively large mag-
nitudes, because the mantissa of a 32-bit number is not
capable of holding enough significant figures to provide the
required accuracy (typically, 10-11 hartree). Yasuda has
suggested the computation of the largest ERIs on the CPU
with DP accuracy to avoid this problem. Both our J- and
K-matrix algorithms already use presorted integral grids, and
splitting the grids into DP and SP subgrids, according to the
ERI Schwartz upper bound, is straightforward and will not
cause any additional computational overhead. This will be
investigated in future work. A second contribution to the
precision error lies in the summations that lead to the final
J- and K-matrices. Using the DP capability of the 280GTX,
we have implemented these summations in DP, while the
integrals themselves are still calculated in 32-bit precision.
This leads to the errors listed in the column of Table 4 labeled
∆E32+64. The use of DP accumulation improves the accuracy
sometimes by better than an order of magnitude (at negligible
computational cost), and calculations on molecules as large
as olestra are within “chemical accuracy”, typically defined
as 1 kcal/mol.

Additionally, because many of the large two-electron
integrals are produced by core orbitals that are chemically
inert, their corresponding contributions may be expected to
cancel (at least partially) when energy differences are
computed, as previously shown by Kermes et al. in calcula-
tions of the correlation energy.4 Direct tests performed on a
GeForce 8800GTX card (32-bit integrals and 32-bit ac-
cumulation) on a cholesterol molecule confirm this. We

Table 3. Accuracy and Performance of the Direct-SCF Algorithm on One GeForce 280GTX GPU with DP Accumulation of
32-bit Integrals Using the 3-21G Basis Seta

time for the first direct-SCF iteration (s) electronic energy (au)

molecule (atoms; basis functions) GPU GAMESS GPU (32 + 64 bit) GAMESS speedup

caffeine (24; 146) 0.10 (98%) 4.4 -1605.91830 -1605.91825 44
cholesterol (74; 344) 0.78 (94%) 66.8 -3898.82172 -3898.82189 86
buckyball (60; 540) 3.87 (96%) 353.9 -10 709.08339 -10 709.08392 91
taxol (110; 647) 2.99 (92%) 282.0 -12 560.68286 -12 560.68278 94
valinomycin (168; 882) 5.45 (91%) 729.9 -20 351.98981 -20 351.99038 134
CLN025 (202; 1139) 10.20 (90%) 1405.2 -30 763.37801 -30 763.37882 138
olestra (453; 2131) 19.09 (67%) 12408.1 -49 058.97636 -49 058.97814 650

a Reference calculations are performed on a single core of Intel Pentium D 3 GHz processor with full 64-bit DP accuracy. Numbers in
parentheses represent the fraction of SCF computation time devoted to Fock matrix formation.

Table 4. Similar to Table 3, but for 6-31G Basis Seta

GPU speedup

molecule electronic energy GPU32+64 ∆E32 (mH) ∆E32+64 (mH) GAMESS CPU time (s) G80 280GTX 3 × 280GTX

caffeine -1609.37202 0.06 0.10 7.6 19 28 42
cholesterol -3904.55935 0.35 0.04 113.9 40 56 120
buckyball -10 721.02377 -2.84 0.80 589.9 37 57 155
taxol -12 575.56452 0.07 0.29 476.8 46 64 145
valinomycin -20 371.17351 3.32 0.61 1226.3 67 90 222
CLN025 -30 791.12220 5.94 1.11 2274.7 92 225
olestra -49 097.16184 36.55 0.44 14 079.2 199 352 696

a Errors in the electronic energy (in millihartree) are shown for both 32-bit (∆E32, G80) and mixed 32 + 64-bit (∆E32+64, 280GTX)
accumulation of the Fock matrix. In all cases, the two-electron integrals are generated on the GPU using 32-bit arithmetic. Speedups (wall
clock time, referencing the first SCF iteration) are quoted for the older 8800GTX card, the newer 280GTX card, and a parallelized
implementation using three 280GTX cards (3 × 280GTX). All timings refer to the first SCF iteration.

Table 5. Timing Data (in seconds) for Different Steps of
the SCF Procedure (the First Iteration, 3-21G Basis Set)a

Fock matrix
(first iteration)

molecule density 1e Ints
initial
guess

pair
sort J K

linear
algebra

caffeine 0.00 0.01 0.96 0.00 0.02 0.06 0.02
cholesterol 0.00 0.09 0.99 0.04 0.14 0.55 0.05
buckyball 0.01 0.21 1.05 0.09 0.58 3.04 0.15
taxol 0.02 0.30 1.10 0.11 0.43 2.21 0.22
valinomycin 0.03 0.71 1.25 0.19 0.78 3.97 0.48
CLN025 0.06 1.13 1.48 0.29 1.26 7.66 0.93
olestra 0.28 2.88 3.20 0.67 2.54 9.65 5.95

a The Fock matrix formation consists of three steps: presorting
of the pair-quantities (done on the host CPU), and the J- and
K-matrix formation steps (done on the GPU) as described in the
text. These timing data were obtained using a 2.66 GHz Intel
Core2 Quad CPU and a GeForce 280GTX GPU.
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twisted the molecule around one of the bonds (see inset in
Figure 7) and optimized the molecular geometry with DP
accuracy, keeping the corresponding dihedral fixed. The
corresponding error generated by 32-bit arithmetic for
conventional (blue) and incremental (green) Fock matrix
formation techniques is displayed in Figure 7. Two charac-
teristic features can be seen in this figure: (1) the incremental
approach much better represents 64-bit results, and (2) in
both curves, the deviation from the mean is smaller than the
absolute values of the errors (presumably due to cancelation
of large integrals).

Finally, we investigated the impact of SP accuracy on the
SCF convergence behavior using the cholesterol molecule
as an example and GeForce 8800GTX GPU, comparing to
the 64-bit GAMESS calculation results. Figure 8 presents
the SCF energy error, En - Econv, as it gradually declines at

each subsequent SCF iteration, where Econv is the converged
energy, which is different for GPU and CPU. The slight
initial offset is due to the less accurate initial guess algorithm
used in our program. We disabled SCF acceleration both in
our code and in GAMESS. The curves in Figure 8 track each
other nearly perfectly, meaning there is no convergence
instability introduced by 32-bit GPU arithmetic, up to ∆E
≈ 0.1 kcal/mol. Of course, eventually unavoidable precision
noise will produce less regular behavior if one attempts to
converge the energy beyond the 7-8 significant figures that
can be obtained with SP arithmetic.

Conclusions

We have demonstrated that it is possible to achieve two
order-of-magnitude increases in efficiency for an entire
quantum chemistry calculation using GPUs. The speedups
we report here (up to 650×) are for the entire direct SCF
iteration, and thus representative of the speedup that can be
expected for the full SCF calculation. Because of the
exceptional performance, we were able to carry out ab initio
Monte Carlo simulations for molecular systems with over a
hundred atoms. We obtained this level of performance by
developing the algorithms from the ground up for use on
stream processing architectures. For example, our algorithm
calculates many redundant ERIs in recognition of the fact
that it can be more efficient to do redundant computation
than random memory accesses and/or interthread com-
munication on GPUs. We have further demonstrated the
possibility of parallelization over multiple GPUs, which leads
to even more significant performance gains.

We showed that the accuracy achieved for energy differ-
ences can be significantly higher than that expected from
the absolute energies because of systematic cancelation of
precision errors largely due to integrals involving the
chemically inert core electrons. We demonstrated that using
double precision only to preserve accuracy during summation
of the density-ERI products provides “chemical accuracy”
in all of the absolute energies reported here (as compared to
full double precision calculations on the CPU) at negligible
computational cost.

The advances reported here will make large-scale quantum
chemistry calculations routine and will be especially useful
in increasing the utility of ab initio molecular dynamics
(AIMD) simulations. We are currently working on an
implementation of analytic gradients that is a prerequisite
for efficient use in the AIMD context.
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Abstract: In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed
M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged
water clusters including (H2O)n, n ) 2-8, 20), H3O+(H2O)n, n ) 1-6, and OH-(H2O)n, n ) 1-6.
We also compare the predicted energies of two ion hydration and neutralization reactions on
the basis of the calculated binding energies. In all cases, we use as benchmarks calculated
binding energies of water clusters extrapolated to the complete basis set limit of the second-
order Møller-Plesset perturbation theory with the effects of higher order correlation estimated
at the coupled-cluster theory with single, double, and perturbative triple excitations in the aug-
cc-pVDZ basis set. We rank the accuracy of the functionals on the basis of the mean unsigned
error (MUE) between calculated benchmark and density functional theory energies. The
corresponding MUE (kcal/mol) for each functional is listed in parentheses. We find that M06-L
(0.73) and M06 (0.84) give the most accurate binding energies using very extended basis sets
such as aug-cc-pV5Z. For more affordable basis sets, the best methods for predicting the binding
energies of water clusters are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), and
M06/aug-cc-PVTZ (1.33). M06-L/aug-cc-pVTZ also gives more accurate energies for the
neutralization reactions (1.38), whereas B3LYP/6-311++G(2d,2p) gives more accurate energies
for the ion hydration reactions (1.69).

1. Introduction

There is growing interest and need for describing various
phenomena in inhomogeneous aqueous environments, for
example, in the context of solvation of neutral and ionic
solutes, ion complexation, solute transport, and partitioning
at an organic liquid-water interface. Although the impor-
tance of polarization and charge transfer in inhomogeneous
aqueous environments has been recognized,1 it has been

difficult to explicitly include them in a broadly applicable
classical force field. Moreover, only a few empirical potential
functions allow autoionization and charge migration.2 The
majority of theoretical studies of aqueous reactions reported
thus far are based on the use of wave function methods and
density functional theory (DFT).

The selection of the exchange-correlation functional in
DFT is critical for correctly predicting the properties of
aqueous systems.3-5 Todorova et al.3a reported that hybrid
functionals (B3LYP, X3LYP, PBE0) [modified with short-
range Hartree-Fock exchange within a plane wave frame-
work] give better results than generalized gradient approxi-
mation (GGA) functionals (BLYP, XLYP, and PBE) in
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reproducing the experimental structural (radial distribution
function) and dynamical (self-diffusion constant) properties
of liquid water. Tuckerman et al.4 employed ab initio
molecular dynamics simulations to probe the structure and
transport mechanism of OH-(aq) in water. They compared
the performance of three DFT functionals: BLYP, PW91,
and HCTC. They found that the BLYP functional reproduced
the experimental findings that the diffusion of OH-(aq) is
slower than that of H+(aq) and much faster than that of pure
water. In contrast, the PW91 (HCTC) functional yields a
OH-(aq) diffusion that is too fast (slow) in comparison to a
H+(aq) diffusion.

McGrath et al.5 showed that the computed thermodynamic
properties of water (e.g., vapor-liquid coexistence curves)
are sensitive not only to the density functional used, but also
to the size of the basis set employed. PBE predicted a higher
critical temperature and boiling point than experiment, while
BLYP provided a better performance with small basis sets
(double- and triple-� basis sets). These results were consistent
with the ability of PBE and BLYP to describe the energetics
of small water clusters. We have recently developed a
computational methodology that gives accurate hydration free
energies for ionic solutes.6 This methodology, which couples
DFT with mixed cluster/continuum models, is predicated
upon the accurate calculations of the difference in total
binding energies between relatively large ion-water clusters
(Xm((H2O)n) and pure water clusters ((H2O)n).

6 Thus, the
correct description of water and solute-water clusters is
critical for the accurate prediction of the thermodynamic
properties of pure water and aqueous solutions.

Several reports devoted to the ability of DFT methods to
describe hydrogen bonds in water clusters have appeared in
the literature.7-19 However, these previous studies have
focused primarily on small neutral water clusters rarely
containing more than six water molecules.10,15,17 Only a few
studies have tested the accuracy of DFT methods to predict
the binding energies of H3O+(H2O)n and OH-(H2O)n clus-
ters.19 Dahlke and Truhlar showed13 that most of the hybrid
functionals (which include Hartree-Fock exchange) gave
more accurate binding energies and many-body components
of the full interaction energy than the general-purpose GGA
functionals. They also pointed out that these results are highly
basis set dependent and that the choice of the appropriate
basis set for each DFT method is very important for obtaining
accurate results.12,13 Santra et al.16 examined the performance
of density functionals in the limit of a complete basis set
and found that the hybrid functionals (X3LYP and PBE0)
gave binding energies for water clusters that were in closer
agreement with benchmark binding energies calculated at
the second-order Møller-Plesset (MP2)/complete basis set
(CBS) level of theory. Similarly, Svozil et al.15 reported
improved results with the hybrid functionals (B3LYP and
PBE0) for the description of the autoionization of a water
octamer.

Zhao and Truhlar have recently developed the M06 family
of local (M06-L) and hybrid (M06, M06-2X) meta-GGA
functionals that show promising performance for noncovalent
interactions.20 This includes the binding energies in the two
HB6/04 and JHB7 hydrogen-bonded databases. M06-L has

been shown to provide accurate reaction energies for
neutralization reactions involving small hydronium and
hydroxide clusters.19 In addition, M06-L and M06-2X have
been tested to reproduce the relative energies of low-lying
isomers of water hexamers.18

In this paper, we report a comparative study of the
accuracy of the B3LYP21 and X3LYP22 functionals and the
newly developed M06-L, M06-2X, and M06 functionals20

to predict the binding energies of neutral ((H2O)n, n ) 2-8,
20), protonated (H3O+(H2O)n, n ) 1-6), and deprotonated
(OH-(H2O)n, n ) 1-6) water clusters. B3LYP was selected
given its widespread use, and X3LYP was included because
of its excellent performance on small water clusters.10,16 The
accuracy of each method was evaluated using several basis
sets. We also assessed the effect of basis set superposition
error (BSSE) correction as calculated for the smallest basis
set. As a benchmark for determining the accuracy of DFT
functionals, we employed binding energies calculated at the
complete basis set limit of the MP2 theory23 with coupled-
cluster theory with single, double, and perturbative triple
excitations [CCSD(T)]/aug-cc-pVDZ corrections that were
either compiled from the literature or calculated in this work.

2. Computational Methods

We used the second-order Möller-Plesset perturbation
theory (MP2)23 in the complete basis set (CBS) limit and
coupled-cluster theory with singles, doubles, and perturbative
triples excitations (CCSD(T))24 in the aug-cc-pVDZ basis
set25 to determine the benchmark binding energies of
hydrogen-bonded complexes against which the density
functionals are evaluated. The effect of the basis set size
(e.g., larger than aug-cc-pVDZ) on CCSD(T) corrections for
water26 and ion-water27,28 clusters was shown to be
relatively small (<0.2 kcal/mol). Thus, the combination of
MP2/CBS with CCSD(T)/aug-cc-pVDZ corrections provides
an excellent compromise between accuracy and computa-
tional cost and thus has been applied to water clusters as
large as octamers.

For the basis set expansion in our MP2 calculations, we
used a family of augmented correlation-consistent basis sets25

(aug-cc-pVnZ, n ) D, T, Q, 5). Only the valence electrons
were correlated in the MP2 calculations. The largest basis
set for geometry optimization was aug-cc-pVTZ. A test
calculation for OH-(H2O) reveals that the O-O distances
differ by only 0.002 Å and the binding energies differ by
<0.01 kcal/mol when compared to results obtained after full
optimization at the MP2/aug-cc-pVQZ level. A BSSE-
corrected intermolecular interaction energy (∆Eb

e) was
calculated with each basis set via the function counterpoise
method29 by taking into account the fragment relaxation
energy terms resulting from the geometry change of the
isolated fragments during the cluster formation:30a

where Efull and Efragm are, respectively, the energies calculated
with the full and fragment-only basis sets. Compared to the

∆Eb
e ) Efull(full) - ∑

fragm

Efull(fragm) +

∑
fragm

∆Erelax
fragm(fragm) (1)
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method of Valiron and Mayer,30b which explicitly considers
the hierarchy of N-body interactions for calculating the
BSSE-corrected interaction energy, eq 1 does not include
the three-body and higher many-body corrections. To
estimate the MP2/CBS limit of the interaction energy, we
utilized both the uncorrected and BSSE-corrected energies
in an extrapolation scheme based on a polynomial function
of inverse powers of 4 and 5:31-33

where n ) 2, 3, 4, and 5 for n ) D, T, Q, and 5 in aug-cc-
pVnZ, respectively, and ∆ECBS, B, and C are the fitting
parameters.

We examined the ability of five density functionals
[including two hybrid GGAs (B3LYP and X3LYP), one local
meta-GGA (M06-L), and two hybrid meta-GGAs (M06-2X
and M06)] to reproduce benchmark binding energies (MP2/
CBS + ∆CCSD(T)) for a database of 27 pure, hydroxide,
and hydronium water clusters. For each of these functionals,
three different basis sets were considered: 6-311++G**,
aug-cc-pVTZ, and aug-cc-pV5Z. For B3LYP, we also tested
an empirically optimized 6-311++G(2d,2p) basis set. The
small 6-311++G** basis set was selected as it provides
reasonable dissociation energies for covalent bonds34 and is
computationally affordable for relatively large molecular
systems. The geometries of all but (H2O)20 clusters were also
optimized with the aug-cc-pVTZ basis set. (H2O)20 clusters
were optimized using the aug-cc-pVDZ basis set followed
by single-point energy calculations with the aug-cc-pVTZ
basis set. Finally, single-point energy calculations for
complexes containing up to five water molecules were
performed using a very large aug-cc-pV5Z basis set. This
basis set is sufficient to give converged DFT interaction
energies for water clusters12,16 and is expected to reflect a
true performance of the tested functionals at the basis set
limit. The BSSE correction in DFT methods is usually much
smaller than in the explicitly correlated methods as MP2 and
was investigated only for the smallest 6-311++G** basis
set.10,35 All MP2, CCSD(T), and DFT calculations were
carried out using the NWChem 5.1 program package.36 For
the numerical integration grid in the DFT methods, the
NWChem default grid was used for (H2O)20 in the aug-cc-
pVTZ basis set and the ultrafine grid for the rest of the
calculations. This corresponds to a target accuracy of 10-6

and 10-8 hartree, respectively.

3. Database of Accurate Water Cluster
Binding Energies
The compiled database consists of 27 cluster binding
energies extrapolated to the CBS limit of the MP2 and
CCSD(T) theory. This includes a set of 14 neutral water
clusters ((H2O)n, n ) 2-6,8,20), 5 hydronium ion clusters
(H3O+(H2O)n, n ) 1-3,6), 7 hydroxide ion clusters
(OH-(H2O)n, n ) 1-6), and 1 autoionized water cluster
(H3O+(H2O)4OH-). The structures of these clusters are
shown in Figure 1, and the Cartesian coordinates (obtained
after geometry optimization at the B3LYP/6-311+-
+G(2d,2p) level of theory) are given in the Supporting
Information.

∆E(n) ) ∆ECBS + B/(lmax + 1)4 + C/(lmax + 1)5 (2)
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The structures and MP2/CBS binding energies of the
neutral water clusters were taken from Xantheas and
co-workers.26,31-33 The reference binding energies of the
lowest energy protonated water clusters H3O+(H2O)1-3 were
computed in this study (see section 4.1). The estimated
CCSD(T)/CBS interaction energies and the starting geom-
etries of the two H3O+(H2O)6 isomers were taken from Shin
et al.37 (denoted as 2Da and 3D1 in Figure 2 of ref 37). For
the OH-(H2O)1-6 clusters, the starting structures were based
on the lowest energy conformers reported by Lee et al.38

The results of high-level ab initio calculations for these
systems are presented in section 4.1. The structure and
relative energy of the autoionized water octamer [with respect
to the S4 cubic structure] at the MP2/CBS + ∆CCSD(T)
level were taken from Svozil et al.15 We expect the database
of binding energies presented in this paper to have an
accuracy of 0.5 kcal/mol or better and thus serve as a reliable
benchmark for evaluating other methods.

4. Results and Discussion

4.1. Benchmark Binding Energies: MP2 and CCSD(T).
The benchmark MP2 binding energies of the OH-(H2O)1-6

and H3O+(H2O)1-3 clusters calculated with a series of
correlation-consistent basis sets (aug-cc-pVnZ, n ) D, T,
Q, and 5) are shown in Tables 1 and 2, respectively. Figure

2 illustrates the effects of basis set size on the uncorrected
and BSSE-corrected binding energies (∆Ee and ∆Eb

e) for
OH-(H2O) and H3O+(H2O) complexes, respectively. A
decrease of ∆Ee in going from the aug-cc-pVDZ to the aug-
cc-pVTZ basis set is a typical feature of ion-water
clusters,30a different from that for neutral water clusters.31-33

However, such a minimum in ∆Ee for the aug-cc-pVTZ basis
set becomes less pronounced with increasing size of a cluster
and vanishes for OH-(H2O)5-6.

The results in Tables 1 and 2 suggest that the magnitude
of the BSSE correction decreases by 35-50% for each
succeeding aug-cc-pVnZ set: For OH-(H2O), for example,
the BSSE correction is 2.05 (aug-cc-pVDZ), 1.33 (aug-cc-
pVTZ), 0.83 (aug-cc-pVQZ), 0.44 (aug-cc-pV5Z), and 0.26
(aug-cc-pV6Z) kcal/mol. This trend points to a meaningful
extrapolation toward a CBS limit, provided that sufficiently
large basis sets are employed. We subsequently tested several
extrapolation schemes based on exponential,39 mixed expo-
nential/Gaussian,40 and inverse polynomial31-33,41 functions.
We found that a polynomial dependence of inverse powers
of 4 and 5 (eq 2) gives the smallest difference of the
extrapolated CBS values for the uncorrected and BSSE-
corrected binding energies. This is the same CBS extrapola-
tion scheme used by Xantheas and co-workers in their study
of neutral water clusters.31-33 The energies calculated with

Figure 1. Structures of the studied pure, protonated, and deprotonated water complexes.
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the aug-cc-pVDZ basis set were not included in the
extrapolation, except for OH-(H2O)5 and OH-(H2O)6. The
use of three consecutive BSSE-corrected energies for
OH-(H2O)3 and OH-(H2O)4 clusters, with n ) 2-4 and n
) 3-5, yields CBS limit energies that are within 0.1 kcal/
mol of each other. This gives us confidence that the
extrapolation of results for OH-(H2O)5 and OH-(H2O)6 with
only n ) 2-4 energies available (aug-cc-pVnZ, n ) D, T,
and Q) is reasonably accurate (within ∼0.1 kcal/mol).

Our best estimates of the MP2/CBS values are obtained
as an average of the extrapolated CBS values of ∆Ee and

∆Eb
e. The difference between these values is quite small and

ranges from 0.08 kca/mol for OH-(H2O)5 to 0.27 kcal/mol
for OH-(H2O)5. The results are given in Tables 1 and 2,
together with previously reported MP2/CBS binding energies
for OH-(H2O)1-2 and H3O+(H2O).27,28 Note that, in these
previous studies,27,28 geometry optimization was performed
using a smaller aug-cc-pVDZ basis set and a different
extrapolation scheme to reach the CBS limit was used.
However, both computational protocols yielded very similar
CBS values.

The effects of a higher order of electron correlation were
examined using single-point CCSD(T)/aug-cc-pVDZ energy
calculations at the MP2/aug-cc-pVDZ-optimized geometries.
The results are listed in Tables 1-3. The inclusion of higher
correlation at the CCSD(T) level decreases the binding
energy of H3O+(H2O)n by ∼0.6 kcal/mol. The opposite effect
is observed for OH-(H2O)n. When the correlation effects are
included at the CCSD(T) level, the binding energy progres-
sively increases from ∼0.2 kcal/mol for OH-(H2O) to ∼1.4
kcal/mol for OH-(H2O)6. The magnitude of the average
CCSD(T) correction for neutral water clusters is small (∼0.18
kcal/mol). Overall, the results are variable, ranging from an
increase of binding energy by ∼0.1 kcal/mol for the (H2O)6

prism to a decrease in binding energy by ∼0.5 kcal/mol for
the (H2O)6 cyclic isomer. These results are consistent with
a recent study of (H2O)6 isomers at the MP2 and CCSD(T)
levels using the aug-cc-pVTZ basis set on oxygen and the
cc-pVTZ basis set on hydrogen.18

4.2. A Comparative Study of the DFT Methods. The
benchmark binding energies collected in the previous sections
enable us to evaluate the performance of the DFT methods
in reproducing the binding energies of neutral, protonated,
and deprotonated water clusters. The discussion is organized
as follows: We first consider the overall performance of 21
theoretical models resulting from a combination of 5 density
functionals, several basis sets, and a set of BSSE-corrected
results for our smallest basis set. Then we discuss the ability
of DFT methods to accurately predict the relative stability
of low-lying structural isomers and describe the binding
energies of a series of large water clusters ((H2O)20 isomers).
Finally, the density functionals are tested for their ability to
reproduce the reaction energies of two ion hydration and
neutralization reactions.

4.2.1. OVerall Performance of the DFT Methods for an
Accurate Database of MP2/CBS + ∆CCSD(T) Binding

Table 2. Total Water Binding Energies for H3O+(H2O)n Clusters (kcal/mol)a

H3O+(H2O) H3O+(H2O)2 H3O+(H2O)3

method -∆Ee -∆E b
e -∆Ee -∆E b

e -∆Ee -∆E b
e

MP2/aug-cc-pVDZ 34.05 31.77 57.81 54.35 77.82 73.13
MP2/aug-cc-pVTZ 34.55 33.29 58.13 56.43 77.97 75.68
MP2/aug-cc-pVQZb 34.42 33.70 57.98 57.02 77.70 76.45
MP2/aug-cc-pV5Zb 34.27 33.91 57.75 57.28 77.40 76.77
MP2/CBS (eq 2) 34.00 34.18 57.33 57.58 76.89 77.13
MP2/CBS best estimatec 34.09 ( 0.09 57.46 ( 0.12 77.01 ( 0.12
MP2/CBS (ref 27) 34.1-34.2 57.6-57.7
MP2/CBS + ∆CCSD(T)d 33.53 56.85 76.46

a ∆Ee and ∆E b
e are uncorrected and BSSE-corrected energies, respectively. b Single-point energies at the MP2/aug-cc-pVTZ-optimized

geometries. c Obtained as an average of the extrapolated CBS values of ∆Ee and ∆E b
e. d CCSD(T) corrections are calculated using the

aug-cc-pVDZ basis set.

Figure 2. Variation in the MP2 binding energy for (a)
OH-(H2O) and (b) H3O+(H2O) with basis set size (aug-cc-
pVnZ, n ) 2-6), excluding (filled circles) and including (open
circles) a BSSE correction. An extrapolated CBS limit is
indicated as a horizontal line.
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Energies. Table 3 lists calculated binding energies of water
clustersusingthefiveDFTfunctionalswiththe6-311++G(2d,2p)
and aug-cc-pVnZ basis sets (n ) T, 5). The DFT binding
energies are compared with the benchmark estimates at the
MP2/CBS and CCSD(T)/CBS levels. The MP2/CBS energies
are given because they are considered to be reasonably
accurate for neutral water clusters31-33 and can also serve
as a benchmark when CCSD(T) calculations are not feasible.
DFT binding energies (both uncorrected and BSSE-corrected)
calculated with the 6-311++G** basis set are included as
Supporting Information (Table 1S). The accuracy of each
method (density functional/basis set) is characterized by the
mean unsigned error (MUE), averaged over the subset of
neutral, protonated, and deprotonated clusters as well as the
total data set. Note that the MUE for the largest aug-cc-
pV5Z set may be biased since calculations with this basis
set did not include clusters containing more than five water
molecules.

The M06-L/aug-cc-pV5Z functional with an MUE of 0.73
kcal/mol shows the best overall performance. It gives the
most accurate binding energies for H3O+(H2O)n and
OH-(H2O)n clusters. The M06/aug-cc-pV5Z functional with
an MUE of 0.84 kcal/mol is the second best. X3LYP,
B3LYP, and M06-2X [with the aug-cc-pV5Z basis set] are
less accurate than M06-L by a factor of 1.8, 2.8, and 4.3,
respectively. The overall accuracy of the M06-L and M06
potentials at the near CBS limit is impressive. However, from
the practical point of view, the aug-cc-pV5Z basis set (287
basis functions per H2O) is expensive even for medium-sized
clusters.

If the largest aug-cc-pV5Z basis set is excluded, the best
methods ranked by their mean unsigned error (kcal/mol, in
parentheses) are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-
311++G(2d,2p) (1.29), and M06/aug-cc-pVTZ (1.33). The
largest errors of M06-L/aug-cc-pVTZ and M06/aug-cc-pvTZ
are due to the overbinding of OH-(H2O)n clusters (on
average, by 2.2-2.4 kcal/mol). Interestingly, the DFT
binding energy of OH-(H2O)n converges much more slowly
with respect to basis set size than that of (H2O)n and
H3O+(H2O)n. For example, as one goes from the aug-cc-
pVTZ to the aug-cc-pV5Z basis set, the M06-L binding
energy decreases by 0.3, 0.1, and 1.7 kcal/mol for (H2O)3,
H3O+(H2O)3, and OH-(H2O)3, respectively. Thus, very large
basis sets are needed for M06-L and M06 to accurately
describe the energetics of different types of complexes.

As M06-L and M06 methods show the overall best
performance at the basis set limit, this is not the case with
the B3LYP functional. B3LYP/6-311++G** systematically
overbinds, while B3LYP/aug-cc-pVTZ systematically un-
derbinds, except for small ion-water clusters. On the basis
of the performance for small water clusters, the 6-31+G(d,2p)
basis set was recommended as an optimal basis set for
B3LYP.13 After testing several basis sets, we found that
6-311++G(2d,2p) provides a better and nearly optimal
performance for the data set of binding energies employed
in this study. B3LYP/6-311++G(2d,2p) has a mean unsigned
error only 0.05 kcal/mol higher than that of M06-L/aug-cc-
pVTZ and 0.04 kcal/mol lower than that of M06/aug-cc-
pVTZ. However, the B3LYP/6-311++G(2d,2p) method is

much more affordable than the M06 and M06-L methods
since the 6-311++G(2d,2p) basis set employs approximately
half Gaussian basis functions as the aug-cc-pVTZ basis set.

The X3LYP functional with the aug-cc-pV5Z basis set
has the lowest MUE for the pure water clusters (0.28 kcal/
mol). However, due to sizable errors for H3O+(H2O)n and
OH-(H2O)n clusters, X3LYP ranks fourth for overall per-
formance (an MUE of 1.33 and 1.59 kcal/mol with the aug-
cc-pV5Z and aug-cc-pVTZ basis sets, respectively). M06-
2X does very poorly in almost each category, significantly
overbinding even in the CBS limit, and particularly for
OH-(H2O)n clusters. Its mean unsigned error is 3-4 times
larger than the error obtained with the best DFT methods
utilizing the same basis set (either aug-cc-pVTZ or aug-cc-
pV5Z).

The utilization of a relatively small 6-311++G** basis
set leads to significant overbinding for all the tested func-
tionals (Table 1S of the Supporting Information). In this case,
the mean unsigned errors sorted in increasing order are 4.2
(B3LYP), 5.9 (M06-L), 6.3 (X3LYP), 7.5 (M06), and 9.6
(M06-2X) kcal/mol. The inclusion of the BSSE correction
(eq 1) partially compensates an overbinding effect associated
with the 6-311++G** basis set, reducing the MUE by a
factor of 1.8-3.3: 1.7 (B3LYP), 1.9 (X3LYP), 2.1 (M06-
L), 3.1 (M06), and 5.1 (M06-2X) kcal/mol. B3LYP has the
lowest error for both the uncorrected and BSSE-corrected
binding energies calculated with this basis set.

4.2.2. RelatiVe Stability of Conformational Isomers. The
ability of DFT to describe the relative energies of the low-
energy isomers is critical for the successful description of
water in inhomogeneous environments at extreme conditions
and under nanoscale confinement. Below, we compare the
performance of B3LYP and M06-L as a test case to illustrate
the distinctly different behavior between two classes of
functionals. The first group consists of B3LYP and X3LYP
functionals, whereas the second group consists of M06-L
and M06 functionals. Note that the density functionals within
each group behave very similarly.

We first consider the water hexamer isomers. Besides a
cyclic structure, which is the most stable for clusters with
three to five water molecules, (H2O)6 can adopt a variety of
three-dimensional forms. CCSD(T) calculations yield the
following energy ordering of the four hexamer structures:
prism < book < cage < cyclic.18,42 M06-L correctly predicts
the energetic ordering of these isomers, but overestimates
the energy spacing between them. For example, the energy
difference between the cyclic and prism hexamers is 4.2 kcal/
mol at the M06-L/aug-cc-pVTZ level, which is 2.5 kcal/
mol larger than the benchmark value. In contrast, B3LYP
predicts almost the reverse order of the relative stability of
the four isomers, although with a much smaller range of
energies (0.81 kcal/mol at the B3LYP/6-311++G(2d,2p)
level). For a more thorough discussion, the reader is referred
to a recent study focused exclusively on the performance of
several DFT methods for a set of water hexamers.18

For protonated water clusters H3O+(H2O)n, the lowest
energy conformers for n ) 3-5 have noncyclic two-
dimensional structures,43 but the global minimum for n ) 6
is a three-dimensional structure (without zero-point energy
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correction).37 Although all DFT methods correctly predict a
lower electronic energy for the 3D conformer of H3O+(H2O)6,
the M06-class functionals provide a slightly more accurate
prediction of the relative energy of the 2D conformer.

For deprotonated water clusters OH-(H2O)n, the hyper-
coordinated structures with four oxygen neighbors are the
most stable species for n > 4.38,44 For OH-(H2O)4, however,
three-coordinate (Cs) and four-coordinate (C4) structures are
essentially isoenergetic at the MP2/CBS + ∆CCSD(T) level
(the Cs isomer is more stable by only 0.05 kcal/mol). The
M06-L method with either aug-cc-pVTZ or aug-cc-pV5Z
basis set accurately reproduces the small difference in binding
energies between these two conformations (within 0.1 kcal/
mol). In contrast, B3LYP/6-311++G(2d,2p) overestimates
the stability of the three-coordinate cluster by 0.8 kcal/mol.
The overall results of our calculations suggest that the M06-L
and M06 functionals do a better job than the B3LYP and
X3LYP functionals in reproducing relative energetics of
isomeric structures of small water clusters.

4.2.3. (H2O)20 Water Clusters. Accurate binding energies
for the lowest lying isomers of the four families of stable
(H2O)20 clusters were calculated by Fanourgakis et al.33 at
the MP2/CBS level of theory. These benchmark data are used
to evaluate the performance of DFT methods for water
clusters this large. The results summarized in Table 3 suggest
that all DFT methods with optimal basis sets for small water
clusters [(6-311++G(2d,2p) for B3LYP and aug-cc-pVTZ
for X3LYP, M06-L, and M06] significantly underestimate
the binding energies of the (H2O)20 clusters. The average
error over the four isomers compared to the MP2/CBS
binding energies is 6.3 (M06), 6.8 (M06-L), 11.8 (X3LYP),
and 14.4 (B3LYP) kcal/mol. Note that M06-2X/aug-cc-pVTZ
yields larger binding energies for (H2O)20 compared to the
MP2/CBS values (the average error is 5.2 kcal/mol) due to
significant overbinding for smaller water clusters (e.g., by
4.7 kcal/mol for (H2O)8).

B3LYP and X3LYP correctly predict the edge-sharing
prism to be the lowest energy isomer and the face-sharing
pentagonal prism to be the second lowest lying isomer. These
functionals, however, do not reproduce a much lower stability
of the dodecahedron arrangement with respect to the other
three families. For example, the dodecahedron is 12.5 kcal/
mol less stable than the fused cubes at the MP2/CBS level,
whereas there is a very small energy separation between these

isomers (<1.0 kcal/mol) at the B3LYP and X3LYP levels.
The M06-L and M06 methods predict a high relative energy
for the dodecahedral structure, but give the reverse order of
stability for the three lowest energy families of minima
compared to the MP2/CBS results. Thus, none of the studied
DFT methods provide a completely satisfactory description
of absolute and relative binding energies of (H2O)20.

4.2.4. Reaction Energies for Ion Hydration and
Neutralization Reactions. We examined two types of reac-
tions: ion hydration and neutralization reactions. In the first
reaction, an ionic solute is hydrated by a cluster of n water
molecules to form an ion-water cluster:

where X( is either H3O+ or OH-. An improved methodology
for the calculation of the solvation free energies of charge
solutes based on reaction 3 has been recently described in
ref 6. Due to the need to locate the low-energy isomers of
relatively large solute-water clusters, this approach would
benefit from the use of computationally efficient density
functional theory. It is thus of interest to examine the
accuracy of DFT methods for predicting the energy differ-
ence between ion-water clusters and the corresponding
neutral water clusters.

Using the most stable isomers, as determined at the MP2/
CBS + ∆CCSD(T) level, six reaction energies were calcu-
lated with the aug-cc-pV5Z basis set and eight reaction
energies were calculated with the other basis sets (Table 4).
The mean unsigned error of the reaction energies for all 21
DFT methods is given in Table 5. As expected from the best
performance for clusterization energies, M06-L/aug-cc-pV5Z
and M06/aug-cc-pV5Z are also the best two methods for
reaction energetics (an MUE of 1.09 and 1.25 kcal/mol,
respectively). However, these methods are very expensive
and not applicable for clusters with more than 5-6 water
molecules. The B3LYP/6-311++G(2d,2p) method is of the
most practical interest, because it has the next lowest error
for the ion hydration reactions (1.69 kcal/mol) and is
computationally affordable for relatively large systems.
Considerably more expensive M06/aug-cc-pVTZ and M06-
L/aug-cc-pVTZ methods have an MUE that is 0.2-0.3 kcal/
mol higher than that of B3LYP/6-311++G(2d,2p). Finally,
we note that, due to a partial cancellation of systematic errors

Table 4. Ion Hydration (1-8) and Neutralization (9-32) Reactions Considered in This Study

1 H3O+ + (H2O)2 ) H3O+(H2O)2 17 H3O+(H2O) + OH-(H2O)4 ) 7H2O
2 H3O+ + (H2O)3 ) H3O+(H2O)3 18 H3O+(H2O)3 + OH-(H2O)3 ) 8H2O
3 H3O+ + (H2O)6 ) H3O+(H2O)6 19 H3O+(H2O)2 + OH-(H2O)4 ) 8H2O
4 OH- + (H2O)2 ) OH-(H2O)2 20 H3O+(H2O) + OH-(H2O)5 ) 8H2O
5 OH- + (H2O)3 ) OH-(H2O)3 21 H3O+(H2O)6 + OH-(H2O) ) 9H2O
6 OH- + (H2O)4 ) OH-(H2O)4 22 H3O+(H2O)3 + OH-(H2O)4 ) 9H2O
7 OH- + (H2O)5 ) OH-(H2O)5 23 H3O+(H2O)2 + OH-(H2O)5 ) 9H2O
8 OH- + (H2O)6 ) OH-(H2O)6 24 H3O+(H2O) + OH-(H2O)6 ) 9H2O
9 H3O+(H2O) + OH-(H2O) ) 4H2O 25 H3O+(H2O)6 + OH-(H2O)2 ) 10H2O
10 H3O+(H2O)2 + OH-(H2O) ) 5H2O 26 H3O+(H2O)3 + OH-(H2O)5 ) 10H2O
11 H3O+(H2O) + OH-(H2O)2 ) 5H2O 27 H3O+(H2O)2 + OH-(H2O)6 ) 10H2O
12 H3O+(H2O)2 + OH-(H2O)2 ) 6H2O 28 H3O+(H2O)6 + OH-(H2O)3 ) 11H2O
13 H3O+(H2O)3 + OH-(H2O) ) 6H2O 29 H3O+(H2O)3 + OH-(H2O)6 ) 11H2O
14 H3O+(H2O) + OH-(H2O)3 ) 6H2O 30 H3O+(H2O)6 + OH-(H2O)4 ) 12H2O
15 H3O+(H2O)3 + OH-(H2O)2 ) 7H2O 31 H3O+(H2O)6 + OH-(H2O)5 ) 13H2O
16 H3O+(H2O)2 + OH-(H2O)3 ) 7H2O 32 H3O+(H2O)6 + OH-(H2O)6 ) 14H2O

X( + (H2O)n ) X((H2O)n (3)
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in the binding energies of pure water and ion-water clusters,6

some of the methods that perform poorly for predicting
clusterization energies do better for predicting ion hydration
energies.

A second reaction of interest is the neutralization of a
hydronium ion cluster by a hydroxide ion cluster:

We considered all possible neutralization reactions for the
most stable isomers at the CCSD(T)/CBS level (Table 4).
They include 15 reactions with the aug-cc-pV5Z basis set
and 24 reactions with the smaller basis sets. Table 5 lists
the mean unsigned errors of the reaction energies for all 21
methods. Since there is no cancellation of systematic errors
in neutralization reactions, the MUE in the reaction energies
of this type of reaction is higher than that of ion hydration
reactions in most cases. The only methods showing improved
performance are M06 and M06-L with the largest aug-cc-
pV5Z basis set (an MUE of 0.95-1.02 kcal/mol) and M06-
L/aug-cc-pVTZ (an MUE of 1.38 kcal/mol). These are also
the best two methods for describing neutralization reactions.
In addition, Table 3 shows that M06-L/aug-cc-pvTZ is more

accurate than other methods in predicting the energetics of
the autoionization of a water octamer cluster (H3O+-
(H2O)6OH-).15 The overall results of our calculations support
a conclusion recently drawn from a subset of smaller
ion-water clusters19 that M06-L/aug-cc-pVTZ gives accurate
energies for neutralization reactions. B3LYP/6-311++G(2d,2p)
has the fourth lowest MUE (1.93 kcal/mol), which is 0.22
kcal/mol lower than that of M06/aug-cc-pVTZ. Finally, we
note that although MP2/CBS yields the smallest average error
for ion hydration reactions (0.90 kcal/mol), this method is
outperformed by the M06-L, B3LYP, and M06 functionals
for neutralization reactions (2.28 kcal/mol).

5. Conclusions

We evaluated the ability of five density functionals [including
two hybrid GGAs (B3LYP, X3LYP), one local meta-GGA
(M06-L), and two hybrid meta-GGAs (M06-2X, M06) with
several basis sets] to reproduce accurate binding energies of
27 neutral ((H2O)n, n ) 2-8, 20), protonated (H3O+(H2O)n,
n ) 1-6), and deprotonated (OH-(H2O)n, n ) 1-6) water
clusters. As a benchmark for determining the accuracy of
the DFT method, we used binding energies extrapolated to
the complete basis set limit of the MP2 theory with the effects
of higher order correlation estimated at the CCSD(T)/aug-
cc-pVDZ level. We established the CBS limit of the MP2
and CCSD(T) theory for a series of OH-(H2O)n (n ) 1-6)
and H3O+(H2O)n (n ) 1-3) clusters. We subsequently
combined our estimates with CBS limit estimates taken from
the literature to generate a database of highly accurate binding
energies of water clusters that were used as benchmarks to
compare the accuracy of the DFT functionals.

The M06-L and M06 functionals coupled with a very large
aug-cc-pV5Z basis set show the best overall performance (a
mean unsigned error of 0.73-0.84 kcal/mol). However, these
methods are very expensive and therefore cannot be routinely
used even for medium-sized clusters. If the aug-cc-pV5Z
basis set is excluded, the best methods ranked by their mean
unsigned error (kcal/mol, in parentheses) are M06-L/aug-
cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), M06/aug-
cc-PVTZ (1.33), and X3LYP/aug-cc-pVTZ (1.59). The
performance of M06-2X is relatively poor. M06-2X/aug-cc-
pVTZ has an average error that is 3 times as large as those
of the best methods.

The utilization of a relatively small 6-311++G** basis
set leads to significant overbinding for all the tested func-
tionals. This effect can be partially compensated by including
the BSSE correction. B3LYP has the lowest average error
for both the uncorrected and BSSE-corrected binding ener-
gies calculated with this basis set.

M06-L and M06 do a good job in reproducing the relative
energetics of small clusters. However, none of the functionals
gave adequate binding energies for the (H2O)20 clusters. The
M06-L, M06, B3LYP, and X3LP methods with their optimal
basis sets for small clusters underestimate binding energies
for the four lowest lying isomers of stable (H2O)20 clusters.

M06-L and M06 functionals in the CBS limit are the most
accurate methods for predicting reaction energetics. M06-
L/aug-cc-pVTZ and B3LYP/6-311++G(2d,2p) are the best
among the more cost-effective methods. M06-L/aug-cc-

Table 5. Mean Unsigned Error (kcal/mol) in Energies of
Ion Hydration and Neutralization Reactions Calculated with
Various DFT Methodsa

method ion hydrationb neutralizationc

MP2/CBS 0.90 2.28

B3LYP/6-311++G** 2.53 9.30
B3LYP/6-311++G**(BSSE) 2.29 2.71
B3LYP/6-311++G(2d,2p) 1.69 1.93
B3LYP/aug-cc-pVTZ 2.12 3.25
B3LYP/aug-cc-pV5Z 2.04 2.49

X3LYP/6-311++G** 2.91 13.22
X3LYP/6-311++G**(BSSE) 2.25 4.54
X3LYP/aug-cc-pVTZ 2.10 2.76
X3LYP/aug-cc-pV5Z 2.07 2.84

M06-L/6-311++G** 3.21 8.82
M06-L/6-311++G**(BSSE) 2.16 2.11
M06-L/aug-cc-pVTZ 1.98 1.38
M06-L/aug-cc-pV5Z 1.09 0.95

M06-2X/6-311++G** 2.69 17.26
M06-2X/6-311++G**(BSSE) 3.44 8.89
M06-2X/aug-cc-pVTZ 3.64 7.33
M06-2X/aug-cc-pV5Z 3.64 5.55

M06/6-311++G** 6.07 13.51
M06/6-311++G**(BSSE) 2.21 5.44
M06/aug-cc-pVTZ 1.87 2.15
M06/aug-cc-pV5Z 1.25 1.02

a Using the most stable isomers at the MP2/CBS + ∆CCSD(T)
level, namely, the 3D isomer for H3O+(H2O)6, the Cs isomer for
OH-(H2O)4, and the prism isomer for (H2O)6. The four lowest
errors of each reaction are in bold. b Ion hydration reactions: X(

(H2O)n ) X( + (H2O)n, where X( ) H3O+ and OH-. Six reaction
energies calculated with the aug-cc-pV5Z basis set and eight
reaction energies calculated with the other basis sets (Table 4).
c Neutralization reactions: H3O+(H2O)n + OH-(H2O)m ) (m + n +
2)H2O. Fifteen reaction energies calculated with the aug-cc-pV5Z
basis set and 24 reaction energies calculated with the other basis
sets (Table 4). The reference reaction energy (MP2/CBS +
∆CCSD(T)) for H3O+ + OH- ) 2H2O is 255.6 ( 0.2 kcal/mol.

H3O
+(H2O)n + OH-(H2O)m ) (m + n + 2)H2O (4)
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pVTZ shows exceptional performance for neutralization
reactions, whereas B3LYP/6-311++G(2d,2p) is more ac-
curate for ion hydration reactions.
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Abstract: Kohn-Sham density-functional calculations are used in many branches of science
to obtain information about the electronic structure of molecular systems and materials.
Conventional algorithms for minimization of the Kohn-Sham energy have certain deficiencies,
however, that may cause divergence or, worse, convergence to unphysical saddle points. We
here present a three-level hierarchical minimization strategy which is both more efficient and
robust than the conventional algorithms and which does not suffer from the flaws of these
algorithms. Using the three-level minimization strategy, the molecular density is built up in a
hierarchical fashion in accordance with chemical insight: First, the molecular density is composed
by a superposition of atomic densities; next, bonds are formed by performing a simple valence-
shell optimization; finally, the molecular description is refined by an optimization in the full
molecular basis. Importantly, the density matrix generated at each of the two lower levels in
this hierarchy is transferred to the next without loss of information. Examples demonstrate the
efficacy and robustness of the proposed scheme.

1. Introduction

A common trend in many fields of science is the increased
use of atomistic models for predictions and rationalizations.
In particular, theoretical and experimental studies of mo-
lecular properties and interactions rigorously based on the
laws of quantum mechanics are making important contribu-
tions to advances in many branches of science. Kohn-Sham
(KS) density-functional theory1,2 currently represents the best
compromise between cost and accuracy in describing the
electronic structure of molecules and materials. Indeed,
thousands of KS calculations are carried out every day, not
only in the fields of chemistry and physics but also in related
fields such as molecular biology and medicine, to obtain
information of the electronic structure of molecules and
materials. As ever more complex calculations are being

attempted, it becomes paramount to use algorithms that locate
the KS energy minimum reliably and efficiently.3

In KS theory, the electronic energy is minimized with respect
to variations in the one-electron density matrix. The efficiency
and reliability of this minimization depends not only on the
optimization algorithm itself but also on the quality of the
starting density matrix. Usually, this matrix is obtained by
diagonalizing the one-electron Hamiltonian (HCORE) or the
Hückel Hamiltonian. Starting density matrices have also been
obtained by carrying out an initial molecular calculation in a
minimal basis, followed by projection of the obtained density
matrix onto the full basis. Recently, van Lenthe et al. demon-
strated that a starting density matrix constructed as a superposi-
tion of atomic density matrices constitutes the best available
approach to date.4

Here, we propose a new strategy for the optimization of
the KS energy, where the minimization is carried at three* Corresponding author e-mail: jansik@chem.au.dk.

J. Chem. Theory Comput. 2009, 5, 1027–1032 1027

10.1021/ct800562h CCC: $40.75  2009 American Chemical Society
Published on Web 03/04/2009



levels of description, of increasing cost and complexity. First,
the molecule is formed from separate atoms, by a simple
superposition of atomic densities. Next, chemical bonds are
formed in a valence-shell description, using a small subset
of the full molecular basis. This second level constitutes the
crux of our proposed schemesit allows all the essential
elements of molecular bonding to be approximated ac-
curately, at a cost much smaller than that of a full-basis
optimization. Finally, and importantly, the information
obtained about the system at this second level is transferreds
without loss of informationsto the third level, where the
description is refined in the full molecular basis. Notably,
this full-basis optimization begins either inside or close to
the local regionsthe difficult global optimization is es-
sentially completed at the first and second levels, providing
a high-quality starting guess for the expensive final refinement.

The proposed three-level method can in principle be
combined with any existing method for the minimization of
the KS energy from a given starting guess. We here use the
augmented Roothaan-Hall (ARH) method,5 which was
recently shown to possess several advantages over the
traditional minimization schemes.

In the traditional KS optimization scheme, each iteration
consists of two steps: first, a Roothaan-Hall (RH) step,
where the KS matrix (the energy gradient) is constructed
from the current approximate density matrix and then
diagonalized to yield a new density matrix; second, an
averaging step, where the density matrix for the next RH
iteration is determined as a combination of the new and old
density matrices using Pulay’s method of direct inversion
in the iterative subspace (DIIS).6 Although successful, this
traditional two-step RH/DIIS scheme occasionally failssin
particular, for the larger and more complicated electronic
systems often studied by KS theory nowadays. Since only
gradient information is used in the RH/DIIS scheme, the
optimization may sometimes diverge or converge to a saddle
point rather than the ground-state minimum. Whereas
divergence is an obvious failure, saddle-point convergence
is more pernicious in that it typically leaves the user unaware
that the provided solution does not properly represent the
electronic ground state.

In the ARH algorithm, the two separate RH and DIIS steps
are merged into a single, concerted minimization step that fully
exploits the second-derivative (Hessian) information available
from the current and previous iterations. At each ARH iteration,
a local quadratic model of the KS energy is constructed that is
exact (within the quasi-Newton approximation) in the directions
of the old density matrices and approximate (but accurate) in
the remaining directions. The new density matrix is then
obtained by applying the trust-region minimization method to
this quadratic model, thereby ensuring that the energy is lowered
at each iteration and that a minimum is obtained.7 Therefore,
the ARH method does not suffer from the deficiencies of the
RH/DIIS method.5

Combining the ARH method with the three-level (3L)
method introduced in this paper, we arrive at a highly
efficient and robust strategy for KS energy optimizations.
Following the introduction of the 3L scheme in Section 2,
we demonstrate the efficacy and robustness of the combined

ARH-3L method in Section 3, where comparisons are also
made with traditional methods. Section 4 contains some final
remarks.

2. The Three-Level Optimization of the KS
Energy

The optimization of the KS energy presented here is carried
out at three consecutive levels, where the density matrix
obtained at one level is used as starting guess at the next
level. The three optimization levels are as follows: separate
atomic optimizations, a valence-basis molecular optimization,
and a full-basis molecular optimization. The cost of the
optimization is dominated by the full-basis optimization,
which is typically an order of magnitude higher than that of
the valence-basis optimization, while the cost of the atomic
optimizations is negligible. In the following sections, we
describe each optimization level in greater detail.

2.1. Atom-in-a-Molecule Density Matrix. To generate
an atom-in-a-molecule density matrix, we first carry out a
separate canonical ensemble KS optimization for each atom
P in the molecule, in an atomic-orbital (AO) basis |�P〉
consisting of local atom-centered functions. In a canonical
ensemble KS calculation, fractional occupation numbers are
assigned to the highest occupied AOs if they are not fully
occupied to ensure that a spherical symmetric atomic density
matrix is obtained.

The eigenvectors of the atomic KS eigenvalue problem
are next partitioned as CP )(Co

P,Cu
P), where Co

P contains the
(possibly fractionally) occupied AOs and Cu

P the unoccupied
ones. (In our notation, subscripts ‘o’ and ‘u’ denote ‘oc-
cupied’, and ‘unoccupied’, respectively.) In the |�P〉 basis,
the atom-optimized AOs are then given by

and the corresponding spherically symmetric atomic density
matrix basis becomes

where the diagonal matrix Do
P contains the (fractional)

occupation numbers of the occupied atomic orbitals Co
P. For

an oxygen atom with electronic structure (1s22s22p4) the
occupied atom-optimized AOs are (�1s�2s�2px�2py�2pz) with
occupation numbers (2,2,4/3,4/3,4/3).

To prepare for the subsequent molecular calculation, we
now set up a full atomic (denoted by subscript ‘A’) basis
consisting of the atom-optimized AOs

where the sets of occupied and unoccupied atomic orbitals
are given by

Likewise, we generate a molecular density matrix as the
superposition of atomic density matrices

|�o
P, �u

P〉 ) |�P〉(Co
P, Cu

P) (1)

DP ) (Do
P 0

0 0 ) (2)

|�A〉 ) |�Ao, �Au〉 (3)

|�Ao〉 ) |�o
P, �o

Q, ...〉 (4)

|�Au〉 ) |�u
P, �u

Q, ...〉 (5)
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whose occupied part is the superposition (direct sum) of the
occupied atomic density matrices

The resulting atom-in-a-molecule density matrix DA satisfies
the symmetry and trace conditions of a valid KS density
matrix but not the idempotency condition. However, this lack
of idempotency does not matter as the density matrix will
only be used to construct a KS matrix, from which an
idempotent density matrix is obtained from the KS eigen-
vectors in agreement with the Aufbau principle.

2.2. Valence-Basis Molecular Optimization. In the
ATOMS scheme advocated by van Lenthe et al.,4 a full-
basis molecular calculation is now carried out in the full
atomic orbital basis |�〉 ) |�P,�Q, · · · 〉 , using the full-basis
atom-in-a-molecule density matrix DA, eq (6), transformed
from the |�A〉 basis to the |�〉 as a starting guess. We instead
first perform a molecular calculation in the smaller atom-
optimized AO occupied basis |�Ao〉 ⊂ |�A〉 , using DAo of eq
(7) as a starting guess. The purpose of this valence-basis
calculation is to incorporate the essential features of bonding
into the density matrix at low cost, before the expensive final
refinement of the molecular density matrix in the full atomic
orbital basis.

The valence-basis optimization is carried out in the usual
manner, by treating the occupied atomic basis functions |�Ao〉
as a generally contracted basis with contraction coefficients
obtained by multiplying CAo

P on the |�P〉 atomic contraction
coefficients. The occupied atom-optimized AO basis |�Ao〉
contains core as well as valence atomic orbitalssfor a first-
row atom, for example, it contains the atomic orbitals
(�1s�2s�2px�2py�2pz). Since the 1s core orbitals are reasonably
well described by the �1s atomic orbitals and change little
upon bond formation, they may be omitted from the valence-
basis optimization, but this has not been done in the
calculations reported here.

The valence-basis calculation may be carried out using
any standard KS optimization scheme. We use the ARH
algorithm with DAo as the starting density matrix. At
convergence, the optimization returns a density matrix DV

Ao

in the |�Ao〉 basis that satisfies the Fock/KS eigenvalue
equation

providing us with a valence optimized molecular basis as a
linear combination of the occupied atom-optimized AOs

where the SAo and FAo are the overlap and Kohn-Sham
matrices in the occupied atom-optimized AO basis. We have
here partitioned the orbitals as CV )(CVo,CVu), where CVo

and CVu contain the occupied and virtual orbitals, respec-
tively. (We use ‘V’ to denote ‘valence’, in contrast to ‘A’
for ‘atomic’.) In this valence basis |�V〉, the molecular density
matrix becomes

where I is a unit matrix of the dimension of |�Vo〉 .
In the course of the valence-basis optimization, chemical

bonds are formed between neighboring atoms, providing us
with a set of local occupied and virtual orbitals with
contributions only from neighboring atoms involved in the
bond formation. For high locality, diffuse basis functions
may be omitted from the optimization of the atomic orbitals.

Returning to the full atom-optimized AO basis eq (3), we
see that our atomic and valence-basis KS optimizations have
provided us with the following partitioning of the basis

which, apart from being local, has a definite orbital oc-
cupancy associated with each orbital. It may therefore be
useful to express the results of a full-basis KS optimization
(discussed below) in the |�F〉 basis (or in its orthogonalized
counterpart), rather than in the atomic-orbital basis, as is
usually done. Likewise, it may be useful to express KS
response-function calculations and correlated calculations in
this basis, as discussed in a forthcoming paper.

2.3. Full-Basis Molecular Optimization. At the begin-
ning of the full-basis optimization, we have a density matrix
DV [eq (10)] that represents the KS energy minimum in the
molecular valence basis |�V〉 but not yet in the full basis |�F〉
⊃ |�V〉 . In the full basis, the corresponding density matrix is
given by

which (like DV in the valence basis) satisfies the symmetry,
trace, and idempotency conditions. The molecular valence
basis optimized density matrix DV is thus transferred to the
full basis |�F〉 without loss of information. Our final calcula-
tion is carried out in the |�F〉 basis using DV

F as the starting
guess for an ARH optimization in this basis.

3. Illustrative Results

To illustrate the performance of the ARH-3L method, we
present in Section 3.1 calculations on a Rh complex [(4-
dimethylaminopyridine-N)dicarbonylchlororhodium [Rh(C7N2-
H10)(CO)2Cl]] at the B3LYP(VWN3)/3-21G level of
theory8-10 and on a model of vitamin B12, at the
BP86/AhlrichsVDZ11,12 level. The valence- and full-basis
optimizations are carried out using the ARH method. In
Section 3.2, ARH-3L optimizations are compared with
optimizations using the RH/DIIS algorithm without RH level
shifting. Most electronic-structure programs use a RH/DIIS
algorithm with some level shifting in the initial RH iterations
and possibly with other modifications so as to accelerate
convergence.

In ref 4, van Lenthe et al. demonstrated the usefulness of
their ATOMS approach by carrying out B3LYP calculations
on 23 transition-metal complexessin Section 3.3, we com-
pare their results with those of the ARH-3L method.

DA ) (DAo 0
0 0 ) (6)

DAo ) Do
P x Do

Q x ... (7)

FAo(DV
Ao)CV ) SAoCVεV (8)

|�V〉 ) |�Vo, �Vu〉 ) |�Ao〉(CVo, CVu) (9)

DV ) (I 0
0 0 ) (10)

|�F〉 ) |�V, �Au〉 ) |�Vo, �Vu, �Au〉 (11)

DV
F ) (DV 0

0 0 ) (12)
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All calculations have been carried out with a development
version of the Dalton program package.13 For molecular
geometries, see the Supporting Information.

3.1. Convergence of ARH-3L Calculations. In Figures
1 and 2, the convergence of the ARH-3L calculations on
the Rh complex (upper panel) and B12 (lower panel) is
compared to the convergence obtained using other optimiza-
tion strategies, by plotting the energy at each full-basis
iteration relative to the converged full-basis energy. In Figure
1, the convergence of ARH-3L calculations is compared with
that of ARH calculations with a one-electron Hamiltonian
(HCORE) starting guess. The error bars represent the
magnitudes of the level shifts, plotted on a relative scale.
Because of the poor HCORE starting guess, large shifts (up
to 3.2 for the Rh complex and 42.4 for B12) are imposed in
the global region (first 5-15 iterations) of the ARH
optimization. These shifts decrease as the optimizations
approach the local region, where no shifts are needed. By
contrast, hardly any level shifts are needed in the ARH-3L
optimizations, indicating that these optimizations begin close
to the local region, bypassing the difficult global and
semiglobal regions.

Although ARH calculations with HCORE starting guesses
provide useful insight into the performance of the ARH-3L
method, better guesses are usually used in electronic-structure

programs. In Figure 2, we compare ARH-3L optimizations
of the Rh complex (upper panel) and of B12 (lower panel)
with optimizations using the plain RH/DIIS algorithm with
an ATOMS starting density matrix and without level shifting
in the initial iterations.

For the Rh complex, our plain RH/DIIS implementation
converges in about the same number of iterations, as does
the ARH-3L method. In the more difficult B12 case, the
superiority of the ARH-3L method becomes more pro-
nounced; the RH/DIIS method requires significantly more
iterations than the ARH-3L method to reach convergence.

3.2. Robustness and Reliability of the ARH Algorithm.
To demonstrate the robustness of the ARH algorithm, we
here compare the convergence of the full-basis ARH method
with that observed with the RH/DIIS implementation for the
two test molecules, using the HCORE starting guessssee
Figure 3. For both molecules, the ARH convergence is
smooth and fast, while the convergence using RH/DIIS is
more erratic. For the Rh complex, the optimizations require
about the same number of iterations. For B12, on the other
hand, the RH/DIIS method fails, whereas the ARH method
shows its typical robust global convergence.

Because of the good starting density matrices in the ARH-
3L method, it might be thought that the choice of optimiza-
tion algorithm matters little. This is not the case, as
demonstrated by calculations on an imidazolecadmium(2+)

Figure 1. The convergence of calculations on the Rh complex
(upper panel) and B12 (lower panel) using the ARH-3L
method (plus signs) and ARH with a HCORE initial guess of
the density matrix (full circles). The level shifts at each iteration
are displayed as error bars.

Figure 2. The convergence of calculations on the Rh complex
(upper panel) and B12 (lower panel) using the ARH-3L
method (plus signs) and RH/DIIS (full triangles) with ATOMS
starting density matrix.
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complex, whose full-basis ARH-3L convergence is displayed
in Figure 4. The horizontal plateau in Figure 4 arises as the
optimization converges toward a saddle point. Close to the
saddle point, the ARH algorithm detects a negative Hessian
eigenvalue, upon which the optimization turns toward the
minimum and converges quickly. From the same starting

guess, the RH/DIIS calculation converges (very tightly, with
a gradient norm less than 10-6) to the same saddle point in
few iterations, without recognizing that a saddle point instead
of a minimum has been reached. Moreover, several standard
programs also converge to this saddle point.5 To avoid
saddle-point convergence, it is therefore important to use the
ARH algorithm, even with very good starting density
matrices.

3.3. Comparison of ARH-3L and ATOMS Starting
Density Matrices. We now consider the 23 transition-metal
complexes studied by van Lenthe et al., using the RH/DIIS
algorithm with the ATOMS starting guess and a predefined
level shift in the first iterations.4 For comparison, van Lenthe
et al. reported MINGUESS calculations, where the starting
guess was obtained in a preliminary STO-3G calculation and
then projected onto the full TZVP basis14 as well as
calculations with the HCORE starting guess. The results of
van Lenthe et al. are summarized in Table 1, which contains
information on ∆E (the energy in the first iteration relative
to the converged energy) and the number of iterations in the
optimizations (in percent relative to the ATOMS calculations
in the same table). We have augmented the table by including
results obtained with the ARH-3L method.

The results in Table 1 demonstrate the superiority of the
ARH-3L valence-basis starting guess, whose energy on
average is only 0.06 hartree above the converged result,
compared with 1.93 hartree for the ATOMS starting guess.

The MINGUESS calculations are not an improvement on
the ATOMS calculations because of the errors introduced
in the projection onto the TZVP basis. The loss of informa-
tion that arises when the molecular STO-3G density matrix
is projected onto the full basis is thus very significant. In
the ARH-3L method, the molecular valence-basis density
matrix is transferred to the full basis without loss of
information.

On average, the ARH-3L calculations use 22% fewer
iterations than do the ATOMS calculationssin the best case,
58% fewer iterations are needed. The ARH-3L method thus
converges significantly faster than previous methods, already
for these small systems.

4. The Three-Level Approach Summarized

We have presented a novel ARH-3L optimization scheme
for the KS energy, consisting of three levels:

Figure 3. The convergence of calculations on the Rh complex
(upper panel) and B12 (lower panel) with the HCORE starting
density matrix using the ARH method (full circles) and the
RH/DIIS method (full triangles).

Figure 4. Convergence of full-basis B3LYP(VWN3)/3-21G
calculations of imidazolecadmium(2+) using the ARH-3L
(open circles) and RH/DIIS (full triangles) methods. Both
calculations start from a valence-basis optimized density
matrix.

Table 1. Statistics for Calculations on a Test Set of 23
Transition-Metal Complexes4a

∆E (Hartrees) num. of iter. (%)

max. mean best mean worst fail

HCORE 159.63 159.63 291 291 291 22
MINGUESS 2.03 1.57 88 117 175 1
ATOMS 1.93 0.46 100 100 100 0
ARH-3L 0.20 0.06 42 78 94 0

a The HCORE, MINGUESS, and ATOMS results are taken from
ref 4. In addition, results are given for the ARH-3L algorithm. ∆E is
the energy difference between the initial and final iterations. The
number of iterations is given in percent relative to the ATOMS
calculation. The final column contains the number of optimizations
that did not converge.
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1) Atomic canonical-ensemble optimizations in the |�P〉
atomic basis, giving a spherically symmetric atomic density
matrix. Superposition of atomic density matrices is used as
the starting guess in the valence-basis molecular optimization.

2) A valence-basis molecular ARH optimization in the
|�Ao〉 basis, giving a valence-basis starting guess for the full-
basis molecular optimization

3) A full-basis molecular ARH optimization of the KS
energy

In the three-level ARH-3L method, information about the
molecular system is built up gradually, exploiting chemical
insight. Because of the high quality of the valence- and full-
basis starting guesses, these minimizations begin close to
the local region, bypassing almost entirely the difficult global
region. The cost of the first two ARH-3L levels, where the
global optimization is carried out, is insignificant compared
with that of the third level.

The ARH-3L algorithm is highly cost-effective, requiring
significantly fewer iterations than other algorithms, even for
the small systems considered here. Bearing in mind that a
large proportion of the CPU time allocated to quantum-
chemical simulations is actually spent optimizing KS ener-
gies, this translates into considerable savings of computa-
tional resources. Furthermore, the ARH-3L method exhibits
reliable convergence, also when standard methods fail. Last
but not least, whereas the traditional methods may converge
to saddle points, the ARH-3L method is designed to avoid
such points. For both efficiency and reliability, we recom-
mend its use in molecular KS calculations.
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(14) Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted
Gaussian basis sets of triple zeta valence quality for atoms Li
to Kr. J. Chem. Phys. 1994, 100, 5829–5835.

CT800562H

1032 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Jansı́k et al.
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Abstract: Whereas cis-substituted alkenes are normally significantly less stable than the trans-
isomers, there is a group of 1-substituted propenes (X ) F, OMe, Cl, Br, SMe) where the cis-
isomers are the more stable. The calculated structures show that there is steric repulsion with
the cis-isomers. However, this is overcome by attractive Coulombic interactions when X ) F or
OMe and by attractive dispersive interactions when X ) Cl or Br. It was possible to calculate
the magnitude of the latter term via the summation of the appropriate MP2 pair energies. The
calculated and observed energy differences could be reproduced by a summation of steric,
electrostatic, and dispersive interactions.

The cis-isomers of disubstituted ethenes are normally less
stable than the corresponding trans-isomers as a result of a
steric interaction between the substituents. As an example,
cis-2-butene has a higher energy (1.1 kcal/mol) than trans-
2-butene.1 Nonbonded intramolecular interactions that sta-
bilize molecules have been of considerable interest. Some
1-substituted propenes are examples of compounds that
apparently exhibit attractive intramolecular interactions as
evidenced by the fact that the cis-isomers are more stable
than the trans-isomers. These compounds have received
considerable study, both experimental2,3 and computational.4,5

The experimental observations are recorded in Table 1 along
with the derived ∆G° values and their estimated uncertainties.

The cis-isomers of these 1-substituted propenes must be
stabilized enough to overcome the normal steric interactions
that beset such molecules. These stabilizing interactions may
include (1) attractive Coulombic interactions between the
substituents, which could result from interaction of bond
dipoles that are oriented appropriately;3b (2) delocalization
of valence electrons associated with one group into a vacant
orbital on the other group;5 and/or (3) stabilizing van der
Waals interactions between the groups.

In order to gain further information about the intramo-
lecular interactions within these molecules, we have carried
out geometry optimizations at the HF, DFT, and MP2 levels
using the aug-cc-pVTZ basis set. CCSD(T)/aug-cc-pVTZ
calculations were carried out using the MP2 geometries. The
HF calculations do not include electron correlation, so the
effect of nonbonded van der Walls attractive terms will not
be seen. The use of the density functionals will allow some
correction for electron correlation but may not correctly
reproduce van der Waals (dispersive) interactions,6 MP2
provides modest correction for electron correlation, and
CCSD(T) gives superior correction for this effect. The latter
methods would be expected to reproduce the van der Waals
terms.7 Thus, it was anticipated that a comparison of the
relative energies at these different levels would give informa-
tion on the nature of the intramolecular interactions present
in 1-substituted propenes.

* Corresponding author e-mail: kenneth.wiberg@yale.edu.
† Yale University.
‡ Wesleyan University.
§ University of Connecticut.

Table 1. Observed Equilibrium Compositions and Free
Energy Differences of 1-Substituted Propenes at 30-40° C

compound % cis ∆G° (kcal/mol) ref

CH3CHdCHOMe 71 0.53 ( 0.06 3a
CH3CHdCHOEt 81 0.86 ( 0.08 3a
CH3CHdCHCl 76 0.68 ( 0.06 3b
CH3CHdCHBr 68 0.45 ( 0.06 3c
CH3CHdCHCN 61 0.26 ( 0.04 3b
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The substituents F, Cl, Br, CN, and CH3 lead to conformers
that have Cs symmetry with a methyl hydrogen eclipsing
the C-C double bond.8 With X ) OMe or SMe, the
substituent rotates so that a lone pair may interact with the
carbon-carbon double bond. The situation with respect to
the enamine, X ) NMe2, was somewhat more complex. The
trans-isomer of the enamine with Cs symmetry was a
stationary point on the potential energy surface with no
imaginary frequencies. However, the cis-isomer was a
transition state, and rotation of the substituent to allow the
lone pair to interact with CdC led to a lower energy
structure. An MP2 optimization of the trans-structure with
reduced symmetry also led to a lower energy structure. The
rotated structures were minima at B3LYP and CCSD as well
as MP2. However, whereas the trans-isomer of the enamine
presented no steric problems, a methyl of the NMe2 group
in the cis-isomer interfered with the terminal methyl at C(2).
As a result, the relative energies of the enamine (X ) NMe2)
are not comparable to those of the other 1-substituted
propenes and will not be further considered.

Since we are primarily interested in the purely electronic
interactions that lead to the energy differences, Table 2 gives
the results of the calculations, without correction for zero-
point energies or the change in energy with temperature. It
was not practical for us to carry out geometry optimizations
at the CCSD/aug-cc-pVTZ level, and therefore these energies
were calculated using the MP2/aug-cc-pVTZ optimized
geometries.

Inspection of the results summarized in Table 2 reveals
that for the first-row substituents, X ) F or OMe, the
calculated relative energies are essentially independent of
the method used. However, with X ) Cl, the HF relative
energy is essentially zero, and it became positive, favoring
the trans-isomer, with X ) Br or SMe. In contrast to the
HF results, the cis-preference is maintained when X ) Cl,
Br, or SMe using all of the methods that include electron
correlation. Taking the CCSD(T) relative energies as the
more reliable, MP2 overcorrects somewhat, as is often
observed.9 The negative triple excitations, e(T)ijk, partly
cancel the positive semijoint third-order pair coupling terms,
e(3)

ij,jk, so the CCSD(T) relative energies are about halfway
between the MP2 and the CCSD results. The DFT models
also reproduce the cis preference and therefore appear to
include short-range dispersion effects even though they have
no terms that include true R-6 dispersive effects.10

The change in relative energies at the HF level is probably
largely the result of steric interactions, as is suggested by

the data presented in Tables 3 and 4. The results summarized
in Table 3 indicate that the CdC-Me bond angle is larger
with the cis-isomers than with trans-isomers, and this
difference increases on going from X ) F to Cl and Br. The
effect may also be seen in comparing cis- and trans-2-butene
where the trans-form is favored.

The data summarized in Table 4 show that the cis-isomers
have a smaller methyl rotational barrier than trans-isomers
as observed experimentally11 and that the methyl torsion
frequency is smaller for cis-isomers than trans-isomers. Both
of these observations are consistent with a repulsive interac-
tion between the methyl group and the cis-substituent.

The observation that the experimentally observed prefer-
ence for the cis-isomer of 1-fluoropropene is reproduced at
all theoretical levels, whereas this is not true for the other
halogens, implies that the origin of the cis-preference in
1-fluoropropene is different than that responsible for the cis-
preference of the other 1-halopropenes. In view of the large
electronegativity of fluorine in comparison with the other
halides, a reasonable hypothesis is there is a significant
attractive Columbic interaction between the negatively
charged fluorine at C(1) in the cis-isomer and the presumably
positively charged methyl (a result of being attached to a
double bond as well as the inductive effect of the 1-fluoro
substituent) as suggested some time ago by Crump.3b The
effect would be larger for the cis-isomer than for the trans-
isomer because the former has the shorter nonbonded F · · ·Me
distance.

One might examine the validity of this hypothesis by
evaluating the magnitude of the electrostatic interaction. This
requires some method of obtaining the relevant atomic
charges. This has been a continuing problem since atomic

Table 2. Relative Energies (Trans h Cis) of 1-Substitued
Propenesa

X HF B3LYP MP2 CCSDb CCSD(T)b

F -0.53 -0.56 -0.70 -0.63 -0.65
OMe -0.56 -0.63 -0.95 -0.76 -0.80
CN 0.09 -0.11 -0.72 -0.37 -0.50
CH3 1.56 1.25 1.04 1.13 1.06
Cl 0.01 -0.33 -0.77 -0.49 -0.60
Br 0.18 -0.27 -0.99 -0.63 -0.79
SMe 0.65 -0.26 -0.57 -0.14 -0.35

a No zero-point or thermal corrections, in kcal/mol, using
aug-cc-pVTZ. b aug-cc-pVTZ using MP2/aug-cc-pVTZ geometries.

Table 3. Calculated CdC-Me Angles for 1-Substituted
Propenes, MP2/aug-cc-pVTZ

X cis trans

F 125.24 122.38
Cl 126.78 122.64
Br 127.00 122.63
CN 125.21 123.78
CH3 127.22 124.59
OMe 124.54 122.70
SMe 125.14 123.66

Table 4. Calculated CH3 Rotational Barriers and CH3

Torsion Frequencies (in cm-1), B3LYP/aug-cc-pVTZ

X cis ν trans ν

F 1.07 (1.06)a 151i 2.14 (2.20)a 223i
OMe 0.71 108i 2.12 219i
CN 1.44 (1.39)a 168i 1.91 212i
Me 0.98 128i 1.96 207i
Cl 0.75 (0.62)a 109i 2.02 (2.17)a 215i
Br 0.73 116i 2.00 214i
SMe 0.56 92i 1.91 203i

a Observed values (ref 11).
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charges in molecules are not well defined, and different
methods for calculating them give different results.12

In order to try to obtain some additional information, we
have studied the haloethenes (CH2dCHX). The structures
of the haloethenes were calculated at the CCSD/aug-cc-pVTZ
level of theory, and the dipole moment components were
reoriented to place the CdC bond along the x axis. The
calculated dipole moments are given in Table 5.

There is remarkably little difference in the dipole moments
of the haloethenes and their components (z is out-of-plane
so µz is zero), despite the large difference in electronegativity
among the halogens. This is the result of a compensating
increase in C-X bond length as the smaller electronegativity
decreases the halogen charge. One of the more successful
definitions of atomic charges is that of Hirshfeld13 that also
gives the atomic dipoles, originating from nonspherical
charge distribution about the atoms. The results of these
calculations are included in Table 5. It can be seen that the
Hirshfeld charges reproduce the ab initio calculated dipole
moments quite well when the atomic dipoles are included.

The MP2/aug-cc-pVTZ calculated dipole moments of the
1-halopropenes are summarized in Table 6. Again, there is
little change in going from one halogen to another. In this
case, we examined several models for calculating atomic
charges. One computational method, ChelpG,14 uses a least-
squares fit to the electrostatic potential, with the dipole
moments used as a constraint. However, an examination of
the halopropenes found large differences in these charges
on going from cis- to trans-isomers (Supporting Information),
whereas all other methods for obtaining charges find little
difference in charge between cis- and trans-forms. Therefore,
they are clearly not satisfactory for the present purpose.

The atomic charges for the 1-halopropenes were obtained
using the NPA,15 AIM,16 and Hirshfeld13 definitions. The
CH bond dipoles calculated using NPA are known to be

exaggerated,17 and so the hydrogen charges were combined
with the carbon charges. The dipole moments calculated
using the NPA and AIM charges18 varied considerably and
did not agree with those from the ab initio calculations.
However, the moments calculated using the Hirshfeld charges
did not vary much on going from 1-fluoropropene to
1-chloropropene, although they were somewhat too small if
the atomic dipoles are not included. Therefore, we further
examined the Hirshfeld charges. In order to simplify the
calculations, the atomic dipoles were neglected, and the
atomic charges were scaled to account for this neglect.

With X ) F and Cl, the average ratio of the ab initio dipole
moments to those obtained using the Hirshfeld charges was
1.51 ( 0.06. The charges were scaled by this ratio giving
the charges summarized in Table 6. The last column in Table
6 has the dipole moments calculated from these charges, and
they can be seen to compare favorably with the ab inito
values given in parentheses. As expected, the charge on X
decreases on going from F to Cl and Br.

Clearly, these effective charges are just approximations,
but they do fit the ab initio calculated dipole moments fairly
well, and the halogen charges change in the expected fashion.
They are, in any event, the best we have been able to obtain.

The differences in the intramolecular electrostatic interac-
tions present in the cis- and trans-isomers were calculated
using these charges, and the results are presented in Table
7. As noted some time ago by Westheimer and Kirkwood,19

one must account for the fact that the polarizable CdC group
lies between the substituents in the trans-isomer, and a
hydrocarbon dielectric constant of 2 was used for this
purpose.

Table 7 also includes cis- and trans-2-butene in order to
have a case where the normal trans preference is found. In
order to compare the results with the HF energy differences,
it is necessary to include the steric repulsions between the
methyl hydrogens and the substituents. They were estimated
by calculation of the Pauli repulsion for H · · ·X in the 3Σ
state and scaling the result by 0.4 in order to reproduce the
rotational barrier in ethane (see the Supporting Information).
The sum of the Coulombic and steric term fairly well
reproduce the HF energy differences, although the steric term
for X ) F appears to be a little too large as compared to
that for X ) Cl.

Now, it remains to explain the difference between the HF
and MP2 relative energies for the isomers. The MP2
correlation energy is a sum of pair energies, one for each
pair of occupied SCF orbitals:

E(2) ) ∑
i<j

occ

eij
(2))∑

i<j

occ { ∑
a<b

Virt
|〈ij| |ab〉 |2

εi + εj - εa - εb
}

The sum of these pair energies is invariant to unitary
transformations among the occupied orbitals.20 We are
therefore free to localize the occupied orbitals.21 The
resulting second-order pair correlation energies between
halogen lone pair electrons and methyl C-H bond elec-
trons (Figure 1) can be interpreted as intramolecular
dispersion energies. The details are included as Supporting
Information. The method we use is essentially the same
as the method employed by Grimme, Műck-Lichtenfeld,

Table 5. Calculated Dipole Moments of Haloethenes
(CH2dCHX) Using aug-cc-pVTZ

compound calculation µx µy µtotal

CH2dCHF CCSD 1.267 0.748 1.471
Hirshfeld atomic 0.944 0.526 1.081
Hirshfeld dipole 0.319 0.219 0.387
Hirshfeld total 1.263 0.745 1.467

CH2dCHCl CCSD 1.197 0.907 1.501
Hirshfeld atomic 0.963 0.712 1.198
Hirshfeld dipole 0.261 0.173 0.280
Hirshfeld total 1.185 0.884 1.478

CH2dCHBr CCSD 1.156 0.924 1.480
Hirshfeld atomic 0.953 0.740 1.206
Hirshfeld dipole 0.201 0.161 0.258
Hirshfeld total 1.154 0.901 1.464

Table 6. Effective Atomic Charges Based on the Hirshfeld
Charges and the Dipole Momentsa

compound X C1H C2H CH3 µ(D)

cis-CH3CHdCHF -0.218 0.190 -0.010 0.038 1.464 (1.555)
trans-CH3CHdCHF -0.226 0.189 -0.009 0.039 1.873 (1.889)
cis-CH3CHdCHCl -0.156 0.101 0.023 0.035 1.533 (1.553)
trans-CH3CHdCHCl -0.172 0.102 0.027 0.044 2.032 (1.837)
cis-CH3CHdCHBr -0.031 0.126 0.075 0.029 1.613 (1.608)
trans-CH3CHdCHBr -0.071 0.145 0.076 0.031 1.865 (1.891)

a Values in parentheses are the ab initio MP2/aug-cc-pVTZ
calculated values.
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and Antony.22 These intramolecular dispersion energies
are compared with the total MP2 energy differences in
Table 8. Given that we are looking at small differences
between large numbers, the agreement is rather good. The
contribution of the correlation energy to the cis-trans
energy differences is in all cases almost entirely due to
intramolecular dispersion.

Combining the results from Tables 7 and 8, we obtain
a detailed explanation for the calculated cis-trans energy
differences in Table 2. The summary in Table 9 demon-
strates that electrostatic, steric, and dispersion interactions
all play significant roles in determining the relative sta-
bility of the cis- and trans-isomers of 1-substituted
propenes. In short, the relatively constant energetic pre-
ference found favoring the cis-isomers of 1-halopropenes

masks the varying roles of electrostatic and dispersion
interactions within these molecules.

Summary

Although the cis-1-substituted propene with X ) F, OMe,
CN, Cl, Br, and SMe are more stable than their trans-isomers,
the structural parameters indicate that they are subject to
steric repulsion as is found with most compounds of this
type. The observed cis-preference is due to a combination
of Coulombic attraction between X and the terminal methyl
(particularly important with X ) F or OMe) and a dispersion
interaction between X and the terminal methyl group
(particularly important with X ) Cl, Br, or SMe). The
contribution of each of these terms to the relative energies
has been estimated making use of model steric calculations,

Table 7. Interpretation of the HF Results for 1-Halopropene Isomers

X qX qMe r(X · · ·Me) qq/ra ∆qq/r Pauli H · · ·X scaled total ∆EHF
b

cis-F -0.218 0.038 2.908 -0.946 -0.553 0.775 0.310 -0.243 -0.521
trans-F -0.226 0.039 3.725 -0.393
cis-Cl -0.156 0.035 3.199 -0.567 -0.261 0.997 0.391 0.130 0.101
trans-Cl -0.172 0.044 4.103 -0.306
cis-Br -0.031 0.039 3.299 -0.122 -0.036 1.282 0.513 0.477 0.373
trans-Br 0.071 0.031 4.246 -0.086
cis-Me 0.007 0.007 3.151 0.005 0.003 3.752 1.501 1.504 1.640
trans-Me 0.006 0.006 3.909 0.005

a The Coulombic effect for the trans isomers were reduced by a factor of 2 (see text). b Ecis - Etrans.

Figure 1. Examples of MP2 localized orbitals for 1-fluoropropene. The full set may be found in the Supporting Information.

Table 8. Interpretation of the HF-MP2 Relative Energy Differencesa

X EHF EMP2 ∆EHF ∆EMP2 ∆EMP2 - ∆EHF ∆EDisp Dispb

cis-F -216.00815 -216.77183 -0.521 -0.707 -0.186 -0.221 -10.634
trans-F -216.00732 -216.77071 -10.413
cis-Cl -576.05438 -576.75803 0.101 -0.763 -0.864 -0.926 -12.559
trans-Cl -576.05454 -576.75681 -11.673
cis-Br -2688.99619 -2698.74332 0.373 -0.989 -1.362 -1.208 -12.909
trans-Br -2688.99676 -2698.74174 -11.701
cis-Me -156.16616 -156.86107 1.640 1.039 -0.601 -0.792 -11.612
trans-Me -156.16877 -156.86273 -10.820

a The total energies are given in atomic units (H), and the energy differences are given in kcal/mol. b Total interatomic pair energies not
including geminal interactions.

Table 9. Components Contributing to the Relative Energies of the cis- and trans-Isomers of 1-Substitued Propenesa

X qq/r steric Disp total MP2 CCSDb CCSD(T)

F -0.553 0.320 -0.221 -0.464 -0.70 -0.63 -0.65
Cl -0.261 0.391 -0.926 -0.796 -0.77 -0.49 -0.60
Br -0.036 0.513 -1.028 -0.731 -0.99 -0.63 -0.79
CH3 0.003 1.501 -0.792 0.712 1.04 1.13 1.06

a No zero-point or thermal corrections, in kcal/mol, using aug-cc-pVTZ. b At MP2/aug-cc-pVTZ geometries.
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Hirshfeld atomic charges, and MP2 pair energies. The results
are in satisfactory agreement with the differences in calcu-
lated total energies.

Calculations

All of the ab initio calculations were carried out using a
development version of Gaussian.23 The Hirshfeld charges
were obtained using a local program.24 The MO plots were
made using Gaussview.
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Abstract: OPLS-AA force field parameters have been developed and validated for use in the
simulation of 68 unique combinations of room temperature ionic liquids featuring 1-alkyl-3-
methylimidazolium [RMIM] (R ) Me, Et, Bu, Hex, Oct), N-alkylpyridinium [RPyr], and choline
cations, along with Cl-, PF6

-, BF4
-, NO3

-, AlCl4-, Al2Cl7-, TfO-, saccharinate, and acesulfamate
anions. The new parameters were fit to conformational profiles from gas-phase ab initio
calculations at the LMP2/cc-pVTZ(-f)//HF/6-31G(d) theory level and compared to experimental
condensed-phase structural and thermodynamic data. Monte Carlo simulations of the ionic liquids
gave relative deviations from experimental densities of ca. 1-3% at 25 °C for most combinations
and also yielded close agreement over a temperature range of 5 to 90 °C. Predicted heats of
vaporization compared well with available experimental data and estimates. Transferability of
the new parameters to multiple alkyl side-chain lengths for [RMIM] and [RPyr] was determined
to give excellent agreement with charges and torsion potentials developed specific to desired
alkyl lengths in 35 separate ionic liquid simulations. As further validation of the newly developed
parameters, the Kemp elimination reaction of benzisoxazole via piperidine was computed in
1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] using mixed quantum and
molecular mechanics (QM/MM) simulations and was found to give close agreement with the
experimental free energy of activation.

Introduction

Ionic liquids are a unique class of solvent, generally defined
as a material containing only ionic species with a melting
point below 100 °C.1,2 These “designer” solvents are
typically composed of a low symmetry organic cation, such
as the well-recognized 1-alkyl-3-methylimidazolium [RMIM]
and N-alkylpyridinium [RPyr] cation classes, and a weakly
coordinating inorganic or organic anion with a diffuse
negative charge like hexafluorophosphate [PF6] or tetrafluo-
roborate [BF4].

3 Ion components can be fine-tuned through
different functional groups to enhance the degree of localized
structuring in the liquid phase, which distinguishes ionic
liquids from molecular solvents and solutions containing
dissociated ions.4 This distinctive structural behavior5 in
conjunction with their attractive properties, e.g., low viscosi-
ties, negligible vapor pressure, and excellent thermal and

chemical stabilities, has led to numerous advances in
electrochemistry,6 separation science,7 catalysis,8-10 organic
synthesis,11 materials,12 and applications with lanthanides
and actinides.13

Ionic liquids are often touted as green alternatives to
volatile organic solvents. However, their potential impact on
the environment is strongly dictated by ionic liquid
selection.9,14,15 For example, toxicity testing of 1-butyl-3-
methylimidazolium [BMIM] and N-1-butylpyridinium [BPyr]
on Daphnia magna, a common fresh water crustacean and
aquatic food-chain base, found the cations to be half as toxic
as toluene (EC50 of ca. 20 mg/L) and increasing the alkyl
chain length to dodecyl increased the ecotoxicity by a factor
of 2500 (EC50 of 4 µg/L).15 In addition, combinations of
[BMIM] with [BF4] or [PF6] anions have been determined
to possess a negligible biodegradability,16 allowing for their
persistence in the environment for a considerable length of
time. More environmentally friendly ionic liquids have* E-mail: orlando.acevedo@auburn.edu.
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recently been explored based on the choline cation [Chol],17

a food-grade additive, and imidazolium derivatives designed
for biodegradability18 in combination with anions based on
amino acids,19 saccharinate [Sacc],17 and acesulfamate
[Ace]17,20 ([Sacc] and [Ace] are used as artificial sweeteners).

This study seeks to develop force field potentials for the
atomistic simulation of both widely used ionic liquid
combinations and next-generation alternatives with smaller
environmental impact. In this respect, OPLS-AA parameters
have been created and validated for use in the simulation of
68 unique combinations of room temperature ionic liquids
featuring [RMIM] (R ) Me, Et, Bu, Hex, Oct), [RPyr], and
[Chol] cations, along with [PF6], [BF4], [Sacc], [Ace], nitrate
[NO3], chloride [Cl], tetrachloroaluminate [AlCl4], heptachlo-
rodialuminate [Al2Cl7], and triflate [TfO] anions (Figure 1).
Many of the ions presented in this work have already been
featured in other molecular dynamics21-24 and Monte Carlo25

studies for a variety of force fields, e.g., CHARMM,26

AMBER,27 and OPLS-AA.28 Therefore it is important to
stress that in addition to the parametrization of previously
unpublished ionic liquids, e.g., [Chol], [Sacc], and [Ace],
this study explored an unprecedented number of cation/anion
combinations with two completely different charge and
torsion sets for a detailed comparison of parameter transfer-
ability. The first charge/torsion set is potentially transferable
to any alkyl side-chain length on the [RMIM] and [RPyr]
cations (tested up to R ) octyl) and the second set is specific
to the ionic liquid cations: [EMIM], [BMIM], [MPyr],
[EPyr], and [BPyr]. In addition, the current work validated
the parameters for temperatures ranging from 5 to 90 °C
against experimental densities for 11 unique ionic liquid
combinations; most previous work focused on room
temperature.

Monte Carlo (MC) simulations of the ionic liquid param-
eters gave predicted densities and heats of vaporization,
∆Hvap, in close agreement with experimentally observed
values. The driving force behind the newly developed
parameter set is to produce a computationally accurate
representation of the reaction medium for use in mixed
quantum and molecular mechanics (QM/MM) calculations.
The objective is to understand the microscopic details on
how ionic liquids influence chemical reactions accelerated

and controlled by different cation and anion combinations.8,9

Our recent work on Diels-Alder reactions in the chloroalu-
minate ionic liquids [EMIM][AlCl4] and [EMIM][Al2Cl7]
emphasized the importance of intermolecular interactions on
the rate of reaction.25 In this study, the Kemp elimination
ring-opening of benzisoxazole in [BMIM][PF6] using pip-
eridine as the base has been carried out using QM/MM
calculations and was found to give good agreement with the
experimental free energy of activation.

Computational Methods

OPLS-AA Force Field. The OPLS-AA force field28

formalism was chosen to represent the ionic liquids. As a
brief overview, the total energy of the ionic systems are
evaluated as a sum of individual energies for the harmonic
bond stretching and angle bending terms, a Fourier series
for torsional energetics, and Coulomb and 12-6 Lennard-
Jones terms for the nonbonded interactions, see eqs 1-4.
The parameters are the force constants k, the ro and θo

reference values, the Fourier coefficients V, the partial atomic
charges, q, and the Lennard-Jones radii and well depths, σ
and ε.

The geometric combining rules regularly used for the
Lennard-Jones coefficients are employed: σij ) (σiiσjj)1/2 and
εij ) (εiiεjj)1/2.28 Nonbonded interactions are evaluated
intermolecularly and for intramolecular atom pairs separated
by three or more bonds. In order to use identical parameters
for both intra- and intermolecular interactions the 1,4-
intramolecular interactions are reduced by a factor of 2.28

To retain compatibility with OPLS-AA, all present param-
eters were developed in a similar fashion to recent param-
etrization efforts by Jorgensen and co-workers.29-31 When-
ever appropriate, published potentials were retained without
change. This includes assigning all standard bond stretching
and angle bending force constants from OPLS-AA, which
may also include some entries from the AMBER-AA force
field.27 All Lennard-Jones parameters also came from the
OPLS-AA parameter set except when explicitly stated. The
present work then focused on the development of Fourier
coefficients, partial charges, and equilibrium geometries, and
the validation of multiple ionic liquid combinations.

Ab Initio Calculations. All individual ions, i.e., [RMIM]
(R ) Me, Et, Bu), [RPyr] (R ) Me, Et, Bu), and [Chol]
cations with [Cl], [PF6], [BF4], [NO3], [AlCl4], [Al2Cl7],

Figure 1. Ionic liquid-forming ions. R ) M (methyl), E (ethyl),
B (butyl), H (hexyl), and O (octyl).
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[TfO], [Sacc], and [Ace] anions, were optimized using the
Jaguar program32 at the Hartree-Fock (HF) theory level
using the 6-31G(d) basis set with subsequent single-point
energy calculations using the local MØller-Plesset second-
order perturbation (LMP2)33 method and the correlation-
consistent polarized valence cc-pVTZ(-f) basis set.34 This
LMP2/cc-pVTZ(-f)//HF/6-31G(d) method is the current
practice for OPLS-AA parametrization.31 Vibrational analyti-
cal frequency calculations at the HF/6-31G(d) were carried
out to confirm all minima as stationary points. The ab initio
derived ion geometries were used for the equilibrium bond
and angle, ro and θo, reference values in the force field and
given in the Supporting Information. Partial charges were
computed by fitting the molecular electrostatic potential
(ESP) at the atomic centers. For a better description of the
charge density, LMP2 dipole moments were also computed
along with a coupled perturbed Hartree-Fock (CPHF) term.
Charges were symmetrized for similar atoms and used for
the Coulombic nonbonded force field partial charges. Tor-
sional energies were fit to reproduce computed LMP2/cc-
pVTZ(-f)//HF/6-31G(d) energy scans. Calculations at this
level have been reported to yield highly accurate conforma-
tional energies with average errors of ca. 0.25 kcal/mol for
reported test sets and 0.6 kcal/mol for perfluorolalkanes.31

Greater detail on the torsional scans and assignment of partial
charges are given in Results and Discussion.

Ionic Liquid Simulations. The Metropolis Monte Carlo
(MC) simulations were performed with the BOSS 4.6
program.35 All cations were fully flexible, i.e., all bond
stretching, angle bending, and torsional motions were
sampled. Anions were simulated as rigid molecules, and as
a result no additional intramolecular anion parametrization
was necessary. The use of rigid anions in OPLS-AA has been
shown to provide an accurate representation of ionic liquid
physical properties,23 including use as a reaction medium
for a computed QM/MM Diels-Alder reaction study.25

Periodic boundary conditions have been applied to boxes
containing 190 ion pairs with long-range interactions handled
with Ewald summations. In short, Ewald summations
calculate the exact electrostatic energy of an infinite lattice
of identical copies of the simulation cell. This suppresses
artifacts resulting from the simple cutoff of the long-range
electrostatic interactions prevalent in the ionic liquid. The
liquid-phase simulations were carried out by placing the 380
ions at random positions in the simulation box (see Figure
2), and a temperature value of 1000 °C was initially applied
for 10 million configurations in the NVT ensemble to
encourage a thorough mixing. The simulations were then
equilibrated at 25 °C for 100-200 million MC steps in the
NPT ensemble. The heating/NVT and equilibration/NPT
simulations on each ionic liquid system were repeated
sequentially an average of 4-6 times until the energy and
volume of the system no longer decreased. A pressure of 1
atm was used in all cases. The computed densities, heats of
vaporization, energy distributions, and conformational prop-
erties were very well converged with MC simulations of this
length.

In order to compute the heats of vaporization, ∆Hvap, MC
simulations needed to be performed on the gas-phase ion

pair of the corresponding ionic liquid because of the
flexibility of the cations. Experimental evidence suggests that
ionic liquids go into the vapor phase in ion pairs.36 Gas-
phase simulations consisted of 1 million configurations of
equilibration, followed by 2 million configurations of averag-
ing. For the liquids, the systems were periodic and tetragonal
with c/a ) 1.5; as an example, a is ca. 34.3 and 35.5 Å for
[BMIM][BF4] and [BMIM][PF6] (box sizes for all ionic
liquids are given in the Supporting Information).

Solvent-solvent intermolecular cutoff distances of 12 Å
were employed for the tail carbon atom of each side chain
(methyl and alkyl), a midpoint carbon on the alkyl chain,
and the ring carbon between both nitrogens for imidazolium.
Cutoff atoms were also based on alkyl side-chain length for
N-pyridinium using the carbon at the end of the alkyl chain,
a midpoint carbon on the side chain, the nitrogen atom, and
the carbon ring atom para to the nitrogen. For choline, atoms
O and N, along with two Cs bonded to N (methyl and on
the chain) were used for cutoffs. Center atoms, e.g., B in
BF4

- and P in PF6
-, were used for the anions. If any distance

is within the cutoff, the entire solvent-solvent interaction
was included. Adjustments to the allowed ranges for rota-
tions, translations, and dihedral angle movements led to
overall acceptance rates of about 40-50% for new configu-
rations. The ranges for bond stretching and angle bending
were set automatically by the BOSS program on the basis
of force constants and temperature. All MC calculations were
run on a Linux cluster at Auburn University, and all ab initio
calculations were performed on computers located at the
Alabama Supercomputer Center.

Results and Discussion

Partial Charges. Ab initio calculations at the LMP2/cc-
pVTZ(-f)//HF/6-31G(d) theory level were carried out on
the isolated gas-phase ions in order to facilitate the transfer-
ability of the charge model to multiple ionic liquid combina-
tions. All anions were geometry optimized, and Coulombic
charges were assigned from the ESP fits (Table 1). For the
cations, multiple low-energy geometry configurations exist
stemming primarily from torsion rotations, i.e., the alkyl side

Figure 2. Illustration of an equilibrated [BPyr][PF6] ionic liquid
simulation box.
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chains in the [RMIM] and [RPyr] ions and choline’s internal
N-C-C-O dihedral. This presented the challenge of
developing a single set of charges per cation family that could
accurately represent different alkyl lengths and orientations.
ESP charges were initially computed for all available
[RMIM] and [RPyr] energy-minimized stationary points,
where R ) Me, Et, and Bu. An average partial charge value
for each atom in [RMIM] and [RPyr] was developed by
appropriately weighting the contribution of each ground-state
structure to the overall conformational population. For
example, the partial charges specific to [BMIM] (see values
in Figure 3) were computed from a two-state model and the
Boltzmann distribution based on gauche and trans side-chain
optimized energies for the cation. Charges specific to
[EMIM], [MPyr], and [EPyr] are given in the Supporting
Information. To assign a final charge set to [RMIM], all
charges for [MMIM], [EMIM], and [BMIM] were ap-

propriately weighted and averaged (see Table 2 and Figure
3). For the ring atoms, e.g., NA, CW, HW in [RMIM],
departures in charge from symmetry were small in the R )
Me, Et, and Bu ions; hence, the atoms were given sym-
metrical values to facilitate transferability. Charges for the
carbon and hydrogen atoms, CS and HS, present in the
middle of the alkyl side chains (-CH2-) were taken directly
from OPLS-AA alkane values28 to allow the simulation of
any [RMIM] desired chain length (tested up to octyl in the
present work). In the simulations of [MMIM], the CM and
HM atom types are used in both methyl groups attached to
the 1 and 3 nitrogen positions of the imidazolium. A set of
transferable charges for [RPyr] and a specific set for choline
were computed in an identical fashion (Table 2).

The use of averaged point charges was necessary for a
fully transferable force field; however, a direct comparison
of the accuracy between these [RMIM] and [RPyr] charges
versus point charges specific to [EMIM], [BMIM], [MPyr],
[EPyr], and [BPyr] was evaluated in this study. Thirty-five
ionic liquid combinations were computed using both charge
sets, along with the appropriate torsion terms, to compare
differences in predicted densities and heats of vaporization
for a quantitative evaluation of the final charges presented
in Table 2. Most Lennard-Jones (LJ) parameters were taken
directly from the OPLS-AA force field; for example,
parameters for [RMIM] and [RPyr] were based on imida-
zole37 and pyridine,38 respectively. However, any LJ pa-
rameters not assigned from OPLS-AA are specified in
Table 1.

Intramolecular Potentials. The resultant geometries from
the ab initio calculations were used to obtain the equilibrium
bond and angle reference values, ro and θo, for the simula-
tions; the final values are given in the Supporting Informa-
tion. To allow full flexibility for the cations, appropriate bond
and angle force constants, and Fourier coefficients for ring
atoms on [RMIM] and [RPyr] were taken directly from
published OPLS-AA parameters.22,37,38 In this work, new

Table 1. Nonbonded Parameters for [Cl], [PF6], [BF4],
[NO3], [AlCl4], [Al2Cl7], [TfO], Saccharinate [Sac], and
Acesulfamate [Ace] Anionsa

anion atom type q (e) σ (Å) ε (kcal mol-1)

[Cl]b Cl -1.00 3.770 0.148
[BF4]c B 0.8276 3.5814 0.095

F -0.4569 3.1181 0.060
[PF6] P 1.3400 3.740 0.200

F -0.3900 3.1181 0.061
[NO3] N 0.794 3.150 0.170

O -0.598 2.860 0.210
[AlCl4]d Al 0.6452 4.050 0.100

Cl -0.4113 3.770 0.148
[Al2Cl7]d Al 0.5455 4.050 0.100

ClMe -0.1404 3.770 0.148
Cl -0.3251 3.770 0.148

[TfO] S 1.1887 3.550 0.250
O -0.6556 2.960 0.210
C 0.2692 3.500 0.066
F -0.1637 2.950 0.053

[Sac] C1 -0.0519 3.550 0.070
C2 -0.1882 3.550 0.070
C3 -0.0235 3.550 0.070
C4 -0.2759 3.550 0.070
C5 0.1293 3.550 0.070
C6 -0.1968 3.550 0.070
C9 0.5502 3.750 0.105
S7 1.2149 3.550 0.250
N8 -0.6889 3.250 0.170
OC -0.5950 2.960 0.210
OS -0.6285 2.960 0.210
HA 0.1132 2.420 0.030
HB 0.0782 2.420 0.030

[Ace] C1 -0.8536 3.550 0.070
C2 0.6670 3.550 0.070
C6 0.9507 3.750 0.105
C7 -0.3083 3.500 0.066
O3 -0.5087 2.900 0.140
OB -0.6573 2.960 0.210
OS -0.6158 2.960 0.170
S4 1.3355 3.550 0.250
N5 -0.8224 3.250 0.170
HA 0.0666 2.500 0.030
HB 0.2289 2.420 0.030

a All Lennard-Jones (LJ) nonbonded parameters are from the
OPLS-AA force field unless otherwise stated. Atom types for
[Sacc] and [Ace] are shown in Figure 4. b LJ parameter for Cl
taken from ref 23. c LJ parameter for B taken from ref 24. d LJ
parameters taken from refs 24 and 25. e Corresponds to Cl atom
bridging the Al atoms.

Figure 3. Partial charges assigned for atom types in [RMIM]
and [RPyr] in red, and charges exclusively for use in [BMIM]
and [BPyr] in black.
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Fourier coefficients for the alkyl side chains of [RMIM] and
[RPyr] and an entire new set for the choline cation were
developed to reproduce all possible rotations. Vibrational
frequencies as is typical of the OPLS force field were not
parametrized and will require further refinement of the force
constants if greater accuracy is desired. The focus of the ionic
liquid OPLS-AA parameter set is to accurately reproduce
intermolecular interactions such as density and thermody-
namic quantities such as the heats of vaporization.

Torsions. The procedure for establishing the missing
Fourier coefficients involved direct adjustment of the OPLS-
AA torsional parameters to reproduce the energy differences
between conformational energy minima from ab initio
calculations. For each dihedral angle, energy profiles were

obtained by rotating the [RMIM] and [RPyr] alkyl side chains
and all available [Chol] dihedrals in increments of 15° for
each ion with a constrained minimization carried out using
the LMP2/cc-pVTZ(-f)//HF/6-31G(d) theory level. Only the
dihedrals involved in the torsional potential energy surface
were restrained; the remainder of the ion was fully flexible.
Each [MMIM], [EMIM], [BMIM], [MPyr], [EPyr], [BPyr],
and [Chol] cation was individually parametrized using their
specific charge set with coefficients, V1 to V3, that gave
the best overall fit for all rotatable bonds (Tables 3-5). The
resultant Fourier coefficients were then refitted to give the
best overall values for the general [RMIM] and [RPyr] cation
families, taking into account the general atomic charge sets.

As an example, the energy profiles for the CT-CA-NA-
CW/Y and HT-CT-CA-NA rotations in [EMIM] and [EPyr]
using the fully transferable parameters (in blue) and the
parameters specific to the individual cations (in green) are
given in Figure 5; LMP2/cc-pVTZ(-f)//HF/6-31G(d) energy
values are presented in black along with the original OPLS-
AA parameters in red. Positions of all the minima and
maxima were shifted to achieve the lowest possible rms
energy error with respect to the quantum mechanical results.
The specific charge/torsion parameter sets for the individual

Table 2. Nonbonded Parameters for
1-Alkyl-3-methylimidazolium [RMIM], N-Alkylpyridinium
[RPyr], and Choline [Chol] Cationsa

cation atom type q (e) σ (Å) ε (kcal mol-1)

[RMIM] CR -0.09 3.55 0.070
NA 0.22 3.25 0.170
CW -0.24 3.55 0.070
CM -0.35 3.50 0.066
CA -0.17 3.50 0.066
CS -0.12 3.50 0.066
CT -0.24 3.50 0.066
HR 0.21 2.42 0.030
HW 0.27 2.42 0.030
HM 0.18 2.50 0.030
HA 0.18 2.50 0.030
HS 0.06 2.50 0.030
HT 0.08 2.50 0.030

[RPyr] CR 0.15 3.55 0.070
CW -0.24 3.55 0.070
CY 0.04 3.55 0.070
NA 0.17 3.25 0.170
CM -0.39 3.50 0.066
CA -0.19 3.50 0.066
CS 0.18 3.50 0.066
CT -0.24 3.50 0.066
HR 0.17 2.42 0.030
HW 0.22 2.42 0.030
HY 0.19 2.42 0.030
HM 0.16 2.50 0.030
HA 0.14 2.50 0.030
HS -0.09 2.50 0.030
HT 0.08 2.50 0.030

[Chol] NA 0.1640 3.250 0.170
CA -0.3847 3.500 0.066
CS -0.1111 3.500 0.066
CW 0.2318 3.500 0.066
OY -0.6547 3.070 0.170
HA 0.1934 2.500 0.030
HS 0.1251 2.500 0.030
HW 0.0398 2.500 0.030
HY 0.4537 0.000 0.000

a Atom types for [RMIM], [RPyr], and [Chol] are given in Figures
3 and 4.

Figure 4. Atom types for choline [Chol], acesulfamate [Ace],
and saccharinate [Sacc].

Table 3. Torsional Fourier Coefficients (kcal/mol) for
1-Alkyl-3-methylimidazolium [RMIM] and Specific to [EMIM]
and [BMIM] Charge Sets

torsion V1 V2 V3 cation

NA-CA-CT-HT 0.000 0.000 0.000 [RMIM]
0.000 0.000 0.350 [EMIM]

CW-NA-CA-CT -4.355 -4.575 -1.375 [RMIM]
-0.599 -1.750 0.290 [EMIM]

CR-NA-CA-CT -2.000 -0.275 -1.650 [RMIM]
-0.555 0.479 0.200 [EMIM]

CW-NA-CA-HA -2.700 -5.650 0.355 [RMIM]
-0.755 -2.125 0.400 [EMIM]
-1.400 -2.650 0.175 [BMIM]

CW-NA-CA-CS -2.110 -5.000 0.345 [RMIM]
-1.910 -1.500 0.290 [BMIM]

CR-NA-CA-CS -0.159 0.095 -0.010 [RMIM]
-1.659 -0.555 -0.375 [BMIM]

NA-CA-CS-CS -0.788 0.800 0.400 [RMIM]
-1.788 0.756 -0.288 [BMIM]

HA-CA-CS-HS 0.000 -0.150 0.518 [RMIM]
0.000 0.000 0.318 [BMIM]

Table 4. Torsional Fourier Coefficients (kcal/mol) for
N-Alkylpyridinium [RPyr] and Specific to [EPyr] and [BPyr]
Charge Sets

torsion V1 V2 V3 cation

CY-NA-CA-CT 0.000 0.010 0.000 [RPyr]
0.000 0.150 0.000 [EPyr]

NA-CA-CT-HT 0.000 0.000 0.020 [RPyr]
0.000 0.000 0.400 [EPyr]

HA-CA-CT-HT 0.000 0.000 0.518 [RPyr]
0.000 0.000 0.332 [EPyr]

NA-CA-CS-HS 0.000 0.000 0.200 [RPyr]
-0.700 -0.500 0.000 [BPyr]

HA-CA-CS-HS 0.000 0.000 0.418 [RPyr]
-1.700 -1.710 0.655 [BPyr]

CY-NA-CA-CS 0.000 -0.050 -0.200 [RPyr]
0.000 0.180 0.000 [BPyr]

NA-CA-CS-CS -0.788 0.400 -0.288 [RPyr]
-0.233 1.400 -0.290 [BPyr]
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cations typically performed better than the generalized
parameter set, e.g., the HT-CT-CA-NA rotation in [EMIM]
(Figure 5). However, energy profiles for the dihedral rotations
were considerably improved using both parameter sets when
compared to the unaltered OPLS-AA potentials. The highly
transferable [RMIM] and [RPyr] general parameter set
enabled most dihedral rotations to be appropriately modeled
with good accuracy (multiple energy profiles for [RMIM]
and [RPyr] given in the Supporting Information (Figures
S3-S10). For example, the energy barriers for dihedral
rotations in the 1-propyl-3-methylimidazolium [PMIM] and
N-1-propylpyridinium [PPyr] cations were well reproduced
when using the general [RMIM] and [RPyr] parameter sets
despite not being specifically taken into consideration during
the parametrization process (Figures S4 and S7). In addition,
the simulation of longer alkyl side chains, such as hexyl and
octyl, using the [RMIM] and [RPyr] general parameters also
gave good agreement with experimental densities and heats
of vaporization data, as discussed below.

Density. With satisfactory agreement achieved between
the newly developed OPLS-AA parameters and the ab initio
calculations for the ionic structures, subsequent MC simula-
tions for 68 unique ionic liquid combinations were carried
out. The systems were composed of 190 ion pairs at 25 °C
and 1 atm. Each simulation required over 500 million MC
configurations to properly equilibrate the periodic boxes
using Ewald summations. The computed densities for the
solvents are given in Tables 6-8. The imidazolium-based
ionic liquids provided the largest amount of experimental
data to validate the newly developed force field (Figures 6
and 7). However, in many cases, different experimental
measurements varied by as much as 5% per solvent (Table
6). Relative deviations from experimental density values were
ca. 1-3% for most [RMIM] ionic liquid combinations using
both the fully transferable OPLS-AA force field and the
parameters developed specifically for [EMIM] and [BMIM].
The limited amount of reported densities for the [RPyr][BF4]
ionic liquids also compared well with the simulations (Table
7).

Chloroaluminate-based ionic liquids gave slightly larger
deviations at ca. 4-5%. Exact agreement could not be
expected because the ionic composition of the experimental
and modeled systems is not identical. For example, Raman,39

27Al NMR,40 and mass spectra41 all indicate that when AlCl3

comprises <50% mol of the [EMIM][Cl] ionic liquid melt,

[AlCl4] is the only chloroaluminate species present along
with chloride ions that are not bound to aluminum. A ratio
greater than 1:1 AlCl3-to-[EMIM][Cl] gives [AlCl4] and
[Al2Cl7] as the principal anionic constituents of the melt from
27Al NMR42 and negative-ion FAB mass spectra.43 Despite
underestimation of the densities, the simulations for [RMIM]-
[AlCl4] and [RMIM][Al2Cl7] reproduced the relative trend
of decreasing density with increasing alkyl chain length. In
addition, the computed heats of vaporization are strikingly
similar to the experimental values for [BMIM][AlCl4] and
[HMIM][AlCl4] (Table 6). The OPLS-AA chloroaluminate
solvents have previously provided an appropriate reaction
medium environment for the Diels-Alder reaction using
QM/MM methodology.25

The errors in the densities computed for choline-based
ionic liquids were significantly larger (see Table 8) despite
using the same parametrization procedure as the [RMIM]-
and [RPyr]-based ionic liquids. For example, simulation of
[Chol][Sacc] gave a predicted density of 1.200 g/cm3

compared to 1.383 g/cm3 experimentally and [Chol][Ace]
gave a calculated value of 1.206 g/cm3 (experimental 1.284
g/cm3).17 Improvements to the [Chol]-based ionic liquid
parameters are difficult, owing to the lack of experimental
data available for refinement.

Densities were also computed for 11 ionic liquid combina-
tions over temperatures ranging from 5 to 90 °C and
compared with experimentally observed values (Table 9).
Various chain lengths were tested for [RMIM] from R ) Et
to Oct with multiple anions, [BF4], [PF6], [AlCl4], and [TfO].
The relative deviations from experiment were ca. 1-3% with
the exception of [EMIM][AlCl4], which gave deviations of
ca. 4-5%, similar to the simulations at 25 °C. The general
trend of a decreasing density as temperature increases was
reproduced for all ionic liquids tested (Figure 7). Good
agreement was also found between the fully transferable
parameters and the charge/torsion set specific to [EMIM]
and [BMIM] (Table 9).

Heats of Vaporization. Ionic liquids are generally char-
acterized by vaporization enthalpies that are almost 1 order
of magnitude higher than for molecular liquids because of
strong electrostatic interactions between the ions.1 The
importance of properly reproducing the heats of vaporization,
∆Hvap, in addition to densities for ionic liquids cannot be
minimized, as they both serve as key properties representative
of molecular size and the average intermolecular interac-
tions.30 Heats of vaporization are readily computed from the
simulation results using equation 5.

Experimental evidence suggests that ionic liquids go into
the vapor phase in ion pairs.36 Hence, the Etotal(gas) term
was computed from the average intra- and intermolecular
energy for the ion pair in the gas phase from each ionic liquid
combination. Etotal(liquid) is the total potential energy of the
liquid consisting of both the average intramolecular energy,
Eintra(liquid), and the average intermolecular energy, Einter-

(liquid), from the ionic liquid. The RT term is used in place
of a PV-work term in the enthalpy. The heats of vaporization

Table 5. Torsional Fourier Coefficients (kcal/mol) for
Choline [Chol]

torsion V1 V2 V3

CW-CS-NA-CA 0.100 0.550 0.650
CA-NA-CA-HA 0.000 0.000 0.825
CS-NA-CA-HA 0.000 0.000 0.940
HS-CS-NA-CA 0.000 1.000 0.700
OY-CW-CS-NA -6.000 -5.000 3.200
OY-CW-CS-HS -0.500 -2.500 0.250
HW-CW-CS-NA -6.000 -7.000 0.750
HW-CW-CS-HS 6.000 -3.000 2.000
HY-OY-CW-CS -0.356 -0.174 0.350
HY-OY-CW-HW -3.000 1.000 -2.000
X-NA-X-Xa 0.000 2.000 0.000

a Improper torsion.

∆Hvap ) ∆Hgas - ∆Hliquid)Etotal(gas) - Etotal(liquid) +
RT (5)
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obtained from the MC simulations for the ionic liquids are
presented in Tables 6-8, and for [RMIM] in Figure 8.

Comparison between the computed and experimental heats
of vaporization, ∆Hvap, values is particularly difficult, owing
to the large reported deviations between different experimental-
based techniques. For example, earlier ∆Hvap estimates
derived from correlations of Hildebrand’s solubility param-
eter, δ, to solvent-controlled chemical reactions50 and
viscosity data73 have been found to significantly overestimate
experimentally measured ∆Hvap values.1 Accordingly, the
new ionic liquid parameters were not adjusted to improve
agreement with reported experimental data. Instead, the pa-
rameters were fit to reproduce ab initio calculations and
directly compared to available experimental values. The MC
simulations gave favorable correlations with direct measure-
ments of the ionic liquids using a temperature programmed
desorption technique36 and with more accurate ∆Hvap esti-
mates derived from density and surface tensions measure-
ments coupled to Zaitsau et. al’s empirical equation.60 For
example, ∆Hvap values of 41.9 and 38.3 kcal/mol were
computed for the chloroaluminate ionic liquids [BMIM]-
[AlCl4] and [HMIM][AlCl4], respectively, using the general
[RMIM] parameter set which were found to be in close
agreement with the experimentally estimated values of 41.1
and 39.5 kcal/mol.60 Calculations of [OMIM]-based ionic
liquids with [BF4] and [PF6] counteranions gave ∆Hvap values
of 41.9 and 47.3 kcal/mol, respectively, in reasonable
agreement with experimentally measured values of 38.7 (
0.7 and 40.4 ( 1.0 kcal/mol.36 The computed ∆Hvap values
of 27.8 and 31.9 kcal/mol for [BMIM][BF4] and
[BMIM][PF6], respectively, are in good agreement with
recent experimental estimates of 30.6 and 37.0 kcal/mol;49

the simulations confirm earlier estimates of 48.6 and 45.8
kcal/mol50 from correlations of Hildebrand’s solubility
parameter to be overestimated.1 Further comparisons of
calculated versus experimental ∆Hvap values for [RMIM]-
based ionic liquids are given in Table 6.

A general trend found in the calculation of the ∆Hvap was
a smaller predicted value in the [EMIM] cation-based ionic
liquids relative to other [RMIM] values. For example,
[RMIM][NO3] ∆Hvap values of 31.8, 18.1, and 28.0 kcal/
mol were computed using the general OPLS-AA parameter
set for [MMIM], [EMIM], and [BMIM], respectively.
Experimental combustion calorimetry in conjunction with
ab initio calculations (G3MP2) estimate ∆Hvap as 39.1 (
1.3 and 38.8 ( 1.4 kcal/mol for [EMIM] and [BMIM] in
the [NO3]-based ionic liquids.62 The computed heats of
vaporization are particularly sensitive to the charge sets used,
as the specific OPLS-AA charge set reduced the deviation
between the ionic liquids and brought the results closer to
the estimates with computed values of 25.8 and 31.9 kcal/
mol for [EMIM][NO3] and [BMIM][NO3]. The general
parameters maybe more susceptible to deviations for [EMIM]
because of the use of the same atom types CT and HT to
model the end carbon and hydrogens as the longer alkyl side
chains, such as butyl and hexyl. Earlier parametrization
efforts used an atom type specific to [EMIM] to cap the alkyl
chain.23 The use of a polarizable force field may also improve
agreement.74 However, the large differences in the computed
∆Hvap values when using the transferable and cation specific
OPLS-AA parameters were not seen for the predicted
densities (Figure 6) which were generally insensitive to the
charge/torsion set used.

Figure 5. Torsion energy profiles for the rotation around dihedral angles for [EMIM] and [EPyr] cations. The transferable [RMIM]
and [RPyr] parameters given in blue, parameters specific to [EMIM] and [EPyr] in green, LMP2/cc-pVTZ(-f)/HF/6-31G(d) in
black, and the unaltered OPLS-AA force field in red.
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Kemp Elimination. As an initial test of the newly
developed ionic liquid parameters, mixed quantum and
molecular mechanical (QM/MM) calculations were carried
out on the Kemp elimination of benzisoxazole with piperidine
in [BMIM][PF6] (Scheme 1). The solutes were treated with

the PDDG/PM3 semiempirical QM method.75 PDDG/PM3
has given excellent results in our recent QM/MM studies of
the Kemp elimination of 5-nitro-benzisoxazole via catalytic
antibody 4B276 and the condensed-phase Kemp decarboxy-
lation of benzisoxazole-3-carboxylic acid.77 Potentials of

Table 6. Calculated and Experimental Liquid Densities (g/cm3) and Heats of Vaporization (kcal/mol) at 25 °C for
1-Alkyl-3-methylimidazolium [RMIM]-Based Ionic Liquidsa

ionic liquid density (calcd) density (exptl) refs ∆Hvap (calcd) ∆Hvap (exptl) refs

[MMIM][BF4] 1.299 1.373 44 30.1
[EMIM][BF4] 1.254 (1.253) 1.279, 1.28 45, 46 18.0 (24.0)
[BMIM][BF4] 1.171 (1.178) 1.19, 1.21, 1.26 45, 47, 48 27.8 (30.0) 30.6,e 48.6f 49, 50
[HMIM][BF4] 1.105 1.1481, 1.1484, 1.177 44, 51 35.8
[OMIM][BF4] 1.044 1.08, 1.0912, 1.105, 1.133 44, 48, 52, 53 41.9 38.7 ( 0.7,g 29.2e 36, 49
[MMIM][PF6] 1.512 33.1
[EMIM][PF6] 1.455 (1.455) 1.558b 54 21.4 (27.6)
[BMIM][PF6] 1.339 (1.342) 1.31, 1.36, 1.368, 1.37 44, 48, 55, 56 31.9 (31.9) 37.0,e 45.8f 49, 50
[HMIM][PF6] 1.257 1.24, 1.278, 1.29, 1.292, 1.2935 47, 51, 55, 56 40.1 33.4e 49
[OMIM][PF6] 1.181 1.19, 1.22, 1.237 48, 55, 56 47.3 40.4 ( 1.0,g 34.5e 36, 49
[MMIM][Cl] 1.175 1.155 57 32.3
[EMIM][Cl] 1.121 (1.130) 1.110 57 19.3 (25.5)
[BMIM][Cl] 1.041 (1.060) 1.075, 1.08 55, 57 29.1 (32.0)
[HMIM][Cl] 1.007 1.03, 1.0338 55, 58 37.5
[OMIM][Cl] 0.959 1.00, 1.0104, 1.0124 55, 58, 59 44.6 29.3e 49
[MMIM][AlCl4] 1.260 1.3289 60 31.1 45.3e 60
[EMIM][AlCl4] 1.226 (1.229) 1.2947, 1.302 24, 60 19.8 (26.3) 43.6e 60
[BMIM][AlCl4] 1.175 (1.176) 1.238, 1.2381 24, 60 41.9 (32.1) 41.1e 60
[HMIM][AlCl4] 1.120 1.1952 60 38.3 39.5e 60
[MMIM][Al2Cl7] 1.282 1.341c 57, 61 34.0
[EMIM][Al2Cl7] 1.260 (1.249) 1.325c 57, 61 22.3 (28.2)
[BMIM][Al2Cl7] 1.206 (1.203) 1.272c 57, 61 32.4 (33.6)
[HMIM][Al2Cl7] 1.119 39.2
[MMIM][NO3] 1.305 31.8
[EMIM][NO3] 1.253 (1.258) 18.1 (25.8) 39.1 ( 1.3h 62
[BMIM][NO3] 1.163 (1.175) 1.15343 58 28.0 (31.9) 38.8 ( 1.4h 62
[HMIM][NO3] 1.080 1.11658 58 34.9
[MMIM][TfO] 1.489 32.5
[EMIM][TfO] 1.420 (1.412) 1.37522, 1.38, 1.390 47, 63 64 21.3 (26.7)
[BMIM][TfO] 1.297 (1.310) 1.30, 1.30148, 1.3013d 64, 65 31.1 (32.7) 33.8f 50
[HMIM][TfO] 1.241 1.24 64 40.6
[OMIM][TfO] 1.125 1.12 64, 66 46.5 36.1 ( 0.7g 36

a Calculated density and ∆Hvap values given in parentheses were computed using OPLS-AA charge/torsion parameters specific to [EMIM]
and [BMIM]. ∆Hvap estimations from experimental data given in italics. R ) M (methyl), E (ethyl), B (butyl), H (hexyl), and O (octyl). b 23 °C;
density computed from crystal structure cell parameters. c [RMIM][Cl]-AlCl3 0.66 melt,57 which should correspond to exclusively
[RMIM][Al2Cl7].61 d 22.6 °C. e Experimental density and surface tension measurements in conjunction with Kabo’s equation49 was used to
estimate ∆Hvap. f ∆Hvap estimated from Hildebrand’s solubility parameter, δ, to solvent-controlled Diels-Alder reaction. g Temperature-programmed
desorption. h Experimental combustion calorimetry in conjunction with ab initio calculations (G3MP2) were used to estimate ∆Hvap.

Table 7. Calculated Liquid Densities (g/cm3) and Heats of Vaporization (kcal/mol) at 25 °C for N-Alkylpyridinium [RPyr] (R )
Me, Et, Bu, Hex, Oct)-Based Ionic Liquidsa

ionic liquid density ∆Hvap ionic liquid density ∆Hvap

[MPyr][BF4] 1.300 (1.302) 41.5 (41.0) [MPyr][PF6] 1.514 (1.520) 44.9 (44.3)
[EPyr][BF4]b 1.250 (1.256) 37.3 (29.8) [EPyr][PF6] 1.462 (1.459) 40.3 (33.5)
[BPyr][BF4]c 1.169 (1.176) 28.7 (41.1) [BPyr][PF6] 1.345 (1.347) 29.8 (39.0)
[HPyr][BF4]d 1.091 43.8 [HPyr][PF6] 1.247 46.2
[OPyr][BF4] 1.043 52.2 [OPyr][PF6] 1.170 53.8
[MPyr][AlCl4] 1.246 (1.253) 41.5 (41.3) [MPyr][Al2Cl7] 1.271 (1.267) 44.1 (40.7)
[EPyr][AlCl4] 1.221 (1.217) 37.8 (30.6) [EPyr][Al2Cl7] 1.261 (1.241) 40.8 (28.9)
[BPyr][AlCl4] 1.163 (1.161) 28.1 (36.3) [BPyr][Al2Cl7] 1.181 (1.194) 29.7 (38.9)
[MPyr][NO3] 1.312 (1.315) 41.6 (41.5) [MPyr][TfO] 1.506 (1.504) 43.7 (42.5)
[EPyr][NO3] 1.253 (1.263) 36.4 (29.5) [EPyr][TfO] 1.421 (1.431) 38.4 (31.6)
[BPyr][NO3] 1.161 (1.167) 25.2 (35.3) [BPyr][TfO] 1.306 (1.318) 27.1 (37.3)
[MPyr][Cl] 1.181 (1.184) 44.9 (43.8) [HPyr][Cl] 1.006 46.5
[EPyr][Cl] 1.122 (1.130) 39.3 (31.9) [OPyr][Cl] 0.943 52.8
[BPyr][Cl] 1.041 (1.050) 28.3 (38.8)

a Calculated density and ∆Hvap values given in parentheses were computed using OPLS-AA charge/torsion parameters specific to [MPyr],
[EPyr], and [BPyr]. b Experimental density of 1.3020 g/cm3.67 c Experimental density of 1.2144 and 1.22 g/cm3.46,53 d Experimental density of
1.16 g/cm3 at 20 °C.68
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mean force (PMF) calculations coupled to Metropolis Monte
Carlo (MC) statistical mechanics were used to build a free-
energy profile for the ring opening at 25 °C and 1 atm.

A reacting distance, RNH - RCH, was used for the proton
transfer between the nitrogen on piperidine and the hydrogen
on the isoxazole ring (Figure 9); RNH + RCH was kept
constant at 2.85 Å. The fixed distance of 2.85 Å was
determined to be appropriate from our recent study of the

reaction.76 A second perturbation was necessary, RNO, which
entailed the opening of the isoxazole ring via an increasing
N-O distance. Combining the RNH - RCH PMF which runs
along one reaction coordinate with the RNO PMF in a second
direction produced a two-dimensional (2D) PMF. The result
is a free-energy map that can be used to identify minima
and the transition state present in the reaction. The breaking
of the N-O bond was split into ca. 24 windows with an
increment of 0.04 Å. Each PMF calculation required 5
million configurations of equilibration followed by 10 million
configurations of averaging.

For the hydrogen transfer, a novel method was developed
in our recent study of the ring-opening of 5-nitrobenzisox-
azole, where it was found that free-energy changes for
individual windows can be fit almost perfectly by a fifth order
polynomial.76 Using only 7 windows out of the usual 50
and analytically integrating the values yielded a sextic
polynomial for the overall proton-transfer PMF that is
essentially identical to running the full simulation. The new
methodology provided a 7-fold improvement in speed over
traditional PMF methods for the enzymatic calculations, and
the largest deviation found between the approximate and the
detailed calculation was 1 kcal/mol. The fifth order polyno-
mial quadrature method was used to compute the free energy
of activation for the Kemp elimination in a periodic box of
378 [BMIM][PF6] ionic liquid ions in the NPT ensemble.
Ewald sums were used to handle the long-range electrostatics,
and electrostatic contributions to the solute-solvent energy
were calculated using CM3 charges,78 with a scale factor of
1.14.

The free-energy surface for the Kemp elimination of
benzisoxazole via piperidine is shown in Figure 10. The
reaction follows a concerted mechanism where the RNO

distance of the isoxazole ring in the transition structure is
2.06 Å while the RNH and RCH distances are 1.10 and 1.75
Å, respectively. Computed changes in free energy yielded a
∆Gq value of 25.2 kcal/mol after a cratic entropy correction
of 1.89 kcal/mol.79 The level of uncertainty is less than (1
kcal/mol based on fluctuations in the averages for the
individual free-energy perturbation (FEP) windows. The
experimental ∆Gq for the reaction under the same conditions
is 22.6 ( 0.5 kcal/mol.80 The calculations reproduce the
activation values well, particularly when considering the
computed and experimental uncertainties and the additional
overestimation of ca. 1 kcal/mol for the Kemp elimination
from the fifth order polynomial methodology.76 The good
agreement suggests that the ionic liquid microenvironment
is being appropriately modeled by the new parameters.
Further calculations and a detailed analysis of the Kemp
elimination in additional ionic liquids and conventional
solvents with different bases are currently underway and will
be the focus of a future publication.

Conclusions

The development and testing of the OPLS-AA force field
for use in the simulation of 68 unique ionic liquids has been
described. Charges, equilibrium geometries, and torsional
Fourier coefficients were derived to reproduce gas-phase
structures and conformational energetics from LMP2/cc-

Table 8. Calculated Liquid Densities (g/cm3) and Heats of
Vaporization (kcal/mol) at 25 °C for Choline [Chol]-Based
Ionic Liquids

ionic liquid density ∆Hvap ionic liquid density ∆Hvap

[Chol][Cl]a 1.040 78.9 [Chol][AlCl4] 1.192 75.3
[Chol][Ace]b 1.206 70.9 [Chol][Al2Cl7] 1.195 77.5
[Chol][Sacc]c 1.200 79.2 [Chol][NO3] 1.159 76.9
[Chol][BF4] 1.165 75.7 [Chol][TfO] 1.326 76.0
[Chol][PF6] 1.375 77.8

a Experimental density from crystal structure at 85 °C is 1.12
g/cm3.69 b Experimental density is 1.284 g/cm3.17 c Experimental
density is 1.383 g/cm3.17

Figure 6. Computed OPLS-AA and experimental results for
liquid densities for 1-alkyl-3-methylimidazolium [RMIM]-based
ionic liquids (black squares) at 25 °C and 1 atm. Computed
values with OPLS-AA parameters specific to [EMIM] and
[BMIM] given as red triangles.

Figure 7. Calculated and experimental liquid densities versus
temperature for 1-butyl-3-methylimidazolium [BMIM]-based
ionic liquids with [BF4] in black, [TfO] in blue, and [PF6] in gray.
(O ) general OPLS-AA [RMIM] parameter set, b ) specific
OPLS-AA [BMIM] parameter set, and solid lines ) experi-
mental values).
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pVDZ(-f)//HF/6-31G(d) quantum mechanical calculations.
Multiple alkyl chain lengths were considered in the fitting

process, and the quality of the fits for the transferable force
field yielded energy profiles for bond rotations comparable
to that of ab initio calculations. In addition, the highly
transferable parameters for [RMIM] and [RPyr] were com-
pared to potentials developed specifically for individual ionic
liquid cations and good agreement in liquid densities values
was found between both sets. Relative deviations from
experimental density values were ca. 1-3%; however,
chloroaluminate-based ionic liquids had slightly larger devia-
tions at ca. 4-5%. The errors in the densities computed for
choline-based ionic liquids were significantly larger but are
difficult to improve, owing to the lack of available experi-
mental data for refinement. Agreement between the computed

Table 9. Calculated and Experimental Liquid Densities (g/cm3) versus Temperature for 1-Alkyl-3-methylimidazolium [RMIM]
and N-Alkylpyridinium [RPyr] (R ) Me, Et, Bu, Hex, Oct)-Based Ionic Liquidsa

ionic liquid temp (°C) density (calcd) density (exptl) refs ionic liquid temp (°C) density (calcd) density (exptl) refs

[EMIM][BF4] 20 1.255 (1.260) 1.283 46 [BMIM][TfO] 20 1.314 (1.324) 1.3013 70
25 1.253 (1.254) 1.279 46 25 1.317 (1.315) 1.30, 1.30148 64, 65
30 1.255 (1.251) 1.275 46 30 1.309 (1.315) 1.2934 70
35 1.246 (1.251) 1.271 46 40 1.299 (1.315) 1.2856 70
40 1.247 (1.246) 1.266 46 50 1.296 (1.305) 1.277 70

[EMIM][TfO] 5 1.431 (1.428) 1.40052 63 60 1.293 (1.296) 1.2699 70
15 1.431 (1.420) 1.39204 63 70 1.286 (1.293) 1.2623 70
25 1.425 (1.422) 1.38360 63 80 1.279 (1.289) 1.2545 70
35 1.414 (1.411) 1.37522 63 90 1.273 (1.288) 1.2469 70
45 1.412 (1.414) 1.36690 63 [HMIM][BF4] 25 1.102 1.14532 71
55 1.401 (1.404) 1.35863 63 35 1.094 1.13851 71
65 1.397 (1.391) 1.35043 63 45 1.097 1.13167 71
75 1.393 (1.385) 1.34230 63 55 1.088 1.12489 71

[EMIM][AlCl4] 10 1.240 (1.244) 1.3060 60 65 1.080 1.11816 71
15 1.238 (1.239) 1.3020 60 75 1.077 1.11147 71
20 1.234 (1.228) 1.2979 60 85 1.070 1.10484 71
25 1.229 (1.229) 1.2947 60 [HMIM][PF6] 5 1.267 1.3101 72
30 1.222 (1.224) 1.2908 60 10 1.265 1.3060 72
35 1.221 (1.216) 1.2870 60 15 1.266 1.3019 72
40 1.217 (1.216) 1.2833 60 20 1.262 1.2979 72
45 1.214 (1.214) 1.2798 60 25 1.255 1.2937, 1.29341 71, 72
50 1.209 (1.206) 1.2759 60 30 1.253 1.2896 72
55 1.207 (1.200) 1.2725 60 35 1.256 1.2854, 1.28578 71, 72
60 1.203 (1.201) 1.2689 60 40 1.249 1.2813 72
65 1.200 (1.195) 1.2651 60 45 1.250 1.2772, 1.27792 71, 72

[BMIM][BF4] 20 1.179 (1.172) 1.2049, 1.2038 70 55 1.244 1.26988 71
25 1.171 (1.178) 1.2011, 1.2000 70 65 1.237 1.26213 71
30 1.167 (1.169) 1.1974, 1.1962 70 75 1.232 1.25436 71
35 1.161 (1.171) 1.1938, 1.1924 70 85 1.229 1.24681 71
40 1.161 (1.167) 1.1901, 1.1889 70 [OMIM][BF4] 25 1.034 1.0912 53
45 1.168 (1.165) 1.1865, 1.1854 70 30 1.037 1.0887 53
50 1.155 (1.155) 1.1827, 1.1813 70 40 1.039 1.0823 53
55 1.167 (1.174) 1.1790, 1.1779 70 50 1.028 1.0747 53
60 1.147 (1.155) 1.1753, 1.1741 70 60 1.027 1.0685 53
65 1.162 (1.151) 1.1717, 1.1705 70 70 1.025 1.0618 53
70 1.143 (1.150) 1.1680, 1.1669 70 [OMIM][PF6] 25 1.178 1.2245 53

[BMIM][PF6] 20 1.345 (1.343) 1.3698, 1.3681 70 30 1.163 1.2207 53
25 1.339 (1.338) 1.3657, 1.3641 70 40 1.161 1.2141 53
30 1.340 (1.335) 1.3616, 1.3600 70 50 1.159 1.2069 53
35 1.333 (1.331) 1.3574, 1.3557 70 60 1.156 1.1999 53
40 1.328 (1.319) 1.3533, 1.3518 70 70 1.149 1.1922 53
45 1.324 (1.328) 1.3492, 1.3475 70 [BPyr][BF4] 25 1.175 (1.177) 1.2144 53
50 1.322 (1.321) 1.3451, 1.3435 70 30 1.175 (1.177) 1.2118 53
55 1.325 (1.321) 1.3410, 1.3394 70 40 1.165 (1.172) 1.2053 53
60 1.318 (1.318) 1.3369, 1.3352 70 50 1.162 (1.164) 1.1988 53
65 1.319 (1.311) 1.3327, 1.3311 70 60 1.155 (1.163) 1.1922 53
70 1.308 (1.309) 1.3286, 1.3270 70 70 1.148 (1.156) 1.1856 53

a Calculated density values given in parentheses were computed using OPLS-AA charge/torsion parameters specific to [EMIM], [BMIM],
[HMIM], [OMIM], and [BPyr], respectively.

Figure 8. Computed OPLS-AA and experimental results for
heats of vaporization for 1-alkyl-3-methylimidazolium [RMIM]-
based ionic liquids (black squares) at 25 °C and 1 atm.
Computed values with OPLS-AA parameters specific to
[EMIM] and [BMIM] given as red triangles.

Scheme 1. Kemp Elimination Reaction of Benzisoxazole
with Piperidine
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∆Hvap and experimental estimates are generally good;
however, absolute errors in the vaporization enthalpies are
more difficult to assess because of inconsistencies between
reported experimental values. In addition, the computed heats
of vaporization were found to be more sensitive to the charge
set used. The importance of testing the cation and anion
parameters in a large number of ionic liquid combinations
is highlighted in this work by the liquid simulation of an
unprecedented number of ionic liquids, with 35 of the 68
solvents recomputed using specific cation parameters for a
detailed comparison of the new parameters set’s transfer-
ability between different alkyl chain lengths and anion
combinations. QM/MM simulations for the Kemp elimination
of benzisoxazole using piperidine as the base in

[BMIM][PF6] yielded good agreement with the experimental
free energy of activation, i.e., ∆Gq(calcd) ) 25.2 ( 1 kcal/
mol compared to ∆Gq(exptl) ) 22.6 ( 0.5 kcal/mol.80
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Abstract: Molecular dynamics (MD) simulations and TDDFT linear response computations were
employed to model the molar rotations of the zwitterionic forms of glycine, alanine, proline, and
phenylalanine in aqueous solution. The MD simulations inherently take into account averaging
the chiroptical response of different amino acid conformers and also allow the effects from
vibrational distortions and explicit solvent perturbations on the optical rotation to be modeled.
The results show that the chiroptical response correlates strongly to the conformations of these
molecules relative to their carboxylate functional groups. Additionally, the molar rotation of
phenylalanine shows a correspondence to the molecule’s internal rotation about its phenyl group.
These findings may be rationalized with established and revised “sector rules” for optical activity.

Introduction

Molar rotation is among the quintessential properties of chiral
molecules. A solution of one enantiomer of a chiral
compound will rotate the polarization plane of polarized light
either to the left or the right, depending on the absolute
configuration of the molecule. Matching the computed molar
rotation of such a chiral molecule with experiment to assign
its absolute configuration has drawn significant interest, due
in part to the advances in time dependent density functional
theory (TDDFT), which allows for efficient routine calcula-
tions of optical rotations from first principles.1-10

Most of the ab initio wave function based and density
functional theory modeling of chirality done to date has been
with static models of structurally rigid molecules. However,
most chiral molecules found in nature can adopt multiple
conformations, and are not frozen but are actively vibrating
as they are measured at room temperature. Modeling the
chiroptical response of flexible molecules by time dependent
density functional theory computations on static conformers
and averaging their responses based upon respective Bolt-
zmann factors has met with some success.2,11-19 However,
in addition to approximations intrinsic to TDDFT the overall

accuracy of such modeling is limited by the accuracy of the
Boltzmann factors, which can be difficult to gauge.

Our most recent work in this area involved calculations
on the small amino acids, glycine and alanine.20 The publi-
cation served as a validation of the method of using force-
field based (classical) molecular dynamics (MD) and an
explicit point charge solvent model along with TDDFT to
model the chiroptical response properties of these molecules.
This MD-based modeling method has several purposes: First
the molecular dynamics simulation serves as an engine to
generate configurations of the molecules of interest in
differing conformations, conformational sampling being
essential to the modeling of chiroptical properties of flexible
molecules. The second advantage of employing molecular
dynamics is that it allows us, through capturing many
geometries from the simulation, to model some of the thermal
effects on chirality, for instance from vibrations; these effects
have drawn much attention from our research group and
others.8,21-30 Third, the molecular dynamics simulation
contains explicit water molecules, which through the simple
point charge model can serve as an effective means of
modeling solvation effects, whose import impact on optical
rotation has drawn significant interest as well.10,11,25,28,30-40

In keeping with prior publications on the chiroptical
response of amino acids,20,41 this work begins with calcula-
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tions on glycine, the smallest amino acid. In a recent work,
glycine was used to benchmark a method of explicit solvation
using point charge water molecules and molecular dynamics
to model chiroptical response. Here the method is used to
explore the variations in this response with respect to changes
in the geometry of the glycine molecule. While not intrinsi-
cally chiral, glycine can through the course of molecular
dynamics adopt chiral configurations which give rise to
nonzero molar rotations. In fact, those molar rotations can
be very large. The first section investigates the regular
variations of this chiral response as a function of glycine’s
N-C-C-O dihedral angle over the course of a molecular
dynamics simulation and how differing solvation models
affect this molar rotation. Comparable trends in the chirop-
tical response of the smallest chiral amino acid, alanine, are
also discussed. The regular variations of molar rotation are
correlated with sector rules for amino acid chiroptical
activity.

The focus of the paper then shifts to proline, a chiral amino
acid known to adopt two different conformations at room
temperature, differing in the direction of puckering for its
five membered ring. The relative populations of these two
conformers obtained by classical molecular dynamics are
found to be remarkably similar to that obtained by DFT and
those derived from experiment. The dependency of molar
rotation upon this configuration is found to be similar to that
seen for fixed configurations optimized with DFT. The
variation of molar rotation with the N-C-C-O dihedral
angle is similar to that of glycine, but with the variations
expected from the fact that proline is intrinsically chiral and
glycine is not.

The next section deals with phenylalanine, a more con-
formationaly flexible chiral amino acid which can be found
in rotamers whose molar rotation depends on not one but
two chromophores. As such, the effects of the rotamer
identity, as well as dihedral angles, with respect to the car-
boxylate and phenyl chromophores, are examined. As with
proline and glycine, the variation of the dihedral angle with
respect to the COO- group (the N-C-C-O angle) causes
variations in the molar rotation consistent with the sector
rule for the carboxylate chromophore. The variation of the
CR-C�-Cγ-Cδ dihedral angle, which relates directly to the
geometry about the phenyl chromophore, yields results
consistent with recent incarnations of the sector rule for the
phenyl chromophore, which are the opposite of what the
older sector rule for this group predicted.

Finally, the average molar rotations resulting from thou-
sands of TDDFT calculations of proline and phenylalanine
are compared with experiment. The populations of the three
different phenylalanine conformers obtained from classical
molecular dynamics are more evenly distributed than those
obtained from the Boltzmann weighting of DFT optimized
structures. The populations of the proline molecule computed
by molecular dynamics and those obtained from Boltzmann
weighted DFT optimizations both agree very well with
experimentally derived values in the literature. This allows
us to isolate the effects that the intrinsic dynamics of the
solute and dynamic solvation have on the molar rotation for

this molecule in solution and to evaluate how well these
factors are modeled by the current computational methods.

Computational Methods

Many of the computational methods used in this work are
detailed in previous publications20,41-43 where TDDFT based
computations of optical rotations of amino acids were
exhaustively benchmarked. All quantum mechanical (QM)
data were computed with the Turbomole44 quantum chemical
software, version 5.7.1. Dunning’s aug-cc-pVDZ basis set45

was used for all calculations except those involving the
aromatic sector rule, which will be discussed later in this
work. The PBE0 functional was employed, since for small
amino acids in solution it yields low lying electronic
excitations that are reasonably close to those obtained at the
CC2 level of theory. For some calculations the conductor-
like screening model (COSMO)46 of solvation was applied
to the ground state. Molar rotations were calculated at the
wavelength of the sodium D line (589.3 nm) and reported
in units of deg·cm2/(dmol). The center of the mass of the
amino acid molecule has been used for the coordinate origin
for all response calculations. While the molar rotations
computed herein are attributed to the length representation
of the electric dipole operator and are formally origin
dependent, this dependence is minimized in TDDFT when
large basis sets such as aug-cc-pVDZ are used; see our earlier
work and the references cited therin.41

Geometries used in the quantum mechanical calculations
were generated with the GROMACS47 molecular dynamics
program, version 3.3.3, in a fashion similar to that of
Mukhopadhyay et al.33 Molecular dynamics of solvated
amino acid molecules were run in a cubic periodic solvent
box measuring 25 × 25 × 25 nm3 with average density of
1.0 g/cc using TIP3P water molecules. Note that the phrases,
“TIP3P solvation” and “COSMO solvation” will be used later
in this article referring to subsequent DFT calculations which
treat the solvent molecules as simple point charges taken
from the TIP3P model and those which discard all the explicit
water molecules from the molecular dynamics simulation and
treat the solvent as a continuum. 256 water molecules from
each MD configuration were used in any subsequent DFT
calculations; as such, no water molecules greater than 12.5
nm from the center of the solute were included, yielding
solvation spheres for QM calculations that were nearly
spherical, not cubic. The all-atom OPLS-AA molecular
mechanics (MM)48 force field was used for the simulations,
which were carried out at 300K with a time step of 1 fs.
Snapshots of the simulations, akin to frames of a motion picture,
were taken every 10 ps for glycine and 100 ps for the larger
molecules, which was a sufficient duration for energetic and
chiroptical response calculations of adjacent MD configurations
to be uncorrelated. These geometric configurations were used
for subsequent computations of molar rotation. The classical
mechanics MD used here captures some of the dynamical
effects on the optical rotation. Ideally, of course, the nuclear
motion should be treated quantum mechanically. Zero-point and
temperature-dependent vibrational and internal rotation correc-
tions on optical rotation using approximate nuclear wave
functions suitable for local minima have been considered by
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our group previously, 21-24 but this approach has not been
adapted for use with solvation models needed for this work. In
many aspects the approximations used here and in those
previous works are complementary and capture different aspects
of the dynamical behavior of the system.

Results and Discussion

Effects of the Dihedral Angles on Energy and Molar
Rotation for Glycine and Alanine. All the chiral amino
acids studied here can be regarded as derivatives of glycine,
the smallest amino acid. The functional groups in glycine
and the structural variations thereof are present in the other
amino acids as well, and so it is logical to investigate this
prototypical molecule first. Among all the structural variables
in glycine, one stands out as having the greatest impact on
optical activity. It is the O-C-C-N dihedral angle, a
structural portion which is present in all amino acids. As
this angle varies during the course of a molecular dynamics
simulation, the energy of the system and its chiroptical
response vary as well. This section shows how the energy
and molar rotation of glycine correlate strongly with this
dihedral angle.

The relative energy of a solvated glycine molecule as a
function of this angle is plotted in Figure 1. The reference
point for this relative energy is the average energy at the
PBE0/aug-cc-pVDZ level of theory using either explicit
TIP3P waters or the COSMO solvent continuum; a com-
parison of the raw energies of the two different methods
would not yield relevant results. The first detail of note from
this graph is that the energy of the system varies much more
when explicit point charge water molecules are used for
solvation than when the COSMO continuum is used. This
is to be expected since the large variations in the geometries
formed by the explicit waters can lead to greater changes,
both positive and negative, of the glycine-water system. For
each DFT calculation with COSMO, the continuum is built

around the glycine molecule, however distorted its geometry
may be. For the calculations using explicit TIP3P waters,
the positions and geometries of the solvent molecules can
differ vastly between different snapshots of the MD, and how
optimally a particular solvent sphere geometry may stabilize
the solute varies considerably.

The second point we want to draw attention to in Figure
1 is the correlation between energy and clustering of
structures. The energy of the system is calculated at the
PBE0/aug-cc-pVDZ level of theory. The geometries with
their particular dihedral angles are determined by the all-
atoms force field in GROMACS. Depending on the details
of the force field and solvent-solute interactions, the
geometries of glycine that constitute local minima could
potentially differ between the QM and MM methods, but
they do not. The trend of the QM energies indicates that the
molecule has a local minimum structure with its dihedral
angle at 0° (or 180°, due to the degeneracy in the C2V

symmetrical carboxylate group). This is in agreement with
the QM optimization calculations on glycine in our previous
work.41 In that work we found the glycine structure with
the (90° dihedral to be a saddle point, which is consistent
with the data in Figure 1. These data also indicate that the
energetics of the MM simulation agree with the QM results.

While the energy of a solvated glycine molecule is an eVen
function of its N-C-C-O dihedral angle, the molar rotation,
depicted in Figure 2, is an odd function. The energy of the
glycine molecule increases as the dihedral angle deviates
from its ideal at 0°, regardless of the direction of the
perturbation. The molar rotation, however, deviates in equal
and opposite directions depending on which way the
molecule twists. This is in keeping with the sector rule for
optical rotation of amino acids.43 As the N-C-C-O
dihedral changes, the functional groups that perturb the
symmetry of the otherwise C2V symmetrical carboxylate
group move either above or below the horizontal symmetry
plane of that group. As the sign of the optical activity
“sectors” are opposites on opposite sides of this plane, the
molar rotation changes in opposing ways depending on which
side of the plane those perturbing groups deviate from.

Figure 1. Variation of the energy of a glycine system as a
function of the N-C-C-O dihedral angle. The energies
reported include either 256 point charge based water mol-
ecules or the COSMO solvation model. All energies are
reported relative to the average energy for the model. The
geometries were generated by molecular dynamics with the
GROMACS program, and snapshots were recorded at 10 ps
intervals.

Figure 2. Molar rotation (φ) of glycine as a function of the
N-C-C-O dihedral angle. The geometries used are from
the same dynamics run used for Figures 1 and 5, and include
either 256 point charge based water molecules or the COSMO
solvation model.
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Also note that every time that the N-C-C-O dihedral
angle is an integer multiple of 90°, the molecule assumes
approximate C2V symmetry, but the optical rotation may be
nonzero because of distortions elsewhere in the molecule as
well as movement in the explicit solvation shell where one
is present. It is useful here to draw attention to the works of
Wiberg et al.,49 in which the effects of torsional angles on
optical activity were also demonstrated, and that of Pecul et
al.,50 where among other things the optical rotation of alanine
was modeled. For a comparison with the latter we have
performed MD simulations for the alanine zwitterion; the
results of which are shown in Figure 3. The plots both show
periodic variations of optical rotation as a function of the
N-C-C-O dihedral angle. A notable difference is that our
plot for the zwitterionic glycine, as well as our results from
calculations with the zwitterionic form of alanine depicted
in Figure 3, with its C2V symmetrical chromophore, shows
symmetrical results when the chromophore is rotated 180°,
while the plot for the neutral alanine,50 with its COOH
chromophore whose C2V symmetry is significantly perturbed
by its hydrogen atom, shows results that are not quite
symmetrical about a 180° rotation.

Since, unlike glycine, alanine is a chiral molecule, the
molar rotation need not average to zero when the N-C-C-O
dihedral angle approaches a multiple of 90°, though since
the molar rotation of alanine is known from experiment to
be small (about 2 deg·cm2/(dmol)) this deviation should not
be too great. The variation of the molar rotation of alanine

with respect to the H-N-C-C dihedral angle, which
describes the rotation of the NH3

+ group, is shown on the
bottom of Figure 3. The C3V symmetry of this functional
group is readily apparent from the periodicity of the graph,
as is the fact that during the molecular dynamics simulation
the NH3

+ group shows a strong tendency to be found near
its rotational minima at intervals 120° apart. The periodic
variation of molar rotation for the NH3

+ group is not as
obvious, as it is dwarfed by the variation in molar rotation
caused by the rotation of the COO- group which is occurring
simultaneously in the molecular dynamics simulation. This
is consistent with the fact that for a zwitterionic alanine
molecule the COO- group is the primary chromophore
effecting molar rotation at 589.3 nm, and the NH3

+ group is
secondary, just as it has been computed that for a neutral
alanine in the gas phase the COOH group is the primary
chromophore and the NH2 group has secondary effects.50

Returning to the less complex glycine molecule, the
dihedral angles in Figure 2 that are multiples of 90° represent
“nodes” in oscillating molar rotation pattern. These are the
geometries in which the glycine molecule is most sym-
metrical, and as such its molar rotations are the smallest in
magnitude. Conversely, when the N-C-C-O dihedral angle
deviates most from multiples of 90°, the molar rotations tend
to be the greatest. Some configurations of glycine where this
configuration is far from symmetrical are depicted in Figure
4.

According to a sector rule model for amino acid optical
activity derived from CD sector rules by Jorgensen,51 the
glycine configurations with the NH3

+ group in a positive
sector should have positive molar rotation, and those with
the NH3

+ group in a negative sector should have a negative
molar rotation. Our computations of a formate anion (to
model the carboxylate chromophore), perturbed with a
negative point charge, form sectors which are consistent with

Figure 3. Molar rotation of a solvated alanine zwitterion as
a function of the N-C-C-O (top) and H-N-C-C (bottom)
dihedral angles.

Figure 4. Glycine molecule with differing O-C-C-N dihe-
drals, Jorgensen’s sectors for amino acids (depicted as a set
of overlapping carbonyl chromophores, not a pentavalent
carbon), and sectors computed from TDDFT for the CD of
the first excitation (center) and molar rotation (right) of the
formate anion (areas of positive rotation are light, nega-
tive areas are dark). Jorgensen’s sectors shown are above
the plane of the page, those below the plane are of the
opposite sign. Note that the configurations of glycine with
dihedral angles of +45° and -135°, as well as those of -45°
and +135°, are equivalant due to the symmetry of the
carboxylate group.
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this as well. However, we point out that the sector modeling
of glycine by formate is a rather crude model; see our
previous publication for details43 and note the differing signs
of the computed CD and optical rotation sectors close to
around the C-H bond. The data in Figure 2 confirm that
the sector assignment yields the expected sign of the optical
rotation. For the conformers where the dihedral angle is near
+45° (or -135°, due to the degeneracy caused by the
symmetrical COO- group), the molar rotation is negative.
For those molecules with O-C-C-N dihedrals nearing
-45° (or +135°), the molar rotation is positive.

One interesting factor that deserves attention is the effect
of explicit solvation as a function of dihedral angle on molar
rotation. This effect is implied in Figure 2, which shows the
molar rotation of glycine solvated by explicit point charge
water molecules and that solvated by a continuum. However,
the differences are not obvious in Figure 2; therefore, the
difference of these two molar rotations has been computed
explicitly, and the results are shown in Figure 5.

The periodic “wave” pattern formed by the data in Figure
5 appears to be a somewhat weakened mirror image of the
data in Figure 2, as the maxima in Figure 2 coincide with
the minima in Figure 5 and vice versa. The rationale for
this pattern correlates with the sector rule, and the fact that
the location of a perturbing group relative to the carboxylate
chromophore affects the optical rotation of the glycine
molecule. Here the perturbing entities causing the change
in the chiroptical response are not the glycine’s NH3

+ group
but the water molecules surrounding it. Due to the nature of
the molecular dynamics simulation of a liquid system where
the molecules are in close contact, the water molecules
occupy the space not taken by the glycine solute. So if the
NH3

+ group happens to occupy a negatiVe sector, then the
ensemble of water molecules surrounding it will preferen-
tially occupy the positiVe sectors. As such, the use of explicit
point charge waters to solvate glycine as opposed to a
continuum model has a damping effect on the resulting
optical activity.

Proline. The chiral amino acid proline shares the same
carboxylate chromophore as its achiral counterpart, glycine.
Therefore, one would expect the N-C-C-O dihedral angle

for this molecule to have a profound effect on its molar
rotation as well. As can be seen in Figure 6, this is indeed
the case.

The upper plot of Figure 6 has some similarities to the
corresponding graph for the glycine molecule. (Note that only
1024 configurations were sampled here compared to 4096
for glycine, since the relative size of the proline molecule
required more TDDFT computing time per configuration.)
As with glycine, the optimal dihedral angle is close to 0°,
which again is in agreement with the geometries optimized
by first principles methods. The data also repeat after a period
of 180°, owing to the C2V symmetry the carboxylate group
possesses in both molecules. Differences can be seen where
this periodic wave intercepts zero. In glycine, the molar
rotation approaches zero when this dihedral angle approaches

Figure 5. Difference between the molar rotation computed
using point charge water molecules and that computed using
the COSMO solvent model. ∆φ ) φTIP3P - φCOSMO.

Figure 6. Molar rotation of proline as a function of its
N-C-C-O (upper plot) and CR-C�-Cγ-Cδ (lower plot)
dihedral angles, along with illustrations of the proline molecule
in its Cγ endo (left structure) and Cγ exo (right structure)
conformations. The CR-C�-Cγ-Cδ dihedral angle is indicative
of the envelope conformation of the five-membered ring. If
this angle is negative, the molecule is in the Cγ endo
conformation; if it is positive, it is Cγ exo.
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zero. In proline, this is not the case. Proline, unlike glycine,
is inherently chiral in its various conformers. From static
DFT calculations41 and from experimental data, we expect
this rotation to be negative. Indeed, the MD average yields
about -100 deg·cm2/(dmol).

It is known both from experiment and prior calculations
that the proline molecule tends to form two optimal
structures, both significantly populated at room temperature
and differing only by the puckering of the ring; see our earlier
work and the references cited therein.41 Prior DFT calcula-
tions and some experiments concur that the conformation
with the γ carbon in the endo configuration is slightly
favored. This more populous conformation has been previ-
ously shown to have a molar rotation that is somewhat less
negative than its less populous Cγ exo counterpart. The
bottom portion of Figure 6 confirms that both the energetic
and molar rotation trends seen with frozen isolated proline
configurations are reproduced by the molecular dynamics
based calculations in this work. In this instance, the Cγ endo
conformations, those having a negative CR-C�-Cγ-Cδ

dihedral angle, have a relative “population” of 66% and an
average molar rotation of -41.0 with TIP3P waters and
-53.9 with COSMO, while the Cγ exo conformers form the
balance of the population and have and average molar
rotation of -68.1 deg·cm2/(dmol) with TIP3P waters and
-81.6 deg·cm2/(dmol) with COSMO.

Phenylalanine. The amino acids investigated thus far
show a periodic variation of molar rotation as a function of
the molecule’s N-C-C-O dihedral angle. Phenylalanine,
an aromatic amino acid, is no exception in this regard, as
can be seen in the top of Figure 7. As phenylalanine has an
average molar rotation that is closer to zero than does proline,
the “phase” of the wave in its molar rotation plot is more
similar to glycine. However, there is significantly more
scatter in the molar rotations for phenylalanine than for
glycine, or proline for that matter. This is due to a few
factors. First, as result of its size and flexibility, phenylalanine
has a larger conformational space than glycine or proline. It
can be found in three rotamers, differentiated by their
Cacid-CR-C�-Cγ dihedral angles, which have been shown
to differ significantly in their individual specific rotations.42

Its phenyl functional group is free to flex and bend, moving
into different sectors about the carboxylate chromophore even
as the N-C-C-O dihedral remains the same, thus causing
more variation in molar rotation for a given N-C-C-O
dihedral value.

Another factor that may contribute to the scatter seen in
the top of Figure 7 is that the phenyl functional group is
itself a chromophore that can contribute to the calculated
molar rotation. In a prior molecular modeling work42 this
chromophore did not show a significant impact on molar

Figure 7. Molar rotation of phenylalanine as a function of its N-C-C-O (top left plot), Cacid-CR-C�-Cγ (bottom left plot), and
CR-C�-Cγ-Cδ (right plot) dihedral angles, along with illustrations of phenylalanine in relevant conformations. The Cacid-CR-C�-Cγ

dihedral defines the molecule as being in a trans (t), gauche (g), or hindered (h) conformation. The CR-C�-Cγ-Cδ dihedral
angle is indicative of how the aromatic ring is twisted with respect to the rest of the molecule.
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rotation, since when held rigid the external perturbations did
not perturb the chromophore enough to cause a significant
contribution from the electronically forbidden π to π*
transition. But in this study which uses molecular dynamics
to generate the geometries, the phenyl ring is free to vibrate,
and such distortions (along with asymmetric solvent-solute
interactions when explicit waters are used) can promote this
otherwise forbidden transition.

The bottom of Figure 7 is an attempt to isolate the effect
that the geometry about the phenyl chromophore has on the
molar rotation of phenylalanine. As with the carboxylate
chromophore, the phenyl group has a local 2-fold axis of
symmetry, which is why the left side of the bottom chart is
identical to the right side, just as is the case in the top half
of the figure. Also, when the CR-C�-Cγ-Cδ dihedral angle
passes through (90°, when the rest of the phenylalanine
molecule is aligned perpendicular to the phenyl ring (in one
of its mirror planes), then the molar rotation of the mole-
cule is at a minimum. When this angle deviates from 90°,
the molar rotation of the molecule deviates in a positive
direction if the change in the dihedral is positive and in a
negative direction if the dihedral change is negative. Logi-
cally, the opposite effect should be seen as the
CR-C�-Cγ-Cδ dihedral angle passes through 0° or 180°;
however, these are energetically disfavored angles, and the
molecule is not found in configurations close to this angle
often enough to make a determination on the chirality in the
vicinity of these energetic maxima.

We expected this variation of optical rotation with the
dihedral angle about the phenyl group to be consistent with
the historical rationale for chiroptical response caused by
the phenyl chromophore: as with the carboxylate chro-
mophore, the space about the phenyl group can be divided
into sectors, and the location of the atoms perturbing that
space is connected with the sign of the response.52-54

However the “sectors” that our calculations allude to are of
the opposite sign of those illustrated in Smith and co-
worker’s illustrations of the sector rules in the works cited
above. In 2002, with the aid of ab initio methods that the
originators of these sector rules did not have the benefit of,
Butz and co-workers obtained results similar to ours.55 This
led Butz et al. to set forth a revised sector rule for the benzene
chromophore, which is quite similar to the historical model,
except with the signs reversed.56,57 Our results here are
consistent with this revised sector rule.

We have earlier demonstrated that an illustration of a sector
rule for chiroptical response can be generated by a series of
first-principles calculations on the chromophore of interest
perturbed by a point charge in varying positions.43 Here, we
illustrate the molar rotation caused by a phenyl chromophore,
approximated as a benzene molecule, as it is perturbed by a
point charge of -0.1, which has been shown to reasonably
approximate the perturbing effects of the remainder of a
zwitterionic amino acid molecule. The results are illustrated
in Figure 8.

The sectors computed in Figure 8 all exhibit the D6h

symmetry of the benzene ring as they must, and as such give
us sectors similar to those predicted by Schellman over four
decades earlier.58 One fact is consistent throughout the first
three CD transitions shown, corresponding to the 1Lb, 1La,
and half of the 1Bb excitations:59 all have the same sign in
the region outside of the hydrogen atoms on the benzene
ring. As such, in this outer region, where the rest of a
phenylalanine molecule is attached, the CD excitations
reinforce to give the molar rotation shown on the left of
Figure 8. Note these sectors fit with the revised sector rule
of Butz et al.,55 and are precisely the opposite of the historical
sector rule cited by Pescitelli et al.60

One aspect where our results are similar to those of
Pescitelli and co-workers is in the basis set effects on the
CD of aromatic compounds. We have found that the addition
of diffuse functions to benzene and phenylalanine promotes
excitations to diffuse electronic states, some of which occur
at lower energies than the first three valence excitations
expected from a simple LCAO model. This model has
become the de facto standard model for benzene excitations
used in textbooks. It has been used by Platt to assign the
electronic spectrum of aromatic compounds and is the basis
for the benzene sector rule.59 To create the sector maps of
Figure 8 we have used the SVP basis set which yields a
collection of electronic excitations and energetic ordering
consistent with the LCAO model. Similar results are obtained
with the cc-pVDZ basis. Using a diffuse basis (aug-cc-pVDZ,
d-aug-cc-pVDZ, etc., or a large set of diffuse s-, p-,
d-functions added at the benzene ring center) yielded among
the classic b1u, b2u, and e1u transitions several other
electronic transitions of differing symmetries. The additional
states were obtained both with TDDFT and with an ap-
proximate coupled cluster method (CC2). Since the energetic
ordering depended on where the perturbing charge was

Figure 8. Sign of the molar rotation and CD of the first 3 electronic transitions of benzene as a function of the position of a
perturbing group. Positive rotations are indicated by the light areas, while negative rotations are depicted by the dark areas. A
point charge of -0.1 was used as a perturber, and the sectors drawn are 1.3 Å above the plane of the ring. A grid size of 0.1
Å was used, and the distortions along the edges of the contour lines (particularly evident in the center of the ring) are caused
by the coarseness of the grid. The molar rotation calculations were performed at the PBE0/SVP level of theory, and the CD
calculations with CC2/SVP.
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located this situation made it impossible to plot the CD sector
maps for the b1u, b2u, and e1u transitions in an automated
fashion using a diffuse basis. Fortunately, the sectors for
molar rotation, which are affected to varying extents by all
CD transitions, remain the same between different basis sets
in the “substitution region” outside the carbon ring. While
the basis set effects on the ordering of electronic excitations
may warrant further investigation, they do not appear to affect
conclusions regarding molar rotation aimed at in this work.

Comparison with Experiment

We shall finish this study with a discussion of how the
modeling method being presented compares with those
previously published, and with experimental data. Glycine
is achiral, and its molar rotation should converge to zero
over the course of the MD, as has been shown in our
preliminary work. Proline and phenylalanine are both chiral
molecules that adopt multiple conformations, all of which
contribute to the average molar rotation that is observed
experimentally. The modeling of the conformational distribu-
tions and the ultimate average molar rotations that result are
discussed in turn.

The chiroptical properties measured in the laboratory are
the result of the interaction of polarized light with molecules
in varying conformations. Proline is known to be found in
and around two local energetic minima, while phenylalanine
has three local minima, illustrated earlier in Figures 6 and
7, respectively. In our earlier works the molecules were
optimized to their respective structures, and the populations
of the conformers determined by employing their computed
relative energies using Boltzmann factors at room tempera-
ture. In this work, the “populations” were determined by a
molecular dynamics simulation, and are classified on the
basis of their dihedral angles. Proline molecules with a
negative CR-C�-Cγ-Cδ dihedral angle were deemed to be
of the Cγ endo conformation, and those with a positive angle
were Cγ exo. For the phenylalanine molecule, the
Cacid-CR-C�-Cγ dihedral is the determining factor, with h
being -60° ((60), g being +60° ((60), and t being 180°
(again (60). These computed populations, along with
experimentally derived data, are summarized in Table 1.

The agreement between dynamically computed popula-
tions, statically computed populations, and experimentally

derived populations for the proline conformers is excellent.
As molar rotation depends in part upon these populations, it
is apparent that the conformer distribution should not be a
significant source of error for this molecule. In our previous
work using static geometries, we found very good agreement
between the modeled and measured chiroptical properties
of proline.41 Because the populations of the conformers found
by the dynamics simulations in this current work are the
same, we thus expect any deviations in the fit of this dynamic
model to be caused either by the geometric distortions
(vibrations) of the molecular dynamics used to generate the
structure, and by the use of a point charge solvation method
instead of a continuum.

The agreement in conformer populations for phenylalanine
is not as perfect as it is for proline. One aspect on which
dynamic calculations, static calculations, and experimental
derivations agree is that the phenylalanine rotamer in which
the phenyl ring and carboxylate group are trans to each other
is the most highly populated. What they do not agree upon
is the extent of the dominance of this conformation: our
previous work42 indicated that 3/4 of the molecules should
be of this conformation, Fujiwara’s experimental data said
this population should be closer to 1/2, and the current
molecular dynamics puts it at just over 1/3 of the population.
The dynamics data indicate a much more even distribution
among the conformers than the earlier static computations,
which is in somewhat better agreement with experiment.
Therefore, we would expect a somewhat better agreement
with experiment for the molar rotations modeled in this
current work than in previous works. This comparison
between the molar rotation from theory and experiment is
shown in Table 2.

The molar rotation of proline computed with two opti-
mized geometries and weighted by their Boltzmann factors
is in excellent agreement with experiment, differing by only
about 2 deg·cm2/(dmol). When thermal effects are added,
by using structures taken from snapshots of the molecular
dynamics simulation, this deviation increases to about 36
deg·cm2/(dmol). When TIP3P waters are substituted for the
COMSO continuum, this deviation increases by another 13

Table 1. Room Temperature Populations of the
Conformers of Proline and Alanine in Solutiona

proline Cγ endo Cγ exo

molecular dynamics 66.0 34.0
Boltzmann, DFT optimized 65.5 34.5
experimentally derived 63 37

phenylalanine h g t

molecular dynamics 29.4 34.3 36.3
Boltzmann, DFT optimized 21.5 3.1 75.5
experimentally derived 27 24 50

a Experimental data are derived from nuclear magnetic
resonance measurements and are from the works of Jankowski et
al.61 and Fujiwara et al.62 for proline and phenylalanine, respec-
tively. The DFT derived Boltzmann populations are from our
previous work.43

Table 2. Average Molar Rotation of Proline and
Phenylalaninea

proline Cγ endo Cγ exo average

molecular dynamics
with TIP3P

-41.0 -68.1 -50.1

molecular dynamics
with COSMO

-53.9 -81.6 -63.3

DFT optimized
static with COSMO

-68.5 -125.5 -101.5

experiment -99.2

phenylalanine h g t average

molecular dynamics
with TIP3P

-96.2 -109.2 148.2 -11.9

molecular dynamics
with COSMO

-93.1 -125.5 149.4 -16.1

DFT optimized
static with COSMO

-128.1 124.7 -1.9 -36.8

experiment -57.0

a DFT optimized static data are from our previous work.43

Experimental data are from Greenstein and Winitz.63

1058 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Kundrat and Autschbach



deg·cm2/(dmol). While it is tempting to conclude that the
agreement between theory and experiment is clearly worse
with the dynamics model and explicit solvation, this is not
so clearly the case because of other approximations, most
notably those inherent in TDDFT. That is, the supposedly
improved solvation treatment may well expose systematic
errors in the TDDFT optical rotation computations. The
results for phenylalanine are similar. Given the confidence
level of time dependent density functional theory, the good
agreement between theory and experiment using the static
model might be fortuitous, and the data using the dynamics
model may be equally as useful. As the field of first principles
modeling of optical activity continues to develop, more
advanced (and more costly) linear response electronic
structure methods such as coupled cluster analyses may
become more widely available in computing codes, and more
powerful computers should make them practical, but for now
TDDFT remains the state of the art method for modeling
the optical activity of molecules of this size (and using as
many MD configurations as done here).

Conclusions

Molecular dynamics and explicit solvation may be used
to generate geometric data suitable for the modeling of
molar rotation of conformationally flexible molecules by
time dependent density functional theory. The molar
rotations of the various conformers of the amino acids
studied can be rationalized in terms of the sector rules
for the carboxylate and phenyl chromophores. The inclu-
sion of vibrational effects and explicit solvent effects via
molecular dynamics both dampened the magnitude of the
average molar rotations computed for the molecules
studies. The damping effect can also be traced back to
the sector rules, this time via a lack of presence of a
perturbing group in a given sector. The results highlight
the difficulties of obtaining reliable optical rotations for
conformationally flexible molecules.
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Abstract: The ligand-field (LF) transition energies of the Co(NH3)6
3+ ion have been computed

with multiconfiguration quasidegenerate second-order perturbation theory (MCQDPT2). The water
solvent was treated with the polarizable continuum model (PCM), and the environment in crystals
was modeled by the Co(NH3)6 ·Cl4- complex. The Co-N bond lengths, calculated for the hydrated
cation and the Co(NH3)6 ·Cl4- model compound, agree with those in the crystal structures. The
vertical transition energies agree with experiment, whereby those based on Co(NH3)6 ·Cl4- are
more accurate than those for the hydrated ion. The 0-0 transitions were based on the OPBE
geometries of ground and excited 1T1g, 3T1g, 5T2g states of the hydrated ion. The 3T1g state is the
lowest excited state; the 5T2g state lies higher by >0.6 eV.

Introduction

For the understanding of the photochemical reactivity of
hexaammine cobalt(III) complexes, it is desirable to know
which excited state is lowest, the 3T1g or the 5T2g ligand-
field (LF) state. Their geometries and, therefore, also their
reactivities differ. In a low-temperature (8 K) electron
spectroscopic study of the hexaammine cobalt(III) ion, the
0-0 transition energies to the lowest singlet (1T1g) and triplet
(3T1g) LF states were determined.1 The spectroscopically
unmeasurable quintet state (5T2g) was proposed to lie below
or at the same energy as the 3T1g state.1 Later, in a theoretical
treatment of the electron self-exchange reaction of the
Co(NH3)6

2+/3+ couple, the energy of the relaxed 5T2g state
was found to be higher than those of the 1T1g and 3T1g states
according to ZINDO calculations.2 On the basis of the
excited state dynamics of three cobalt(III) complexes with
chelating ligands, the 5T2g state was suggested to be the
lowest LF state.3

Experimental LF transition energies of Co(NH3)6
3+ were

measured in aqueous solution4 and in the solid state,1 in
which the cation is surrounded by water or anions. In this
study, the vertical and the 0-0 LF transition energies were

investigated with quantum chemical methods by taking into
account environmental effects.

Computational Details

The calculations were performed using the GAMESS5,6

programs. For cobalt, the relativistic effective core potential
(ECP) basis set of Stevens et al. (SBKJ)7 was used. For
chlorine, the ECP basis set of Stevens et al.8 supplemented
with a polarization function (Rd ) 0.659) was taken. For N
and H, the 6-31G(d) basis set10,11 was used (Rd ) 1.009).
Some calculations were performed with triple� + polarization
basis sets, 6-311G(d) for N and H,12 and the outermost s
and p functions of the SBKJ basis set were uncontracted
(SBKJu). Figures 1 and 2 were generated with MacMolPlt.13

Hydration was treated using the polarizable continuum
model (PCM).14,15 The cavity was constructed based on the
van der Waals radii of the atoms, whereby for cobalt, a value
of 2.20 Å was taken. Because of the high charge of
Co(NH3)6

3+, a finer tesselation than the default had to be
used (NTSALL ) 960, the default is 60; in PCM, each atom
is represented by a sphere, which is approximated by
NTSALL triangles). The DFT calculations were performed
with a grid finer (NTHE ) 24 and NPHI ) 48) than the
default (NTHE ) 12 and NPHI ) 24). The active space for
the multiconfiguration quasidegenerate second-order pertur-
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bation (MCQDPT2)16,17 computations was determined via
configuration interaction (CI) singles-doubles calculations.18

A 10 electrons in 10 orbitals (10/10) active space was used
for most MCQDPT2 calculations, whereby for each degener-
ate state, a state-averaged complete active space self-
consistent field (CAS-SCF) calculation was performed. Since
the symmetries of Co(NH3)6

3+, Co(NH3)6 ·Cl2
+, and

Co(NH3)6 ·Cl4
- are lower than Oh, the triply degenerate states

split into an A and an E state. The CAS-SCF and the
MCQDPT2 calculations were performed by averaging over
the A and E states corresponding to the T state of interest.
Hydration at the MCQDPT2 level was computed as described
elsewhere.19 Unless noted otherwise, only the 1s MOs of N
were treated as frozen cores. Spin-orbit coupling was
computed on the basis of the corresponding CAS-SCF wave
function via spin-orbit CI with the full Breit-Pauli Hamil-
tonian including a partial two electron operator.20-22 Interac-
tions of each state with the others exhibiting the same
symmetry and spin or a spin differing by (1 were taken
into account.

The geometry optimizations of the excited states 1T1g, 3T2g,
and 5T2g with PCM hydration were performed at the spin
unrestricted level (without spin projection). To achieve SCF

convergence, orbital interchanges were restricted (restrct ).t.
option in $scf), and level shifting or damping of the Fock
matrix was applied (shift ).t. or damp ).t. option). The
atomic coordinates of the 1A1g, 1T1g, 3T2g, and 5T2g states of
Co(NH3)6

3+ are given in Tables S1-S4 (Supporting Infor-
mation), and those of Co(NH3)6 ·Cl4

- in its ground state are
reported in Table S5 (Supporting Information).

Results

Ground State Geometry of Co(NH3)6
3+. The Co-N bond

lengths in the crystal structures, reported in Table 1, lie in
the range of 1.96 -1.97 Å. The diversity of the anions in
the crystals gives rise to different hydrogen bonds with the
ammonia ligands. This is the reason why the Co-N bond
lengths of the various compounds vary somewhat. Through
these H bonds charge is donated to the cation. This
strengthens the Co-N bonds compared with the free
Co(NH3)6

3+ ion (in the gas phase). The quantum chemically
determined Co-N bond lengths in free Co(NH3)6

3+, exhibit-
ing D3 symmetry, are summarized in Table 2. The Co-N
bond lengths vary slightly upon improvement of the basis
set from double� + polarization to triple� + polarization.
The Hartree-Fock (HF) method, neglecting electron cor-
relation, produces too long Co-N bonds whereas MP2,
neglecting static electron correlation, yields too short Co-N
bonds. With CAS-SCF, neglecting dynamic electron cor-
relation, too long Co-N bonds are obtained. The most
accurate Co-N bonds are computed with MCQDPT2(10/
10) which takes into account static and dynamic electron
correlation. In the MCQDPT2(4/4) calculation with a smaller
active space, a part of the static correlation is neglected,
which leads to too short Co-N bonds as with MP2. The
widely applied BLYP33-35 and B3LYP36-38 functionals gave
rise to too long Co-N bonds. The PBE39,40 and PBE041

functionals are superior. The OPBE39,40,42 and OLYP42

functionals exhibit the OPTX42 exchange, which is superior
to other exchange functionals.43 OLYP yielded too long
Co-N bonds. The best geometries with respect to MC-
QDPT2(10/10) were obtained with PBE0 and OPBE. For
the Co(NH3)6

3+ complexes, these two functionals were
assumed to provide the most accurate geometries.

The LF spectrum of the free Co(NH3)6
3+ ion (in the gas

phase) is unknown. For comparison with the vis spectra in
the solid state,1 the environment of the cation was modeled
by adding two or four chloride ions in the second
coordination sphere. Co(NH3)6 ·Cl2

+ (Table 2ii) exhibits

Figure 1. Perspective view of the Co(NH3)6 ·Cl2+ ion (MP2
geometry).

Figure 2. Perspective view of the Co(NH3)6 ·Cl4- ion (OPBE
geometry).

Table 1. Co-N Bond Lengths from X-ray Crystal
Structures

compound d(Co-N), Å reference

[Co(NH3)6]2[Ni(CN)4]3 ·2H2O 1.964 23
[Co(NH3)6][Co(CN)6] 1.97 24
[Co(NH3)6]I3 1.96 ( 0.02 25
[Co(NH3)6][ZnCl4]Cl 1.967 26
[Co(NH3)6][FeCl6] 1.965 27
[Co(NH3)6][SbCl6] 1.983 28
[Co(NH3)6][Sb2F9] 1.990 ( 0.005 29
[Co(NH3)6][BrO3]3 · 1/2H2O 1.959 30
[Co(NH3)6]Cl2[BF4] 1.955 31
[Co(NH3)6]Cl[SiF6] ·2H2O 1.965 ( 0.002 32
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D3d symmetry and is strongly anisotropic (Figure 1). The
two added anions give rise to a reduction of the Co-N
bonds by 0.03-0.04 Å. The most accurate Co-N bonds
(PBE0 and OPBE data) are still too long by ∼0.02 Å
compared with the crystal structure data. In the
Co(NH3)6 ·Cl4

- model compound with C3 symmetry (Table
2iii), the chloride ions form approximately a tetrahedron
surrounding the Co(NH3)6

3+ pseudo-octahedron (Figure 2).
This model complex is less anisotropic than Co(NH3)6 ·Cl2

+.
In Co(NH3)6 ·Cl4

-, the Co-N bond lengths computed with
PBE0 and OPBE agree with those of the crystal structures,
and therefore this model complex can be considered as
acceptable for crystals containing the Co(NH3)6

3+ ion.
In aqueous solution, modeled by the polarizable continuum

model (PCM), the Co-N bonds (PBE0 and OPBE data) are
as in the Co(NH3)6 ·Cl4

- model compound (Table 2iv). At

least as the geometries are concerned, the water solvent exerts
a similar effect on the Co(NH3)6

3+ ion as the lattice anions
in the crystals.

Vertical Transitions. The vertical transition energies were
computed based on various ground state geometries to probe
their sensitivity to the Co-N bond lengths and the environ-
ment of the cation (Table 3). At the HF geometry of the
free ion, yielding by ∼0.08 Å too long Co-N bonds, the
LF transition energies are too low because of the too small
crystal-field splitting parameter (∆). For Co-N bonds fixed
at the experimental value, the first singlet-singlet and
singlet-triplet transitions, 1T1gr 1A1g and 3T1gr 1A1g, agree
with experiment,1 but the second transitions, 1T2g r 1A1g

and 3T2g r 1A1g, are underestimated by ∼0.2 eV, and the
singlet-quintet 5T2g r 1A1g transition energy is too low by
∼0.3 eV. Hydration, modeled with PCM, causes a small
reduction (∼0.02 eV) of the transition energies. The aug-
mentation of the basis set (from double� + polarization to
triple� + polarization) yields somewhat lower transition
energies. The data based on the MP2 geometry is slightly
worse because of the longer Co-N bonds (compared with
experiment).

The transition energies based on the HF geometry of
Co(NH3)6 ·Cl2+ are also too low (Table 3iii). The agreement
with experiment is better for the more accurate MP2 geometry.
For the best geometry (OPBE) based on the best model
(Co(NH3)6 ·Cl4-), the 1T2g r 1A1g, 3T1g r 1A1g, and 3T2g r
1A1g transition energies agree with experiment, but the 1T1gr
1A1g energy is overestimated by 0.26 eV (Table 3iv).

The transition energies reported in Table 3 correspond to
averages of A and E states because the symmetries of
Co(NH3)6

3+, Co(NH3)6 ·Cl2
+, and Co(NH3)6 ·Cl4

- are lower
than Oh (Table 4). A reduction of the symmetry from Oh to
D3 (or D3h) causes a splitting of the T1g and T2g states into
A2 + E (or A2g + Eg) and A1 + E (or A1g + Eg) states,
respectively. In C3 symmetry both terms, T1g and T2g, split
into A + E. In the Co(NH3)6

3+ ion, the A1/2-E splittings
are small (0.01 eV), unlike in Co(NH3)6 ·Cl2

+, where the two
anions are located in axial positions (Figure 1). This
anisotropy causes the larger A1/2-E splittings. In contrast
to Co(NH3)6

3+, where the A1/2 states exhibit slightly lower
energies than their corresponding E states, the A1/2 energies
are higher for Co(NH3)6 ·Cl2

+. Because of the large A1g-Eg

splitting of the 5T2g state, Co(NH3)6 ·Cl2
+ is a poor model

which is not considered further. The splittings of the singlet
and triplet states in Co(NH3)6 ·Cl4

- are comparable to those
of Co(NH3)6 ·Cl2

+, but for 5T2g, the A-E splitting is small.
In Table 5 are summarized the vertical transition energies

of Co(NH3)6
3+ in the idealized Oh symmetry as well as in

the effective D3 symmetry (Computational Details). Spitting
due to spin-orbit (SO) coupling, treated in the D3* double
group, is small (Table 5). The corresponding data for
Co(NH3)6 ·Cl4

- is given in Table 6; the splittings due to
spin-orbit coupling are as for Co(NH3)6

3+ but, as already
mentioned, the transition energies are higher and more
accurate (Table 3). On the basis of the Co(NH3)6

3+ and
Co(NH3)6 ·Cl4

- models, the 5T2g energy is higher than those
of the triplet states and lower than those of the singlets.

Table 2. Bond Lengths in Co(NH3)6
3+, Co(NH3)6 ·Cl2+, and

Co(NH3)6 ·Cl4- Computed with Various Methods and Basis
Sets

method basis set d(Co-N), Å d(N-H), Å

(i) Co(NH3)6
3+, D3 Symmetry

HF SBKJ/6-31G(d) 2.045 1.010
HF SBKJ/6-311G(d) 2.042 1.006-1.007
HF SBKJu/6-311G(d) 2.041 1.006-1.007
MP2a SBKJ/6-31G(d) 1.986 1.025
MP2b SBKJ/6-31G(d) 1.974 1.025-1.026
MP2a SBKJ/6-311G(d) 1.981 1.021
MP2b SBKJ/6-311G(d) 1.966 1.021
CAS-SCF(10/10) SBKJ/6-31G(d) 2.034 1.009
CAS-SCF(10/7) SBKJ/6-31G(d) 2.052 1.009-1.010
CAS-SCF(4/4) SBKJ/6-31G(d) 2.047 1.009
MRMP2(10/10)b SBKJ/6-31G(d) 2.014 1.027
MRMP2(4/4)b SBKJ/6-31G(d) 1.997 1.025-1.026
BLYP SBKJ/6-31G(d) 2.060 1.034-1.035
B3LYP SBKJ/6-31G(d) 2.033 1.026
PBE SBKJ/6-31G(d) 2.028 1.034
PBE0 SBKJ/6-31G(d) 2.006 1.024
OPBE SBKJ/6-31G(d) 2.021 1.026
OLYP SBKJ/6-31G(d) 2.052 1.027-1.028

(ii) Co(NH3)6 ·Cl2+, D3d Symmetry
HF SBKJ/6-31G(d) 2.018 1.005-1.025
MP2a SBKJ/6-31G(d) 1.957 1.020-1.048
BLYP SBKJ/6-31G(d) 2.027 1.029-1.068
B3LYP SBKJ/6-31G(d) 2.003 1.021-1.056
PBE0 SBKJ/6-31G(d) 1.974 1.019-1.056
OPBE SBKJ/6-31G(d) 1.980 1.021-1.065

(iii) Co(NH3)6 ·Cl4-, C3 Symmetry
HF SBKJ/6-31G(d) 2.007,c 2.002c 1.003-1.015
MP2a SBKJ/6-31G(d) 1.947,c 1.938c 1.018-1.034
MP2b SBKJ/6-31G(d) 1.936,c 1.927c 1.018-1.034
CAS-SCF(10/10) SBKJ/6-31G(d) 1.996,c 1.989c 1.003-1.014
BLYP SBKJ/6-31G(d) 2.011,c 2.003c 1.028-1.048
B3LYP SBKJ/6-31G(d) 1.991,c 1.983c 1.019-1.036
PBE SBKJ/6-31G(d) 1.982,c 1.975c 1.027-1.048
PBE0 SBKJ/6-31G(d) 1.965,c 1.958c 1.018-1.040
OPBE SBKJ/6-31G(d) 1.969,c 1.962c 1.020-1.049

(iv) Co(NH3)6
3+ in Aqueous Solutiond

HF SBKJ/6-31G(d) 1.998 1.005
PBE SBKJ/6-31G(d) 1.976 1.029
PBE0 SBKJ/6-31G(d) 1.960 1.019-1.020
OPBE SBKJ/6-31G(d) 1.967 1.021-1.022
OLYP SBKJ/6-31G(d) 1.992 1.022-1.023

a The 1s levels of N and the 3s/p levels of Co were treated as
frozen cores. b The 1s levels of N were treated as frozen cores.
c 3 symmetry equivalent bonds. d Hydration modeled using the
polarizable continuum model (PCM).
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TDDFT based on the BLYP and B3LYP functionals over-
estimates the (vertical) LF transitions energies (Table S6).

0-0 Transitions. Their computation requires optimized
excited state geometries. Because of the Jahn-Teller theo-
rem, the degeneracy is removed and hence these geometries
were computed with the OPBE functional and PCM hydra-
tion (OPBE-PCM), since this method reproduced the Co-N
bond lengths of the Co(NH3)6

3+ ion in the crystal structures
(Tables 1 and 2iv). All of these PCM computations had to
be performed in C1 symmetry. Attempts to optimize the
geometries of the excited states of the Co(NH3)6 ·Cl4

- model
compound were unsuccessful. The computed Co-N bond
lengths of the ground state and the excited 1T1g, 3T1g, and
5T2g states are reported in Table 7. In the 1T1g and 3T1g states,
the spatial MO occupations are virtually equal, and this is
the reason why their geometries differ only marginally. In
agreement with Wilson and Solomon’s study,1 these two
states exhibit a compressed octahedral structure with a
computed shortening of the axial bonds of 0.010 and 0.014
Å for the 3T1g and 1T1g states, respectively, and an elongation
of the equatorial bonds of ∼0.15 Å. This data agrees well
with the spectroscopically determined1 values of ∼0.02
(compression) and ∼0.12 Å (elongation). The geometry of
the 5T2g state is almost octahedral. In this state, the Co-N
bond lengths are elongated by ∼0.17 Å with respect to those

Table 3. Vertical Ligand-Field Transition Energiesa of Co(NH3)6
3+

geometry basis set 1T1g r1A1g
1T2g r1A1g

3T1g r1A1g
3T2g r1A1g

5T2g r1A1g

(i) Experimental Datab

2.60 3.66 1.61 2.14c

(ii) Co(NH3)6
3+, D3 Symmetry

HF SBKJ/6-31G(d) 2.21 2.96 0.85 1.36 1.21
HFd SBKJ/6-31G(d) 2.66, 2.63e 3.48, 3.45e 1.36, 1.34e 1.93, 1.90e 2.14, 2.12e

HFd SBKJ/6-311G(d) 2.64 3.45 1.35 1.90 2.10
HFd SBKJu/6-311G(d) 2.59 3.37 1.31 1.86 2.09
MP2f SBKJ/6-31G(d) 2.51 3.31 1.21 1.75 1.86
MP2f SBKJ/6-311G(d) 2.53 3.32 1.22 1.76 1.88

(iii) Co(NH3)6 ·Cl2+, D3d Symmetry
HF SBKJ/6-31G(d) 2.46 3.19 1.13 1.62 1.68
MP2f SBKJ/6-31G(d) 2.80 3.58 1.51 2.04 2.32

(iv) Co(NH3)6 ·Cl4-, C3 Symmetry
OPBE SBKJ/6-31G(d) 2.86 3.60 1.57 2.07 2.46

a Units: eV. b Reference 4. c Calculated44 according to Tanabe and Sugano.45 d d(Co-N) fixed at 1.96 Å. e With PCM hydration. f The 1s
levels of N and the 3s/p levels of Co were treated as frozen cores.

Table 4. A1-E and A2-E or A-E Splittingsa of the T2g and T1g States

geometry basis set 1T1g
1T2g

3T1g
3T2g

5T2g

(i) Co(NH3)6
3+, D3 Symmetry

HF SBKJ/6-31G(d) 4.18 8.95 1.88 6.39 3.11
HFb SBKJ/6-31G(d) 4.33, 4.54c 11.3, 11.3c 2.50, 2.58c 8.08, 8.18c 4.63, 5.39c

HFb SBKJ/6-311G(d) 4.49 10.2 2.34 8.00 5.82
HFb SBKJu/6-311G(d) 4.49 9.25 2.78 8.14 5.82
MP2d SBKJ/6-31G(d) 4.14 8.41 3.10 6.69 6.01
MP2d SBKJ/6-311G(d) 4.41 8.76 3.21 7.07 6.34

(ii) Co(NH3)6 ·Cl2+, D3d Symmetry
HF SBKJ/6-31G(d) 36.2 36.5 29.5 41.1 92.1
MP2d SBKJ/6-31G(d) 55.3 44.5 42.7 50.9 270

(iii) Co(NH3)6 ·Cl4-, C3 Symmetry
OPBE SBKJ/6-31G(d) 14.7 55.7 46.3 38.4 4.7

a Units: meV. b (Co-N) fixed at 1.96 Å. c With PCM hydration. d The 1s levels of N and the 3s/p levels of Co were treated as frozen
cores.

Table 5. Computed Vertical Ligand-Field Transition
Energiesa of Co(NH3)6

3+ Including Spin-Orbit Coupling

Oh D3 D3*

0.0000 (1A1g) 0.0000 (1A1) 0.0000 (A1)
1.36 (3T1g) 1.3608 (3E) 1.4118 (A1)

1.3583 (3A2) 1.3819 (A2)
1.3797 (E)
1.3402 (E)
1.3388 (E)
1.3387 (A1)

1.93 (3T2g) 1.9327 (3E) 1.9880 (A2)
1.9246 (3A1) 1.9783 (A1)

1.9755 (E)
1.9531 (E)
1.9497 (E)
1.9480 (A2)

2.14 (5T2g) 2.1415 (5E) 2.2009 (A1)
2.1369 (5A1) 2.1961 (A2)

2.1942 (E)
2.1897 (A1)
2.1895 (E)
2.1269 (E)
2.1231 (A2)
2.1220 (E)
2.0934 (E)
2.0933 (A1)

2.66 (1T1g) 2.6614 (1E) 2.6756 (E)
2.6571 (1A2) 2.6728 (A2)

3.48 (1T2g) 3.4838 (1E) 3.4948 (E)
3.4725 (1A1) 3.4830 (A1)

a Units: eV; HF/SBKJ/6-31G(d) geometry with C-N bond
lengths of 1.96 Å.
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in the 1A1g ground state. A smaller elongation of ∼0.12 Å
was estimated by Wilson and Solomon.1

The 0-0 transition energies (Table 8) were computed with
multiconfiguration quasidegenerate second-order perturbation
(MCQDPT2)16,17 theory and density functional theory using
the OPBE functional. These calculations were based on the
above-described OPBE-PCM geometries (Table 7). PCM
hydration was included to model the effect of the environ-
ment of Co(NH3)6

3+. Contributions from spin-orbit coupling
(ESO) were taken into account, but they are small (Table 8).
ESO was obtained via spin-orbit CI (Computational Details),
which was based on the CAS-SCF wave function of the
corresponding state including the interactions with other
states of appropriate symmetry and spin (Computational

Details). Zero point energy corrections were not included
because they would be questionable: as mentioned above, it
was not possible to optimize the geometries of the excited
states of the Co(NH3)6 ·Cl4

- model compound. Hence,
hydrogen bonding of ammonia with lattice anions could not
be treated (see above). The neglect of these H-bonds gives
rise to low-frequency rotational modes of the ammonia
ligands. In the presence of anions and, therefore, H-bonds,
these modes would have much higher frequencies. The
MCQDPT2 energy of the 1T1g state agrees with experiment,
but that of the 3T1g state is too low by 0.32 eV. Interestingly,
the OPBE 3T1g energy is underestimated by only 0.17 eV,
but that of 1T1g is inaccurate and too low by 0.66 eV. For
the experimentally unknown 5T2g state, the MCQDPT2 and
OPBE energies differ by 0.22 eV. On the basis of the more
reliable MCQDPT2 energies, the 5T2g state lies above the
3T1g state by 0.65 eV and below the 1T1g state. According to
the OPBE energies, which are less reliable, the 5T2g state
lies also above the 3T1g state by 0.62 eV, but the 1T1g energy
(which deviates strongly from the experimental value) is
lower than that of the 5T2g state. The lowest (relaxed) excited
state of Co(NH3)6

3+ is the triplet 3T1g state and not the quintet
5T2g state. The vertical transition energies, calculated without
chloride ions in the second coordination sphere, were too
low by ∼0.2-0.3 eV (Table 3). Possibly, the 0-0 transition
energies (Table 8) are also too low by this error.

Vibrational Frequencies. For the 1A1g ground state, the
vibrational frequencies were computed based on the
Co(NH3)6

3+ OPBE-PCM and the Co(NH3)6 ·Cl4
- OPBE (gas

phase) geometries. The computed frequencies are insensitive
to the model (Table 9) and lower than the experimental
values. The frequencies of the excited 1T1g and 3T1g states
are also underestimated, whereby the error of the eg

component is sizable, possibly because the distortion of the
PCM geometries is larger than those of Co(NH3)6

3+ in the
solid, where the motion of the nearest neighbors is restricted.
Assuming an average error of -31 cm-1 for the a1g

component, the best estimate of the a1g mode for the 5T2g

state would be ∼413 cm-1, being somewhat lower than the
value estimated from experiment. This difference might again
be due to the full relaxation of the PCM geometry.

Discussion

Quantum Chemical Investigations of the Related
Low-Spin Co(CN)6

3- and Co(OH2)6
3+Complexes. The

vertical LF transitions of the low-spin Co(CN)6
3- ion have

been computed46 at the experimental geometry using DFT-

Table 6. Computed Vertical Ligand-Field Transition
Energiesa of Co(NH3)6 ·Cl4- Including Spin-Orbit Coupling

Oh C3 C3*

0.00 (1A1g) 0.0000 (1A) 0.0000 (A)
1.57 (3T1g) 1.5869 (3E) 1.6004 (A)

1.5406 (3A) 1.5736 (A)
1.5665 (E)
1.5292 (E)
1.5252 (E)
1.5246 (A)

2.07 (3T2g) 2.0795 (3E) 2.1267 (A)
2.0411 (3A) 2.1194 (E)

2.0988 (E)
2.0983 (A)
2.0008 (E)
1.9955 (A)

2.46 (5T2g) 2.4643 (5E) 2.5207 (A)
2.4596 (5A) 2.5166 (A)

2.5141 (E)
2.5101 (A)
2.5098 (E)
2.4466 (E)
2.4423 (E)
2.4402 (A)
2.4142 (A)
2.4134 (E)

2.86 (1T1g) 2.8669 (1E) 2.8762 (E)
2.8522 (1A) 2.8678 (A)

3.60 (1T2g) 3.6193 (1E) 3.6381 (E)
3.5637 (1A) 3.5740 (A1)

a Units: eV.

Table 7. Co-N Bond Lengths in the 1A1g, 1T1g, 3T1g, and
5T2g States of Co(NH3)6

3+

state d(Co-N), Å remarks
1A1g 1.967a D3 symmetry,

(pseudo)octahedron
1T1g 1.953, 1.953, 2.098,

2.098, 2.123, 2.128
compressed

(pseudo)octahedron
3T1g 1.957, 1.957, 2.099,

2.100, 2.124, 2.129
compressed

(pseudo)octahedron
5T2g 2.129, 2.130, 2.138,

2.138, 2.139, 2.139
∼ regular

(pseudo)octahedron

a Six symmetry-equivalent Co-N bonds.

Table 8. 0-0 Transition Energies (∆E)

∆Ecalc, eV

state ∆Eexp,a eV MCQDPT2b OPBE ESO, cm-1

1A1g -76.9
1T1g 2.36 2.36 (2.62) 1.70 -10.0
3T1g 1.37 0.95 (1.33) 1.20 -78.6
5T2g 1.60 (2.12) 1.82 -51.7

a Reference 1. b In parentheses: vertical transitions.

Table 9. Experimental and Computed Symmetric
Stretching Frequencies of Co(NH3)6

3+a

a1g eg

state exptlb calcd exptlb calcd
1A1g 490 458, 460c 440 425,d 426c

1T1g 480 454 429 371, 184
3T1g 483 447 434 373, 151
5T2g ∼435e 382 - 304d

a OPBE-PCM geometries, unless noted otherwise. Units: cm-1.
b Reference 1. c Co(NH3)6 ·Cl4- model compound. d Average of the
two eg components. e Estimated.
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based LF theory (LFDFT)47 and the spectroscopically
oriented configuration interaction method (SORCI).48 The
agreement with experiment is better for the SORCI technique.
For the Co(OH2)6

3+ ion (Table 10), the transition energies,
computed at the experimental Co-N bond lengths, were
taken from Table 19-7 of ref 46 in which the experimental
data has been replaced by those of Johnson and Sharpe,44

who measured transition energies to the singlet and the triplet
states. All of the applied methods agree with experiment,
whereby it should be noted that SORCI underestimates the
3T1g energy by further 0.1 eV than MCQDPT2 for
Co(NH3)6

3+ (Table 3). For Co(CN)6
3- and Co(OH2)6

3+,
energies computed with CAS-SCF-based second-order per-
turbation theory is not available. Environmental effects were
not modeled; they were assumed to cancel largely.

The above-mentioned LFDFT and SORCI vertical transi-
tion energies agree with experiment because (i) these
calculations were performed at the experimental cobalt(III)-
ligand bond lengths, and (ii) because systematic errors due
to the neglect of environmental effects cancel largely. It
should be noted that LF theory is based on the Racah
parameters ∆, B, and C, whose expressions are derived from
Coulomb and exchange integrals, whereby electron correla-
tion energy is accounted for in an effective, nonspecific way.
Since ∆, B, and C are obtained via a fit to experimental data,
the errors arising from the approximate treatment of electron
correlation cancel partially. The computation of 0-0 transi-
tions is more demanding, since accurate geometries of ground
and excited states are required. Because of the differences
in metal-ligand bond lengths of ground and excited states,
the Coulomb and exchange integrals vary. The parameters
∆, B, and C are not constant for 0-0 transitions, and the
error arising from the neglect of electron correlation is
different than for vertical transitions. Therefore, 0-0 transi-
tions predicted by LF theory cannot be expected to be
accurate, and energies of the relaxed 5T2g states of
Co(OH2)6

3+ and Co(NH3)6
3+, estimated on the basis of LF

theory, are likely to be affected by those systematic errors.
Geometry of the Co(NH3)6

3+ Ion. The Co-N bond
lengths computed with MP2 for the free Co(NH3)6

3+ ion are
close to those in the crystal structures (Tables 1 and 2i).
However, the MP2 geometry is not correct, since static
electron correlation is neglected, and since the gas phase
geometry is expected to differ form those in the crystal. In
aqueous solution and in crystals, the Co-N bonds are shorter
than in the free ion because charge transfer from solvent
molecules or anions to the cation strengthens the Co-N
bonds. The electronic transition energies in Ru(NH3)6

2+ and

Ru(NH3)5(pyr)2+ (pyr: pyridine) were shown to depend
strongly on the solvent-to-solute charge transfer.49 According
to QM/MM computations49 on these RuII and RuIII com-
plexes, roughly one electron is transferred from the water
solvent to the Ru(NH3)6

2+/3+ and Ru(NH3)5(pyr)2+/3+ ions.
The neglect of this solvent-to-solute charge transfer effect
in quantum chemical computations on di- and trivalent
cations is responsible for the systematically too long
metal-ligand bond lengths. It is interesting to note that PCM,
which takes into account electrostatic solute-solvent interac-
tions (the hydrogen bonds are mainly electrostatic) provides
Co-N bond lengths being close to those in the crystal
structures.

Transition Energies. Experimentally, the 5T2g energy has
not been measurable so far. According to ZINDO calcula-
tions of Larsson, Ståhl, and Zerner,2 the vertical 5T2g energy
is higher than that of the 3T1g, 3T2g, and 1T1g states, and lower
than that of the 1T2g state. The present calculations suggest
that the 5T2g energy is higher than those of the two triplets,
and lower than those of the two singlets. The comparison
with experimentally available transition energies shows that
the computational error is e0.3 eV (Table 3iv). Because of
this error, the present computations do not allow the
assessment of the 5T2g-1T1g ordering. However, there is little
doubt that the (vertical) 5T2g energy is higher than those of
the 3T1g and 3T2g states.

The 0-0 transition energies, computed on the basis of the
ZINDO method,2 increase in the order 3T1g < 1T1g ≈ 5T2g.
According to the spectroscopic study,1 the energy ordering
is 5T2g e 3T1g < 1T1g, and the present computations suggest
the ordering 3T1g < 5T2g < 1T1g. The computed 1T1g energy
agrees with experiment, but the 3T1g energy is too low by
0.42 eV (Table 8). Because of the magnitude of the 5T2g-3T1g

energy difference (Table 8) the statement that the 5T2g energy
is higher than the 3T1g energy can be made with confidence.
Because of the sizable error in the 3T1g energy, however,
the question, whether the 5T2g state lies below the 1T1g state
or whether their energies are comparable, remains open. It
should be remembered that it was not possible to optimize
the geometries of the 1T1g, 3T1g, and 5T2g states for the
Co(NH3)6 ·Cl4

- model. Hence, the 0-0 transition energies
based on the best model are not available. The environment
of the Co(NH3)6

3+ ion had to be represented with PCM water.
It should be noted that the geometries of the excited states,
computed at the OPBE-PCM level, are fully relaxed. It is
an open question, whether in the crystal the excited states
can relax completely, since the motion of the lattice anions
is restricted. These constraints would also affect the relax-
ation of the Co-N bonds. The longer Co-N bonds and the
lower vibrational frequencies for the computed excited states
compared with Wilson et al.’s experimental data in the solid
state might also be due to a possible incomplete relaxation
in the crystal (whereby inaccuracies in the computations
contribute as well). In contrast to Co(NH3)6

3+, for
Co(OH2)6

3+, exhibiting a weaker crystal field, the 5T2g state
is the lowest excited 0-0 state.50

Acknowledgment. I am grateful to Dr. M. W. Schmidt
for a nonpublic version of GAMESS.

Table 10. Vertical Ligand Field Transition Energies of
Co(OH2)6

3+

Co(OH2)6
3+ Co(OH2)6 · (OH2)12

3+
electronic

state LFDFTa SORCIa TDDFTa LFDFTa exp.b

1A1g 0 0 0 0 0
1T1g 15370 15670 16528 15669 16500
1T2g 24537 23600 22017 24726 24700
3T1g 9212 5257 9156 10271 8000
3T2g 13782 10779 9380 14798 12500
5T2g 9660 12649

a From ref 46. b From ref 44.
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Supporting Information Available: Tables S1-S4
listing the atomic coordinates of hydrated Co(NH3)6

3+ in its
1A1g, 1T1g, 3T1g, and 5T2g states, Table S5 listing the atomic
coordinates of Co(NH3)6 ·Cl4

- in the ground state, and Table
S6 summarizing the vertical LF transition energies obtained
with TDDFT (BLYP and B3LYP). This material is available
free of charge via the Internet at http://pubs.acs.org.
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Abstract: Finite temperature Born-Oppenheimer DFT-based molecular dynamics simulations
are presented for the vibrational spectroscopy of the prototype gas-phase Ala2H+ and Ala3H+

protonated peptides. The dynamics and the vibrational signatures are used to interpret IR-MPD
spectra recorded in the NH/OH stretch region. Molecular dynamics simulations are one way to
go beyond the harmonic approximations commonly applied for the calculations of infrared spectra,
naturally including all anharmonicities, i.e. mode couplings, vibrational and dipole anharmonicities.
The dynamics of the peptides allows understanding of the evolution of the shape and width of
the N-H bands when increasing the size of the peptide, as demonstrated here with the two
small prototypes Ala2H+ and Ala3H+. Hence, the conformational dynamics of Ala2

+ at room
temperature participates to the broadening of the IR active bands. The complex N-H broadband
of Ala3H+ is shown to result from the dynamics of the N-H groups in the different peptide families,
with a special role from breaking/reforming of hydrogen bonds involving the N-H groups. Taking
this dynamics into account is thus mandatory for the understanding of this band in the 300-400
K experimental spectrum.

Introduction

Characterizing the folding behavior of peptide chains is of
fundamental importance for a better understanding of
proteins. The conformational structures and dynamics of
simple model oligopeptides have been studied in solution
by NMR and 2-D IR spectroscopy,1-3 but the role of the
aqueous environment on peptide behavior is an open ques-
tion. The intrinsic peptide structures and dynamics may be
explored in the gas phase, where the solution environment
is removed and the folding behavior is determined exclu-
sively from the noncovalent interactions associated with the
peptide backbones and/or side chains. This has catalyzed

many structural investigations of cold, gas-phase peptides,
revealing gas-phase formation of traditional secondary-
structure motifs like helices, �-sheets, and �- and γ-turns.4-9

For a complete picture of folding behavior in gas-phase
oligopeptides it is necessary to include the effects of
temperature. At physiological temperatures, entropic differ-
ences between conformations can alter the free energy
surfaces, and as a result multiple conformational families
may be populated and barriers to conformational isomeriza-
tion may be surmounted. While frozen peptides at 0 K exhibit
only one or a few distinct structures, at 298 K peptides are
better described in terms of average conformation(s), with a
(relatively) rigid backbone and moderate or large-amplitude
side-chain motions.10 The motivation to understand these
issues is reflected in the work of Polfer et al.11 and Gregoire
et al.,12 in which protonated peptide ions are characterized
at ∼300 K using Infrared Multiple Photodissociation (IR-
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MPD) spectroscopy with a Free Electron Laser (FEL). Vaden
et al. have recently investigated protonated polyalanine
peptides, AlanH+, under elevated internal energy conditions
by generating the ions via UV photochemical protonation.13

The ‘temperature’ of the ions produced in these experiments
is roughly estimated about 350 K, so that the peptides
structural and dynamical properties extracted from these
experiments are relevant for understanding the room tem-
perature physiological medium. When turning to theoretical
calculations in order to interpret the IR-MPD recorded
features, one should be aware that the local dynamics of the
peptides (e.g., hydrogen bonds dynamics, methyl groups
rotation, local distortions of the peptide chain) and the
conformational isomerization/interconversion dynamics of
the peptides as well as anharmonic vibrational effects (i.e.,
mode couplings, vibrational and dipole anharmonicities) may
be pivotal issues for the comprehension of the finite
temperature experimental vibrational features. See our recent
papers12,14,15 on these issues.

The dynamics of the molecules (local or more global
isomerization/interconversion) and their direct consequences
on measured properties such as vibrational spectra can only
be accounted for through molecular dynamics (MD)
simulations.16,17 The calculation of infrared spectra through
MD relies on dipole time correlation functions recorded along
a trajectory.18 This is well established in the context of
classical MD19-24 but is much more recent in the ab initio
MD community. Pioneering studies were done by Parrinello
et al. on liquid water,25-27 and within the past few years,
we have shown that ab initio molecular dynamics represents
the best method for the calculation of IR spectra of DNA
and peptide building blocks in the gas phase or immersed in
liquid water12,14,15,28-30 at room temperature. We have in
particular shown that ab initio MD simulations are the proper
tool to calculate IR absorption spectra of gas-phase molecules
that can exist in multiple isomeric conformations at finite
temperature.14

Another advantage of MD simulations for the calculation
of IR spectra is that vibrational anharmonicities are directly
taken into account in the final spectrum. The two successive
harmonic approximations usually adopted for the determina-
tion of IR spectra from static ab initio calculations, i.e. a
harmonic approximation of the potential energy surface at
the optimized geometries and a mechanical harmonic ap-
proximation for the transition dipole moments, are omitted
in MD, because they are not needed. Hence, the finite
temperature dynamics take place on all accessible parts of
the potential energy surface, be they harmonic or anharmonic.
As the calculation of IR spectra with MD is related only to
the time-dependent dipole moment, it does not require any
harmonic expansion of the transition dipole moments.
Therefore, if the dipole moments and their fluctuations are
accurately calculated along the trajectory, the resulting IR
spectrum should be reliable too, as demonstrated in our
previous works.12,14,28-30 Furthermore, the temperature and
the conformational dynamics of the peptide will contribute
to vibrational band broadening.

In this article, we apply DFT-based Born-Oppenheimer
dynamics at ∼300-400 K on the prototype gas-phase alanine

protonated di- and tri-peptides in order to calculate their
infrared spectral signatures. Our goal is to interpret the
vibrational features at the microscopic level, with a special
emphasis on the evolution of the active bands with the
peptide size increase. The dynamics and the vibrational
signatures are then used to interpret IR-MPD spectra recorded
in the NH/OH stretch region. We have chosen these two well-
studied small protonated polyalanines (see for instance refs
13 and 31) in order to demonstrate that the peptides
dynamical features have to be taken into account to obtain
a precise understanding of the relation between experimental
features and the underlying molecular structural and dynami-
cal properties, including anharmonicities. Previous investiga-
tions reported in the literature on these systems13,31,32 have
combined IR-MPD spectra in the NH/OH or mid-IR amide
domains and scaled harmonic DFT frequencies computed
for frozen conformations of the peptides, thereby neglecting
vibrational anharmonic contributions and local/nonlocal
conformational dynamics at the finite temperature of the
experiments. The present investigation goes beyond these
approximations. Note that these issues have already been
addressed on Ala2H+ with DFT-based Car-Parrinello mod-
eling in the mid-IR region.12,14

IR-MPD Setup

The experimental method and experimental results are
unchanged from our previous AlanH+ investigation.13 The
following brief description is given for a better assessment
of the interplay between the experiments and the theoretical
investigations. Ala2H+ and Ala3H+ ions were generated by
a photochemical protonation scheme (1)-(4), described in
detail elsewhere,33-35 in which intermolecular proton transfer
follows resonance-enhanced 2-photon ionization (R2PI) of
a phenol-peptide (PhOH..Alan, n ) 2,3) complex.

Cold PhOH..Alan complexes were generated, step (1), by
seeding gas-phase Alan peptides (using laser desorption by
a Continuum Minilite Nd:YAG laser) into a pulsed super-
sonic expansion of phenol in argon carrier gas. The com-
plexes passed through a skimmer into the extraction region
of a linear time-of-flight (TOF) mass spectrometer (R. M.
Jordan), where they were ionized, step (2), at ∼278 nm via
R2PI using the frequency-doubled output of a Lamda-Physik
FL2002 dye laser. Rapid, exothermic proton transfer within
the ionized complexes, [PhOH+..Alan]•, step (3), followed
by endothermic loss of the phenoxy radical PhO•, step (4),
generated the free protonated peptide ions, AlanH+. Ala2

samples were obtained from Aldrich, while Ala3 samples
were obtained from Bachem (Germany).

The internal energy content of the protonated cations
depends on the excess energy after two-photon ionization

PhOH + Alan f [PhOH..Alan] (1)

[PhOH..Alan] + 2hν f [PhOH+..Alan]
· (2)

[PhOH +..Alan]· f PhO·.. AlanH
+ (3)

PhO·..AlanH
+ f PhO· + AlanH

+ (4)
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(∼60 kJ.mol-1), the ∆H of the proton transfer reaction (3)
(∼100 kJ.mol-1), and the binding energy of the PhO•..AlanH+

complex (estimated to be ∼75 kJ.mol-1).33 As discussed
previously, the ‘temperatures’ of the Ala2,3H+ ions, which
depend on the peptide size through the vibrational heat
capacities, are not well-characterized but could be anywhere
from 250 K to more than 400 K.13 Previous analyses have
assumed temperatures of 350 K as a rough guide, but in the
current work we consider several different temperatures,
enabling a better characterization of the internal energy
content.

The Ala2,3H+ ions were probed with IR-MPD spectroscopy
using the idler output (∼10-20 mJ/pulse, tunable from
2000-4000 cm-1, with a bandwidth of ∼2 cm-1) of a
LaserVision KTP/KTA OPO/OPA laser system, tightly
focused to a beam diameter ∼800 µm, which intersected the
ions 400 ns after the UV pulse, in a spatially distinct region
downstream from the ionizing UV laser beam. IR-MPD
spectra were recorded by monitoring the depletion of the
(parent) protonated peptide ion (using active baseline cor-
rection13) as a function of the IR frequency, since the TOF
mass spectra were too congested to unambiguously identify
the fragment ions.

DFT-Based Molecular Dynamics

We perform Born-Oppenheimer molecular dynamics simu-
lations (BOMD) with the CP2K package,36,37 where nuclei
are treated classically and electrons quantum mechanically
within the DFT (Density Functional Theory) formalism.
These simulations solve Newton’s equations of motion of
the nuclei at finite temperature, while the electronic wave
function is obtained at each nucleus conformation by solving
the time-independent Schrödinger equation. Forces that act
on the nuclei are derived from the Kohn-Sham energy.
Details on the molecular dynamics setup are presented in
the Supporting Information. Briefly, we use the Becke, Lee,
Yang, and Parr (BLYP) gradient-corrected functional38,39 and
Goedecker-Teter-Hutter (GTH) pseudopotentials.40-42 A
double-� (DZVP) Gaussian basis set (from the CP2K library)
and a 320 Ryd Plane-wave density cutoff have been applied.
With this basis set the four structures of Ala2H+ from ref 32
have been reoptimized and are found in the same energy
order and with similar energy gaps as in refs 14 and 32 i.e.
transA1 (least energy), transO1 (+1.32 kcal/mol), transA2
(+1.72 kcal/mol), and cisA3 (+2.57 kcal/mol), with the Zero
Point Energy (ZPE) included. Note that the use of a bigger
plane-wave basis set in ref 14 led to the energy inversion of
conformers transO1 and transA2. The Ala3H+ two main
conformers identified as A31 and A33 in ref 13 with an energy
gap of 4.88 kcal/mol from DFT/B3LYP/6-31+G(d,p)
optimizations is found at 3.83 kcal/mol with the present
BLYP/DZVP optimization, including the ZPE. The BLYP/
DZVP present method thus gives similar minima and energy
gaps on the potential energy surfaces of Ala2H+ and Ala3H+

protonated peptides as with e.g. B3LYP and more extended
basis sets. In any case, the use of diffuse functions is less
critical in charged species.

The dynamics are performed in the microcanonical NVE
ensemble (after an equilibration period, see details in the

Supporting Information) with a time-step of 0.5 fs. With
BOMD, discrepancies between calculation and experiment
are expected to be due to the choice of the DFT functional
(BLYP throughout this paper), as DFT-based dynamics are
only as good as the functional itself allows.

Calculation of the IR absorption coefficient R(ω) by means
of MD makes use of the relation derived from Linear
Response Theory involving the Fourier Transform of the
dipole time correlation function,18 as described in our
previous works12,14,28-30

where � ) 1/kT, n(ω) is the refractive index, c is the speed
of light in vacuum, and V is the volume. M is the total dipole
moment of the system, which is the sum of the ionic and
electronic contribution.26 Interpretation of the infrared-active
bands into individual atomic displacements is done with the
vibrational density of states (VDOS) formalism. This is
obtained by Fourier transformation of the atomic velocity
autocorrelation functions and is decomposed into individual
atomic contributions or into groups of atoms.30 Note that
we do not apply any scaling factor to the vibrational band
positions extracted from our calculations.

Setup of the Dynamics

We performed three separate dynamics of the protonated
Ala2H+ dipeptide and eight dynamics of the protonated
Ala3H+ tripeptide. The trajectories of Ala2H+ span a total
30 ps dynamics, where the average temperature is 290 ( 37
K. The initial configurations (positions and velocities of the
atoms) of the dynamics have been taken from the end of the
dynamics reported in our previous work.14 The trajectories
of Ala3H+ also span a total ∼30 ps dynamics with tempera-
tures ranging between 387 ( 38 K and 530 ( 50 K, on
average; choice of the temperatures will be explained below.
The molecular dynamics simulations of the protonated
tripeptide follow our general two-steps setup, i.e. an equili-
bration phase of 1-3 ps with a control of temperature
through velocity rescaling, followed by data collection over
trajectories in the microcanonical ensemble (no rescaling of
velocities), each one for 3.2-3.7 ps.

We have considered three families of the Ala3H+ tripeptide
in our ab initio dynamics simulations, as illustrated in Figure
1. The dynamics were initiated from optimized structures
found in our previous work13 (labeled A31, A33, and A35).
A31 and A33 are the two structures found lower in energy13,31

in previous works, with their relative energy that depends
on the ab initio level of theory (DFT and MP2) and basis
set used in the optimization procedures. The family hereafter
denoted ‘NH2’ corresponds to a tripeptide in which the proton
is located on the N-terminal carbonyl group and is initiated
from the A31 optimized conformation of our previous work.13

The supplementary proton of the family hereafter denoted
‘elongated NH3

+’ (or simply ‘NH3
+’) is located on the

N-terminal NH3
+ and displays an extended peptide chain, and

the dynamics of this family are initiated from the A35
optimized conformation. This structure lies higher in energy

R(ω) ) 2π�ω2

3n(ω)cV
× ∫-∞

∞
dt 〈M(t)·M(0)〉 exp(iωt) (5)
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than the A31 and A33 ones13,31 and was therefore discarded
in the previous analysis of the IR-MPD spectra. We have
nonetheless investigated this type of conformer in the present
work, considering that it could be populated as a result of
the method of production of the ions in the present experi-
ment where a photochemical scheme is employed. The other
reason is that this conformation is very similar to the one of
the Ala2H+ that was observed in our previous MD work.14

The third family investigated is denoted ‘folded NH3
+’ (or

simply ‘folded’) and corresponds to a folded chain through
a NH3

+ · · ·OdC H-bond and is initiated from the A33
optimized conformation of our previous work.13

Two dynamics of the NH2 family have been performed at
380 ( 36 K and two other dynamics at 460 ( 40 K and 530
( 50 K, respectively. Two dynamics of the NH3

+ family have

been performed at 380 ( 37 K and a supplementary
dynamics at 450 ( 45 K. The trajectory of the folded family
has been performed at 400 ( 40 K. The dynamics performed
at higher temperatures were begun from the end of lower
temperature dynamics, heated up and equilibrated for 2-3
ps, and then evolved in the microcanonical ensemble. As
already emphasized, the exact value of the temperature in
the related IR-MPD experiments is not well-characterized
but roughly estimated about 350 K, thus the average
380-400 K achieved in the dynamics performed on Ala3H+.
The highest temperatures chosen here are aimed at investi-
gating the temperature effect on the final vibrational features.
The final spectra of Ala2H+ and of Ala3H+ presented here
have been averaged over all performed trajectories.

One has to be cautious when trying to compare the
calculated IR absorption intensities (calculated within the
static or the dynamics formalisms) to those obtained in IR-
MPD experiments. Equation 5 is strictly valid for one-photon
linear IR absorption spectroscopy. IR-MPD on the other hand
is a multiphotonic process leading to the fragmentation of
the molecule. The recorded signal is the fragmentation yield
with respect to each excitation IR wavelength. It is thus an
indirect measurement of IR absorption, in contrast to the
usual linear IR spectroscopy. Calculations and experiments
are therefore not directly comparable where band intensities
are concerned, thereby displaying expected discrepancies.
The direct simulation of IR-MPD spectra, with a clear
theoretical expression of the signal in terms of dynamical
quantities, remains an unsolved problem. Comparisons of
experimental and calculated IR intensities will therefore be
cautiously discussed in the following analyses.

Structural Analyses along the Trajectories

Ala2H+. The dynamics of the protonated Ala2H+ dipeptide
using DFT-based Car-Parrinello molecular dynamics simu-
lations have already been presented and discussed in our
previous work,14 though in another context. The same
dynamical results are obtained here, despite the changes in
the dynamical approach (Born-Oppenheimer versus Car-
Parrinello) and the basis set representation between the two
works. Briefly, the protonated dipeptide undergoes continu-
ous conformational dynamics at room temperature between
transA1 and transA2 conformers (see ref 14 for more details
about the nomenclature adopted for the isomers). This
conformational dynamics corresponds to the N-C-CR-O
torsional rotation of the C-terminal COOH of the peptide,
without energy barrier.14 We also observe proton transfers
between the NH3

+ N-terminal and the neighboring carbonyl
on the chain, giving rise to transient periods of time during
which the transO1 conformer (NH2/COH) is populated.14

Overall, conformations where the N-terminal of the peptide
is protonated (NH3

+) are predominantly populated, with a
strong hydrogen bond that is formed between NH3

+ and the
neighboring carbonyl group. Moreover, there is enough
energy for the NH3

+ group to rotate and exchange the
hydrogen atom that can be hydrogen bonded to the neighbor-
ing carbonyl.

We find that, depending on the orientation of the C-
terminal COOH during the dynamics, the amide N-H group

Figure 1. Schematic representation of the main structures
of Ala3H+ which have been used as initial structures in the
DFT-based Born-Oppenheimer dynamics. From top to bot-
tom: NH2 family, elongated NH3

+ family, and folded NH3
+ family.

Carbon atoms are represented in dark gray, nitrogen atoms
in dark blue, oxygen atoms in red, and hydrogen atoms in
light gray.
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can be located in the vicinity of the carbonyl group of COOH
with an average N-H · · ·OdC distance of ∼2.1 Å or away
from it with distances of the order of ∼3.2-3.5 Å. The short
∼2.1 Å distances cannot be classified as proper hydrogen
bonds, since the corresponding average N-H · · ·O angles
of ∼110° are too far from the ideal linearity. Considering
the geometrical hindrances of the peptide chain, improper
hydrogen bonds between neighboring groups on the chain
are expected to occur. We observe that the C-terminal O-H
group is never involved in any hydrogen bond and thus
remains free over the dynamics. Finally, there is not enough
energy in the system to overcome the energy barrier of the
trans/cis orientation of the peptide bond.

Ala3H+. The two dynamics of the NH2 family performed
at 380 K give rise to the exploration of helical RL conforma-
tions of Ala3H+, where Φ (Φ ) C1-N-CR-C2 where C1
is the N-terminal carbonyl atom and C2 is the C-terminal
carbonyl atom) and Ψ (Ψ ) N1-CR-C2-N2 where N1 is
the N-terminal amide nitrogen atom and N2 is the C-terminal
amide nitrogen atom) angles are in the [0/100°] and [100/
180°] domains, while the dynamics performed at higher
temperatures explore either exclusively helical RR conforma-
tions with Φ and Ψ angles, respectively, in the [0/-100°]
and [-100/-180°] domains for the 460 K dynamics or a
mixture of RL and RR conformations for the higher 530 K
temperature dynamics. There is therefore a transition between
RL and RR conformations of the protonated tripeptide that
becomes permitted with the increase of the temperature for
the NH2 family (at least within the time-lengths of the
simulations performed here). All dynamics on the NH3

+

family explore the [90-180°] domain of Φ and both
[150-180°] and [-150/-180°] domains of Ψ, which also
grossly correspond to helical RL and RR conformations of
the tripeptide. The domains explored by the folded peptide
correspond to [-100/-50°] and [60/130°], respectively, for
Φ and Ψ, which is the domain of the polyproline PII
structure. As already observed for the Ala2H+ dipeptide, the
C-terminal COOH of the elongated Ala3H+ tripeptide
undergoes a rotational motion without energy barrier.

Overall, we do not observe spontaneous conformational
interconversion/isomerization of Ala3H+ during the dynamics
close to room temperature. This becomes permitted around
500 K.

The dynamics of the NH2 family display an equal
population of conformations where there is an attraction
between NH2 and the neighboring backbone amide N-H,
which gives rise to an average H2N · · ·H-N distance of ∼2.1
Å, and population of conformations where there is no
attraction between NH2 and the neighboring amide N-H,
as revealed by H2N · · ·H-N distances above 2.5 Å. The short
average H2N · · ·H-N distance of ∼2.1 Å is associated
with an average value of the N-H · · ·N angle of ∼110-120°,
which does not characterize N-H · · ·N as a proper H-bond.
The attraction between the two groups is nonetheless
sufficient to induce an increase of the amide N-H bond
length to ∼1.05 Å (∼0.02 Å longer than the average
C-terminal N-H amide). The H2N · · ·H-N can be viewed
as an energetically weak H-bond. Therefore, the dynamics
of the NH2 family of the tripeptide display an equal

population of conformations where a weak H2N · · ·H-N
H-bond is formed and where this weak H-bond is broken.
Breaking and reforming of this H-bond is observed along
all the dynamics performed here.

We have illustrated in Figure 2 the evolution with time of
the C-O-H · · ·OdC distance in the NH2 tripeptide family.
Though the supplementary proton of the protonated peptide
can be seen hopping between both oxygen sites, it is mainly
shared between the two carbonyl groups of the tripeptide
with an average H · · ·O distance of ∼1.10-1.13 Å. We can
distinguish periods of times during which the supplementary
proton is located on the N-terminal CdO (O-H ∼1.0 Å)
and other periods of times during which it is located on the
C-terminal CdO (which appear as transient and short time
spans), but the average localization of the proton is mainly
seen in between the two carbonyl groups.

Interestingly, the dynamics of the protonated tripeptide in
which the proton is located on the N-terminal NH3

+ at the
beginning of the simulation give rise to the exploration of
proton transfer events between the NH3

+ extremity and the
neighboring carbonyl group, as illustrated in Figure 3 where
we have reported the evolution with time of the distance
NH3

+ · · ·OdC along the three dynamics performed in this
work. The supplementary proton either remains at the NH3

+

terminal giving rise to a strong hydrogen bond between NH3
+

and the neighboring carbonyl group, with an average
NH3

+ · · ·OdC distance of 1.6-1.7 Å, or jumps to the
neighboring carbonyl group thus forming an N-terminal
amine NH2 and a protonated C-O-H. The C-O-H remains
H-bonded to the amine, with an average C-O-H · · ·N-H
distance of 1.6-1.7 Å and an average angle of 130-140°.
Note that as observed for Ala2H+, there is also enough energy
for the NH3

+ extremity of Ala3H+ to rotate and exchange the
hydrogen atom that can be hydrogen bonded to the neighbor-
ing carbonyl, as can be seen from Figure 3 (bottom). The
proton transfer thus proceeds without any energy barrier at
the temperature of the simulations performed in the present

Figure 2. Time evolution of the distance C1-O1-H · · ·O2dC2
for the four dynamics of the NH2 family of Ala3H+ performed
in this work, where C1 is the N-terminal carbonyl and C2 is
the C-terminal carbonyl. The distance is reported with O1 as
the reference.

1072 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Cimas et al.



work. Overall, the configurations protonated at the N-
terminus are observed predominantly, but longer statistics
would be needed in order to give a more definite statement.
The C-terminal N-H and CdO groups form a weak distorted
H-bond, with an average distance of 1.9-2.0 Å and an
average N-H · · ·OdC angle of 120-130°.

In the case of the folded NH3
+ family, the dynamics at

400 K shows that there is a rotational motion of the NH3
+

N-terminal which induces alternate periods of times during
which a NH3

+ · · ·OdC H-bond between both N- and C-
terminal extremities of the folded peptide can be observed
and periods of times during which this H-bond is broken.
As a consequence, the dynamics explore, on average, an
equal percentage of conformations displaying a NH3

+ · · ·OdC
H-bond between both N-terminal and C-terminal extremities
of the folded peptide and of conformations in which this
H-bond is lost. We note that the H-bonds are formed for
∼100 fs before breaking again. The NH3

+ · · ·OdC H-bond
is therefore not energetically strong. As a consequence of
the rotation of the NH3

+, there is formation and breaking of
a hydrogen bond between NH3

+ and the neighboring CdO
carbonyl located at the N-terminal of the chain. These two
H-bonds can be viewed, on average, to replace each other,
while the NH3

+ rotates. The N-terminal CdO does not form
a H-bond with the C-terminal amide N-H, as they are on
average apart from each other by ∼2.8 Å. Variations are
observed for the dihedral angles around the central N-CR

and CR-C bonds (variations by ∼60°), which indicate that
the skeleton of the folded Ala3H+ presumably tries (unsuc-
cessfully) to slightly unfold.

Methyl groups rotate freely along all the dynamics
performed, with the amplitude of the (H3)C-CR-C-N
dihedral angles varying by up to ∼80°. All the peptide groups
remain in their trans orientation along all the simulations.
The trans/cis peptide bond isomerization barrier is generally
estimated as a few tens of kcal.mol -1,32,43,44 and it is too

high to be observed spontaneously at the temperatures of
the dynamics of the present work.

Infrared Spectroscopy

Infrared Spectroscopy of Ala2H+. The infrared spectrum
of the gas phase Ala2H+ calculated from our trajectories,
superimposed with the experiment, is presented in Figure 4.
The theoretical spectrum has been averaged over the three
trajectories performed in this work, corresponding to a total
of 30 ps dynamics.

It must be emphasized that each of the three dynamics
gives different individual active IR features of the protonated
dipeptide, depending on the underlying dynamical behavior
of the molecule, e.g., depending on the relative population
of transA1 or transA2 conformations explored along the
trajectories, or the appearance of transO1 conformations
along the trajectories. Temperature and conformational
dynamics naturally give rise to the breadth of the vibrational
bands, without applying any empirical model. Note that the
intensities of the calculated bands have been normalized with
respect to the experimental 3560 cm-1 band. We can see
that our calculation then reproduces the intensities of the two
other bands very well, even though the linear IR theoretical
signal and the IR-MPD experimental signal are not fully
comparable, see the Introduction. Our calculations do not
make any assumptions about harmonic modes or harmonic
dipoles: all anharmonicities are naturally taken into account
in the theoretical spectrum. Furthermore, no frequency
scaling factors nor translations have been applied to the
calculated spectrum. The remaining band shifts with respect
to experiment are therefore the result of a combination of
the ab initio method (DFT) and the basis set (DZVP) used.

The band located at 3560 cm-1 corresponds to the O-H
stretch of the C-terminal COOH group of the dipeptide. The
calculation matches the experimental band in terms of
position and band shape. The shoulder located at ∼3590
cm-1 nicely reflects the feature present in the experimental
spectrum.

The broadband located between 3300 and 3500 cm-1

(including the small feature at ∼3490 cm-1) can be assigned

Figure 3. Time evolution of the distance (N-)H+ · · ·O1dC1
for the three dynamics of the NH3

+ family of Ala3H+ performed
in this work. N-H+ is one group of the N-terminal NH3

+.

Figure 4. Comparison of the experimental infrared spectrum
of Ala2H+ (top, from ref 13) and the calculated spectra from
DFT-based Born-Oppenheimer dynamics at room tempera-
ture (bottom).
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to the N-H stretches from the amide N-H group and from
the free N-H groups of the NH3

+ N-terminal. The symmetric
and antisymmetric stretches of the free N-H of the NH3

+

can be seen at 3415 and 3370 cm-1, respectively, under the
broad experimental band. The backbone amide N-H stretch
also appears on the higher frequency part of the band, around
3415 cm-1. Although the calculated band nicely reflects the
two parts which can be observed in the experimental band,
it is nonetheless not broad enough in comparison to the
experiment. The breadth of the IR bands in molecular
dynamics results from the temperature, conformational
dynamics of the molecule, and anharmonicities. The differ-
ence observed here may be the signature that the temperature
of the simulations is not high enough and that the experi-
ments are indeed performed at a higher temperature. Interest-
ingly, the IR signature of NH3

+ that is hydrogen bonded to
the neighboring CdO carbonyl throughout the simulations
is spread over the broad 2500-2850 cm-1 region of the
spectrum (not shown), thus strongly shifted down from the
symmetric and antisymmetric modes of NH3

+. Strong anhar-
monicity of the N-H · · ·OdC hydrogen bond is responsible
for the displacement of this band, whereas anharmonicity
and the dynamics of the hydrogen bond at finite temperature
are responsible for its width. Indeed, the N-H+ · · ·OdC
H-bond distance fluctuates by 0.3-0.4 Å around its mean
value, and there is enough energy for the NH3

+ group to rotate
and exchange the hydrogen atom which can be hydrogen
bonded to the neighboring carbonyl. These complex H-bond
dynamics therefore lead to vibrational signatures which are
spread over a large frequency domain. Note that our previous
harmonic calculations34 on Ala2H+ neglected this point. This

is where finite-temperature molecular dynamics simulations
are very useful for the calculation of vibrational spectra, as
they are not restricted to the harmonic approximations of
the modes.

The third double band of the IR spectrum in the investi-
gated 2800-4000 cm-1 region is related to combined CR-H
and C-H stretch modes of the methyl groups of the peptide.
These bands are shifted to higher frequency relative to the
experiment by ∼40 cm-1, and the band spacing between the
two bands (∼50 cm-1) is slightly bigger than the experi-
mental one (∼30 cm-1). It is nonetheless remarkable that
our calculation predicts an intensity of the band so close to
the experiment. Again, the harmonic calculation34 does not
give such intensity to this mode.

Infrared Spectroscopy of Ala3H+. Spectra of the proto-
nated alanine tripeptide obtained from the ab initio trajec-
tories are presented in Figure 5. The spectra are plotted in
relation with the conformational families of the tripeptide
explored during the trajectories: (i) the NH2 family where
the supplementary proton is located on the N-terminal
carbonyl group, the N-terminal NH2 displaying an equal
population of conformations of weak H2N · · ·H-N hydrogen
bonds and without any such hydrogen bonds, (ii) the NH3

+

family where the supplementary proton is predominantly
located on the N-terminal NH3

+ but can transfer to the
neighboring carbonyl during the dynamics, and (iii) the
folded family where the peptide chain is folded through a
weak NH3

+ · · ·OdC H-bond, which has been shown to break/
reform during the dynamics. The spectra presented for each
family have been averaged over the corresponding dynamics

Figure 5. (A-C) Infrared spectra of Ala3H+ calculated from DFT-based Born-Oppenheimer dynamics. The spectra are plotted
in relation to the conformational families of the tripeptide explored during the trajectories (see text for explanations). The spectra
presented for each family have been averaged over the performed dynamics. A: NH2 (black line) and NH3

+ (blue line) families;
B: folded family (black line); C: the final infrared spectrum of Ala3H+ (black line) averaged over all the trajectories performed in
this work. Experiment (in red in all graphs) is from ref 13. D: Scaled harmonic frequencies obtained for the four optimized
geometries of Ala3H+ as obtained in ref 13.
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(apart from family (iii) where only one trajectory has been
performed). See Figure 5-A and -B for the results presented
individually for each family. The final spectrum of Ala3H+,
presented in Figure 5-C, has been averaged over all the
trajectories performed for this molecule. Considering the
production method of the ions in the associated experiments,
which certainly does not follow a thermalized Boltzmann
distribution, such an average in the calculation appears
reasonable. In the following, we will mainly concentrate our
discussion on the band-positions and the band-shapes of the
theoretical spectra in comparison to the experimental spec-
trum, as again intensities of the calculated spectra and the
experimental IR-MPD signals are not strictly identical.

As has already been emphasized for the protonated
dipeptide, each dynamics within a conformational family
gives different individual active IR features, depending on
the underlying dynamical behavior of the molecule at the
temperature of the simulations (room temperature and above).
At finite temperature, the statistical average of the spectra is
meaningful and can thus be compared to the spectrum
recorded in the experiment. Temperature and the conforma-
tional dynamics of the peptide will induce the broadening
of the vibrational bands. Vibrational anharmonicities explored
at this temperature, i.e. anharmonicity from the potential
energy surface and from the molecular dipole, will induce
band shifts and also participate in the broadening of the
bands.

The experimental spectrum13 is reported in all figures. All
the spectra display the same vibrational patterns that will be
discussed below, whatever the tripeptide family they are
related to. The position, intensity, and shape of the individual
bands will slightly change depending on the trajectory and
the Ala3H+ family that is concerned, but the assignments of
the bands are maintained. In the following, we discuss the
bands of the average spectrum (Figure 5-C) and extract the
vibrational assignments from the individual trajectories.

The band located at 3560 cm-1 corresponds to the O-H
stretch of the C-terminus. As expected from the similar
dynamical behavior of the COOH of the protonated dipeptide
and tripeptide, this band is located in an identical position
for the two peptides. Moreover, the slight asymmetry of this
band is correctly reproduced by the calculations.

Based on the band assignments, the 3100-3500 cm-1

region can be separated into two parts. The 3300-3500 cm-1

frequency region is assigned to the stretches of the N-H
groups of the tripeptide not involved in hydrogen bonds along
the dynamics, i.e. the symmetric and antisymmetric stretch
of the N-terminal amine NH2, the stretches of the free N-H
of the protonated N-terminal NH3

+, and the stretches of the
C-terminal amide N-H. The 3100-3300 cm-1 frequency
domain is entirely related to the stretching bands of the
N-terminal amide N-H group. As previously described, this
amide group can be weakly hydrogen bonded to the amine
N-terminal in the NH2 tripeptide family (through a distorted
H-bond) and also weakly hydrogen bonded to the C-terminal
carbonyl of the peptide in the NH3

+ family (again distorted
H-bond because of steric hindrances). These H-bonds are
therefore strong enough to induce the shift toward lower
energy of the N-terminal N-H stretch in comparison to the

positions of the free N-H groups. Note that the weak
attraction of the N-terminal N-H with the carbonyl COOH
extremity (over parts of the dynamics) is not strong enough
to induce such a shift.

The 3300-3500 cm-1 part of the spectrum calculated for
the NH3

+ family is shapeless in comparison to the spectrum
of the NH2 family (Figure 5-A). In this later case, two
nonoverlapping active bands can indeed be observed. As a
consequence, the 3300-3500 cm-1 region of the experi-
mental spectrum is better explained by the spectrum of the
NH2 family of the Ala3H+ peptide than by the spectrum of
the NH3

+ family. In contrast, the N-terminal N-H 3100-3300
cm-1 frequency domain is better explained by the superposi-
tion of spectra coming from the two families. This region is
indeed composed of four main peaks that are organized
within the same overall patterns in both NH2 and NH3

+

families of Ala3H+ (with the two higher frequency bands
displaying higher intensities than the two lower frequency
bands) but with significant band shifts. Hence, the bands of
the NH2 family are down shifted from the bands of the NH3

+

family, by ∼80-100 cm-1 for the two higher frequency
bands and by ∼30-40 cm-1 for the two lower frequency
bands. As a consequence of these band shifts, the superposi-
tion of these bands in the final spectrum of Ala3H+ presented
in Figure 5-C gives rise to a broadband where numerous
subpeaks can be seen, nicely in agreement with the experi-
mental vibrational patterns in the 3100-3300 cm-1 frequency
region.

Though the band positions and band shapes of the
spectrum of the folded Ala3H+ in the 3100-3500 cm-1

domain are different from the two unfolded families (note
that there is only one dynamics acquired for the folded
tripeptide versus three or four dynamics for each unfolded
NH2/NH3

+ family, which could participate to these differ-
ences), their assignments follow the same lines as for the
other two families, i.e. free N-H signatures at higher
frequencies and H-bonded N-H signatures at lower frequen-
cies. Note that all skeleton amide N-H stretches participate
to the 3480 cm-1 band in the spectrum, while the free N-H
of NH3

+ give rise to the 3380 cm-1 band (Figure 5-B). The
four peaks observed in the 3300-3100 cm-1 domain are
related to the N-H group of NH3

+ that was identified as
forming a hydrogen bond with the neighboring N-terminal
CdO group during the dynamics. This is different from the
unfolded families and could be the reason for the different
band shapes and intensities of the four bands in comparison
to the four bands calculated for the unfolded families.

The final calculated spectrum presented in Figure 5-C, as
the addition of the spectra of all families, i.e. unfolded/folded
and NH2/NH3

+ N-terminus, therefore gives rise to several
separate vibrational patterns of the N-H stretching motions,
i.e. distinguishable subpeaks, which are in good agreement
with the experiment. The overall shape is well reproduced
by our calculations. The complex vibrational patterns of this
large band are therefore a result of the local dynamics of
the N-H groups in the different Ala3H+ families, in
particular the dynamics of the H-bonded N-H which are
different within the tripeptide families.
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The 2800-3100 cm-1 domain is assigned to the C-H
stretches arising from the methyls and the CR-H groups of
the tripeptide. Both CH3 and CR-H groups systematically
participate in the two bands. All spectra calculated for all
Ala3H+ families display two main intense bands located
between 2900 and 3100 cm-1, followed by a low intensity
tail at lower frequency. Our final calculated spectrum
therefore displays these properties in the 2800-3100 cm-1

domain, while a more featureless band can be observed in
the experiment in the same region. There are nonetheless
subpeaks that can be distinguished in the experiment which
may be related to the separate peaks we obtain in our
calculation. Note that these bands are shifted to higher
frequency by ∼40 cm-1 with respect to the experiment.

As already observed for the Ala2H+ dipeptide, the vibra-
tional signatures of NH3

+ that are hydrogen bonded to the
neighboring carbonyl in the NH3

+ tripeptide family are
strongly shifted to lower frequency compared to the other
N-H stretches and appear over the extended 2000-2800
cm-1 domain. This breadth is entirely due to the vibrational
anharmonicities and dynamics of the N-H+ · · ·OdC H-bond
at the finite temperature of the NH3

+ family dynamics.
Remarkably, the stretching of the protonated C-O-H in the
NH2 family is superimposed on the N-H+ stretches of the
NH3

+ tripeptide family. It is therefore unfortunately not
possible to distinguish both families using the stretching
patterns of the H-bonded N-H+ or C-O-H groups of the
peptide, and it is also not possible to give a definite answer
as to the location of the supplementary proton along the
tripeptide chain. The strong frequency shifts result from the
strong anharmonicities of these H-bonds.

The final spectrum of Ala3H+ calculated from the dynam-
ics and presented in Figure 5-C agrees well with the
experimental spectrum (regardless of band intensities that
are indeed expected to give discrepancies). The 3560 cm-1

O-H stretch band of the C-terminal COOH of the Ala3H+

peptide is perfectly located at the experimental band position
with a similar, slightly asymmetrical band-shape. The
3100-3500 cm-1 domain of the N-H stretching motions is
overall well reproduced in our calculations, although display-
ing certain discrepancies with the experiment. The extent of
the N-H stretch domain calculated here is identical to the
experiment. The calculated 3300-3500 cm-1 higher fre-
quency part is composed of a shoulder located at 3475 cm-1

which is located very close to the 3485 cm-1 shoulder in
the experiment and a broadband located at 3390 cm-1 with
a shoulder of low intensity at 3345 cm-1. These two last
bands correspond to the 3390 cm-1 and 3350 cm-1 bands in
the experiment, though the 3350 cm-1 band is definitely more
intense (but again, the calculated and experimental signals
are not identical for intensities). Note that the appearance of
the 3350 cm-1 shoulder in the final spectrum is entirely due
to the active mode in the spectrum of the NH3

+ family. The
intense experimental 3435 cm-1 band unfortunately does not
have a comparable intensity in our calculation. Instead, we
have a shoulder located between 3430-3470 cm-1 in the
final calculated spectrum: the low intensity of this band in
our calculation arises from the average of the IR spectra of
the NH2 and NH3

+ families, where this region has a featureless

shape and intensity for the NH3
+ family, ultimately leading

here to the decrease of the intensities of the bands arising
from the NH2 family. The 3100-3300 cm-1 lower frequency
part of the N-H stretch region displays the same broadband
as in the experiment with the appearance of the characteristic
subpeaks observed in the experiment. The four main sub-
peaks that can be distinguished in the experiment (∼3270,
3220, 3120, and 3075 cm-1) can also be found in our
calculation (∼3260, 3210, 3145, and 3115 cm-1). Two of
the frequencies are therefore only downshifted by 10 cm-1

from their experimental counterparts, while the two lower
frequencies are shifted to higher frequency by 25-40 cm-1.
The double bands and low intensity tail calculated for the
C-H stretches in the 2900-3100 cm-1 domain are shifted
by +40 cm-1 from the experiment and are more structured
than the experimental bands.

In Figure 5-D, we have reported the scaled harmonic
spectra obtained from our previous investigation13 for the
four optimized geometries of lowest energy of Ala3H+. As
can be immediately observed, the N-H broadband of the
experimental spectrum is systematically associated with only
two main intense harmonic bands, grossly separated by 200
cm-1 and 150 cm-1, respectively, for the NH2 and NH3

+

families; hints of a third band located close to the ∼3490
cm-1 experimental band can also be seen, with a very low
intensity. With these harmonic normal modes, the highest
frequencies are related to free N-H groups of the optimized
geometries and the lowest frequencies to the hydrogen-
bonded backbone N-H. Though these interpretations roughly
agree with what has been obtained in the present work from
molecular dynamics simulations, one should admit that the
IR spectrum extracted here from MD does offer vibrational
details in the 3100-3500 cm-1 N-H domain that are
completely missed by the harmonic calculations, even when
adding the four harmonic spectra of Figure 5-D. Last but
not least, C-H harmonic modes predicted around 3000 cm-1

have no intensity, while the anharmonic spectrum extracted
from MD correctly predicts the intensity in this region.

The interpretation given here from MD simulations that
the broad and complex N-H vibrational band comes from
the intrinsic local dynamics of the N-H groups in the
different conformers/isomers of Ala3H+, and in particular
the breaking/forming of N-H hydrogen bonds, can only be
achieved when performing molecular dynamics simulations.
Scaled harmonic spectra will never be able to give a definite
conclusive interpretation. Moreover, C-H band intensities
do not show up correctly with harmonic spectra, while they
are correctly obtained through anharmonic molecular
dynamics.

Conclusions

We have chosen the two prototype small protonated poly-
alanines Ala2H+ and Ala3H+ in order to demonstrate that
the peptides dynamical features should be taken into account
to obtain a precise understanding of the relation between IR-
MPD experimental features obtained at finite temperature
and the underlying molecular structural and dynamical
properties, including vibrational anharmonicities. We found
that the spectra of Ala2H+ and Ala3H+ calculated from the
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DFT-based Born-Oppenheimer dynamics performed in this
work are in very good agreement with the experiments
(Figures 4 and 5). We recall that no scaling factors nor
translations have been applied to the calculated spectra. Once
more, we recall that calculated and recorded IR-MPD
intensities are not strictly comparable. Our calculations give
an interpretation of the recorded vibrational patterns in terms
of the dynamics of the gas-phase peptides at finite temperature.

In the case of Ala2H+, the conformational dynamics
between two conformers of the peptide that mainly differ
by a rotation of the COOH C-terminus is responsible for
the broad bands in the NH/OH vibrational region. Though
RL/RR conformational dynamics has been observed for the
Ala3H+ peptide (when increasing the temperature of the
dynamics), it does not have any influence in the N-H/O-H
vibrational region. Instead, the local dynamics of the N-
terminal backbone amide N-H group does give rise to the
complex 3100-3500 cm-1 broad IR band, involving forming
and breaking of hydrogen bonds at finite temperature. This
cannot be grasped by static harmonic calculations as
demonstrated by the comparison between harmonic static
vibrational spectra and anharmonic dynamical spectra. This
adds up to our previous works12,14,15 where similar conclu-
sions have already been reached. Though the static harmonic
spectra may be useful in grossly establishing the “general”
conformational features of the Ala3H+ protonated peptide
from the N-H/O-H vibrational region, it fails in giving a
convincing understanding of the complex N-H vibrational
band in relation to the peptide conformation. Such under-
standing is only achieved when the dynamics of the peptide
is taken into account. There are still some discrepancies
though between the final spectrum extracted from the
dynamics and the IR-MPD experimental signal, but we feel
that the present work demonstrates once more the real need
for the use of molecular dynamics simulations in order to
interpret vibrational spectroscopy experiments performed at
finite temperature.

We have shown that the calculated O-H stretch band of
the C-terminal extremety of the Ala2H+ and Ala3H+ alanine
peptide perfectly matches the experiments. This band is
commonly located in both peptides as a result of the free
O-H group dynamics in both molecules (not H-bonded).
The calculated N-H band of Ala2H+ lacks part of the
broadness of the experimental band (approximately half the
width of the experiment), while the one of Ala3H+ reflects
the more complex experimental features. The experimental
N-H band encompasses the 3300-3500 cm-1 domain for
Ala2H+ and extends to the 3100-3500 cm-1 domain for
Ala3H+. As demonstrated with our dynamics, the 3300-3500
cm-1 frequency domain contains the stretching motions of
free N-H groups within the di- and tripeptide and displays
the same general shape for both peptides, i.e. showing two
main subpeaks. In going from Ala2H+ to Ala3H+, the
dynamics of the slightly hydrogen bonded N-terminal amide
N-H group gives rise to the 3300-3500 cm-1 band. As we
have shown, the subpeaks which make up this 200 cm-1 large
band originate from weak interactions between the N-
terminal and the neighboring amide N-H group and reflect
the diversity of the local dynamics of the N-H H-bonding

patterns within the different families of the tripeptide. This
gives rise to different band positions of this amide N-H
stretch, thus forming the numerous subpeaks that can be
observed in both the experiment and the calculation. We have
thus shown that the dynamics of the H-bonded N-terminal
amide N-H give rise to the numerous subpeaks arising in
the lower frequency part. This is in contrast with the results
of Rizzo et al.9 on longer peptide chains obtained at very
low temperature (∼10-20 K), where the individual signa-
tures of each N-H group along the chain can be distin-
guished among the vibrational signatures.

Band shapes are very well reproduced by our calculations.
The slight asymmetry of the O-H band of Ala3H+ is
obtained as well as the shoulder at high frequency of Ala2H+.
More remarkably, the band shape of the N-H vibrations is
very well generated by our calculations (though not broad
enough for Ala2H+) and has no equivalence from the
harmonic calculations (see for instance refs 13 and 34 and
Figure 5-D in the present work). This is due to the natural
broadening arising from the finite temperature of the calcula-
tions, the conformational dynamics of the molecules in the
simulations, and all anharmonicities which are naturally taken
into account in the present calculations. Unfortunately, the
3000 cm-1 C-H stretch band obtained from the calculations
is composed of two separate bands (Ala2H+ and Ala3H+),
while a more compact and shapeless band is observed in
the experiments. The position of this band is also systemati-
cally shifted by ∼+40 cm-1 in our calculations. Interestingly,
the anharmonic dynamics performed here give rise to an
infrared active C-H band, while harmonic calculations
predict no intensity.13,34

The final spectrum of Ala3H+ has been calculated as the
sum of the individual spectra (each one averaged over a few
dynamics) from three different peptide families. This sum-
mation is essential for the understanding of the broad and
complex N-H band. If the 3300-3500 cm-1 region of this
band may be more easily understood solely from the
dynamics of the NH2 family, this does not hold true for the
3100-3300 cm-1 region. There, the combination of signa-
tures arising from the NH2 and NH3

+ families (including the
folded one) is pivotal to get the long and more shapeless
tail composed of subpeaks.

The present DFT-based BO molecular dynamics demon-
strate once more the importance of taking into account in a
direct way the finite temperature dynamics of flexible gas-
phase peptides, in order to calculate and interpret gas-phase
infrared spectra that are recorded at temperatures of 300-400
K. In the present investigation of Ala2H+ and Ala3H+, the
dynamics are pivotal in relation to the N-H stretching
motions. Taking into account the dynamics of the peptides
directly allows understanding of the evolution of the shape
and width of the N-H bands when increasing the size of
the peptide. Our experiments13 show that the N-H stretch
domain continues to evolve with the increase of the peptide
chain length, indicating, in view of the present calculations,
that there is a change in the dynamics of the N-H amide
groups for the longer chains, which is essential to understand
in order to get a precise and definite picture of the
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conformational dynamics of the gas-phase peptide. This is
where our combined experiments and calculations are
heading.
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Abstract: For a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the
finite ionic size, we have derived the exact analytic expression for the contact values of the
difference profile of the counterion and co-ion, as well as of the sum (density) and product profiles,
near a charged planar electrode that is immersed in a binary symmetric electrolyte. In the zero
ionic size or dilute limit, these contact values reduce to the contact values of the
Poisson-Boltzmann (PB) theory. The analytic results of the SMPB theory, for the difference,
sum, and product profiles were compared with the results of the Monte-Carlo (MC) simulations
[Bhuiyan, L. B.; Outhwaite, C. W.; Henderson, D. J. Electroanal. Chem. 2007, 607, 54; Bhuiyan,
L. B.; Henderson, D. J. Chem. Phys. 2008, 128, 117101], as well as of the PB theory. In general,
the analytic expression of the SMPB theory gives better agreement with the MC data than the
PB theory does. For the difference profile, as the electrode charge increases, the result of the
PB theory departs from the MC data, but the SMPB theory still reproduces the MC data quite
well, which indicates the importance of including steric effects in modeling diffuse layer properties.
As for the product profile, (i) it drops to zero as the electrode charge approaches infinity; (ii) the
speed of the drop increases with the ionic size, and these behaviors are in contrast with the
predictions of the PB theory, where the product is identically 1.

Introduction

Exact relations are always interesting per se from a theoretical
perspective. Besides, they aid theoretical development by
serving as checks and can be useful tools in assessing
different theories. In the theory of an electrical double layer,
such relations are the so-called contact theorems.1-4 For
example, for a binary symmetric electrolyte with ion diameter
a, assuming that the planar electrode has a negative charge,
the contact values of the density,1,2 charge,3-5 and product3,4

profiles are given by1,3,4,6

and

respectively, where gsum(x) ) 1/2[g+(x) + g-(x)] and gdiff(x)
) 1/2[g+(x) - g-(x)], with the subscripts sum and diff
denoting sum and difference. g-(x) and g+(x) are the singlet
distribution functions for the co-ions (ions with same sign
as the surface charge of the electrode) and the counterions
(ions with opposite sign to the surface charge of the
electrode), respectively. J ) -�ze∫a/2

∞ dx [∂ψ(x)/∂x]g-(x),
where ψ(x) is the electrostatic potential. b ) 2π�σ2/cbε is
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gsum(a/2) ) R + b2

2
(1)

gdiff(a/2) ) J + b2

2
(2)

g-(a/2)g+(a/2) ) R2 - J 2 + b2(R - J ) (3)
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the dimensionless electrode charge density, whose dimen-
sioned value is σ.7 R ) �P/2cb and is the osmotic coefficient
of the bulk electrolyte, and P the bulk electrolyte pressure.
� ) 1/kBT (kB is the Boltzmann constant and T the absolute
temperature). e, z, cb, and ε are the elementary charge, the
absolute value of the valence of an ion, the bulk concentration
of the ions, and the dielectric constant, respectively. It should
be mentioned that the contact value of eq 1 is also valid for
an asymmetric electrolyte, which was first derived by
Henderson et al.1

Recently Bhuiyan et al. examined the contact values of
the profiles of the double layer formed by the electrolyte
species in a binary symmetric restricted primitive model
(RPM) electrolyte next to a planar electrode by means of
the Monte Carlo (MC) simulation. They focused on the
product profile, instead of the density profile or the charge
profile. Because, at large electrode charge, the contact values
of these profiles are dominated by the large quadratic term
in the electrode charge, it is difficult to extract detailed
information from the simulations. Note that in the Poisson-
Boltzmann (PB) theory, the counterion and co-ion profiles
are exponentials of exp[(zeψ(x)/kBT],8 so its product is
identically 1.7 However, they found that the MC simulation
value is not 1 nor even a constant as the electrode charge is
varied. The product profile of PB prediction does not agree
qualitatively with the simulation result.7 This is a direct test
of the basis of the PB theory.

On the other hand, the finite ionic size may play an
important role in a concentrated solution. Since Bikerman9

first showed that the deviation of the distribution function
from Boltzmann’s function takes into account the proper
volume of the ions, there followed a lot of works.9-23 For a
very comprehensive review of previous works, excellent
recent papers21,22 should be referred to. The simple modified
Poisson-Boltzmann (SMPB) model of Kornyshev23 and
Kilicet al.21,22 for steric effects in electrolytes has been
reinvented many times by Borukhov et al.,15,16 Iglic,14 and
Eigen and Wicke,12 and also by Dutta.10 Thus, the following
question arises: Can the SMPB theory reproduce Bhuiyan,
Outhwaite, and Henderson’s MC data?7 This will give a
direct test of the basis of the SMPB theory.

Model and Theory

On the basis of mean-field theory together with the lattice-
gas approximation in statistical mechanics,15,16 the phenom-
enological free energy of a general electrolyte system can
be written as15,16,24

where ci(r), µi, and zi are the local concentration, the chemical
potential, and the valence of the ionic species i (i ) 1,...,
m), respectively. a is the effective size of the ions and solvent
molecules. The term (kBT)/a3∫d3r (1 - ∑i

bci(r)a3)ln(1 -
∑i

mci(r)a3) is the entropy of the solvent molecules that is
responsible for the steric corrections to the PB equation.15,16

The last two terms in eq 4, containing the Lagrange
multiplier λ(r), allow us to regard the local concentration,
ci(r), and the electrostatic potential, ψ(r), as independent
fields. Following the method in ref 24 we can obtain

with

where i ) 1,..., m and cib is the bulk concentration of the
ionic species i. Equations 5 and 6 are the SMPB equations.
Notice that in the zero size (af 0) or dilute limit (cibf 0),
eqs 5 and 6 are reduced to the PB equation.8 It should be
pointed out that just like the PB equation, eqs 5 and 6 can
be applied to any geometry and boundary conditions.

Here, for comparison with the results of the MC simula-
tions of Bhuiyan et al.,7 we also consider a binary symmetric
electrolyte and assume, without loss of generality, that the
planar electrode has a negative charge. Thus, we have m )
2, z1 ) z, z2 ) -z, c1b ) c2b ) cb, and eqs 5 and 6 are
reduced to

where F* ) 2cba3 is the reduced density, and x is the
perpendicular distance of the ion from the electrode surface.
The singlet distribution functions for the counterions and the
co-ions, which are calculated by g+(x) ) c1(x)/cb and g-(x)
) c2(x)/cb, are given by

and

respectively.
Then, the difference profile {1/2[g+(x) - g-(x)]} is given

by

The sum profile {1/2[g+(x) + g-(x)]} is given by

Ω ) ε
8π ∫ d3r (∇ ψ(r))2 - ∫ d3r ∑

i

m

µici(r) +

kBT

a3 ∫ d3r [(1 - ∑
i

m

ci(r)a3) ×

ln(1 - ∑
i

m

ci(r)a3) + ∑
i

m

ci(r)a3 ln(ci(r)a3)] +

∫ d3r λ(r) + 4π
ε ∑

i

m

ezici(r) (4)

∇ 2ψ(r) ) -4πe
ε ∑

i

m

zici(r) (5)

ci(r) )
cib exp(-�eziψ(r))

1 - ∑ i

m
ciba

3 + ∑ i

m
ciba

3 exp(-�eziψ(r))
(6)

d2ψ(x)

dx2
)

8zπecb

ε
sinh(ze�ψ(x))

1 + 2F* sinh2(ze�ψ(x)
2 )

(7)

g+(x) ) exp(ze�ψ(x))

1 + 2F* sinh2(ze�ψ(x)
2 )

(8)

g-(x) ) exp(-ze�ψ(x))

1 + 2F* sinh2(ze�ψ(x)
2 )

(9)

gdiff(x) ) sinh(ze�ψ(x))

1 + 2F* sinh2(ze�ψ(x)
2 )

(10)

1080 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Lou and Lee



It should be pointed out that the sign of the charge of the
electrode is immaterial to the definition of gdiff(x). However,
for the sake of definiteness, we have assumed that the
electrode has a negative charge and gdiff(x) is either positive
or mostly positive (with a positive area). Thus, the individual
ion profiles are the sum (for the counterions) and difference
(for the co-ions) of gsum(x) and gdiff(x), i.e., g+(x) ) gsum(x)
+ gdiff(x) and g-(x) ) gsum(x) - gdiff(x).

The product profile is given by

Following the trick in refs 21-23, i.e., integrating eq 7 using
the boundary conditions ψ(x)|x)a/2 ) ψD, ψ(x)|xf∞ ) 0, and
dψ(x)/dx|xf∞ ) 0, we can get

where σ ) -ε/4π dψ(x)/dx|x)a/2 is the electrode charge
density. Then, by combining eqs 10, 11, 12, and 13, it is
easy to find that the full analytic expressions for gdiff(x),
gsum(x), and g+(x)g-(x) at contact, x ) a/2, are

and

Equations 14, 15, and 16 are the main results of this paper.
It should be pointed out that there are two different limit

orders for eqs 14, 15, and 16 in a mathematical aspect. One
is that if F*f0 then bf∞. The other is that if bf∞, then
F*f0. However, only F*f0 and then bf∞ are physically
sound. This is because F* is an internal parameter of the
system, while b is an external parameter. As F*f0, eqs 14,
15, and 16 are reduced to the following equations:

and

These are the full expressions of the PB theory for gdiff(x),
gsum(x), and g-(x)g+(x) at contact.3

Results and Discussion

In recent MC simulations, Bhuiyan et al.7 simulated gi(x)
using the reduced temperature T* ) εakBT/(ze)2 ) 0.15. The
simulations were performed in a canonical ensemble using
the standard Metropolis algorithm. The techniques that they
adopted were similar to those used in the simulations by Boda
et al.25 and Lamperski and Bhuiyan.26 They employed the
Torrie-Valleau27 parallel charged sheets procedure to ac-
count for the long-range Coulomb interactions. In practice,
the bulk electrolyte concentration is not known a prior. They
overcome it by slight adjustments to the length (perpendicular
to the wall) of the central MC box.28 The number of particles
simulated depended essentially on the bulk concentration and
varied from about 140 (which corresponds to F* ) 0.02) to
about 800 (which corresponds to F* ) 0.3). The results of
the MC simulations of Bhuiyan et al.7 are shown in Figure
1 for g-(a/2)g+(a/2) by the filled symbol. They found that7

and they pointed out that g-(a/2)g+(a/2) can exhibit a
nontrivial behavior.

The analytical results of the SMPB theory, as well as of
the PB theory, for g-(a/2)g+(a/2) vs b at different reduced
densities, which are given by eqs 16 and 19, are compared
with the corresponding MC data7 in Figure 1. It is clearly
seen that g-(a/2)g+(a/2) drops to zero as bf+∞, while it is
unity from the PB theory (eq 19). Moreover, as F* increases,
the speed that g-(a/2)g+(a/2) drops to zero increases, which
reveals that g-(a/2)g+(a/2)f0 originates from the steric
effect. However, it fails to reproduce the MC data7 at small
b. It is worth addressing that, in the previous study,7 the

gsum(x) ) cosh(ze�ψ(x))

1 + 2F* sinh2(ze�ψ(x)
2 )

(11)

g-(x)g+(x) ) 1

[1 + 2F* sinh2(ze�ψ(x)
2 )]2

(12)

σ ) -� cbε
π�F*�ln[1 + 2F* sinh2(ze�ψD

2 )] (13)

gdiff(a/2) ) 1
F*�[1 - exp(-b2

2
F*)] ×

�[1 + (2F*-1)exp(-b2

2
F*)] (14)

gsum(a/2) ) 1
F*[1 + (F*-1)exp(-b2

2
F*)] (15)

g-(a/2)g+(a/2) ) exp(-b2F*) (16)

lim
F*f0

gdiff(a/2) ) b�1 + b2

4
(17)

lim
F*f0

gsum(a/2) ) 1 + b2

2
(18)

lim
F*f0

g-(a/2)g+(a/2) ) 1 (19)

Figure 1. The contact value of the product profile g-(a/2)g+(a/
2)as a function of b at indicated values of the reduced density
F*. The filled symbol represents the MC data,7 the open circle
symbol represents the numerical results of MPB5,7 the solid
line is an analytic expression of the SMPB theory (eq 16),
and the dashed line is an analytic expression of the PB theory
(eq 19). The arrow indicates the value of the parameter b*,
after which the excluded volume effects dominate.

lim
bf+∞

g-(a/2)g+(a/2) f 0 (20)
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numerical results calculated by a plethora of modified
Poisson-Boltzmann equations perturbing PB theory (which
is called MPB5 and in which the excluded volume term has
been evaluated via an inhomogeneous Ornstein-Zernike
equation)28,29 have been used for comparison with the MC
data.7 Due to the limitations of the numerical technique that
was used, except for very small b, no convergent solutions
of the MPB5 equation could be obtained for F* ) 0.2 and
0.3;7 i.e., there are no numerical results of MPB5 for F* )
0.2 and 0.3. The numerical results of MPB5 for F* ) 0.05
and 0.1, which were obtained by Bhuiyan et al,7 are shown
in Figure 1. It can be seen that at small b, the numerical
results of the MPB5 are in better agreement with the MC
results than the analytical expression of the SMPB theory.
This is because the MPB5 includes the fluctuation effects,
while the SMPB theory is mean field like. The reason that
the analytic expression of the SMPB theory fails to reproduce
the MC data7 at small b can be traced to the neglect of
fluctuation effects, which implies that there are remarkable
ionic correlations in that regions; i.e., the correlated fluctua-
tions of ion distributions cannot be omitted.7

On the other hand, at large b, due to the scarcity of the
numerical results of MPB5, it is impossible here to compare
the analytic expression of the SMPB theory with the
numerical results of MPB5, which is an interesting topic that
is worth investigating further. It is noted that we define the
parameter b*, after which the excluded volume effects
dominate, such that for F* ) 0.1 the parameter b* ) 10
(shown in Figure 1b by the arrow); from eq 16, we find that
b* satisfies the equation b* ) (10.0/F*)1/2. Then, we deduce
that b* ) 14.14 for F* ) 0.05, b* ) 7.07 for F* ) 0.2, and
b* ) 5.77 for F* ) 0.3 (shown in Figure 1c,d by the arrow,
respectively, while for F* ) 0.05, b* ) 14.14 is beyond the
range of b shown in Figure 1a), which are in quite good
agreement with the MC results.

It is worth pointing out that for a system with T* ) 0.15,
the Coulombic interaction is strong and correlation and
fluctuation effects would be important, which are shown by
the behavior of the system at small b. On the other hand,
when b is large, a mean field approach can capture the
behavior of the system. Note that b is the dimensionless
electrode charge density. Larger b means larger external
electric field. Thus, we can get the following information:
(1) as b increases, the Coulombic interaction, correlation,
and fluctuation effects will be restrained by the larger external
electric field; (2) the product vanishes at high charge density
because of the density saturation of the ionic layer rather
than the correlation and fluctuation effects. Therefore, we
can conclude that the behavior of g-(a/2)g+(a/2) may be
controlled mainly by two factors. One is the ionic
correlation effect, which controls the behavior of
g-(a/2)g+(a/2) at small b. The other is the steric effect
that is captured by the analytic expression of the SMPB
theory, which leads to g-(a/2)g+(a/2)f0 as bf+∞.

More recently, Bhuiyan and Henderson30 examined gdiff(a/2) by
using the extensive simulation results of Bhuiyan et al.7 The
data of Bhuiyan and Henderson30 and the corresponding
analytical results given by eqs 14 (the SMPB theory) and
17 (the PB theory) are shown in Figure 2. It is clearly seen

that, at small b, both analytic expressions of eqs 14 and 17
reproduce the data of Bhuiyan and Henderson30 remarkably
well. However, as b increases, the result of the PB theory
departs from the data, but the analytical expression of the
SMPB theory still reproduces the data quite well, which
shows again the importance of including steric effects in
modeling diffuse layer properties.

Conclusions

In conclusion, we have obtained the exact analytic expressions
for the contact values in the SMPB theory. In particular, we
have shown that the exact analytic expression allows us to
account for the following behaviors of the contact product that
are displayed by the MC simulation:7 (i) g-(a/2)g+(a/2) tends
to zero as bf+∞; (ii) the speed that g-(a/2)g+(a/2) drops to
zero increases with increasing F*. In addition, for gdiff(a/2), the
analytical expression of the SMPB theory also reproduces
the data of Bhuiyan and Henderson30 quite well. In contrast,
the popular PB theory does not reproduce a vanishing contact
value of the product profile at large b. Moreover, only at low
F* and small b region does the PB theory reproduce the data
of Bhuiyan and Henderson30 for gdiff(a/2). As b increases, the
result of the PB theory departs from the MC data. The present
study demonstrates that the SMPB theory can give a quick,
qualitative insight into the effects of a finite ion size and is worth
investigating further.
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Appendix

Derivation of Eqs 14, 15, and 16 Using the boundary
conditions ψ(x)|x)a/2 ) ψ(a/2), ψ(x)|xf∞ ) 0, and dψ(x)/
dx|xf∞ ) 0, at contact, x ) a/2, we can get the difference,
sum, and product profiles as

Figure 2. The contact value of the difference profile gdiff(a/2)
as a function of b at reduced density F* ) 0.03 and reduced
temperature T* ) 0.15. The filled symbol represents the MC
data,30 the solid line is an analytic expression of the SMPB
theory (eq 14), and the dashed line is an analytic expression
of the PB theory (eq 17).

gdiff(a/2) ) sinh(ze�ψ(a/2))

1 + 2F* sinh2(ze�ψ(a/2)
2 )

(A1)
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and

On the other hand, for the electrode charge density (σ )
-ε/4π dψ(x)/dx|x)a/2)

Equation A4 can be rewritten as

then

and

where b ) 2π�σ2/cbε.
Using the following formulas

sinh(A) ) 2 sinh(A
2 )�1 + sinh2(A

2 )
cosh(A) ) 1 + 2 sinh2(A

2 )
and eq A7, we can get

and

Substituting eqs A6, A8, and A9 into eqs A1, A2, and A3,
we have

gdiff(a/2) ) 1
F*�[1 - exp(-b2

2
F*)] ×

�[1 + (2F*-1)exp(-b2

2
F*)] (A10)

and

g-(a/2)g+(a/2) ) exp(-b2F*) (A12)
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CT800375T

gsum(a/2) ) cosh(ze�ψ(a/2))

1 + 2F* sinh2(ze�ψ(a/2)
2 )

(A2)

g-(a/2)g+(a/2) ) 1

[1 + 2F* sinh2(ze�ψ(a/2)
2 )]2

(A3)

σ ) -� cbε
π�F*�ln[1 + 2F* sinh2(ze�ψ(a/2)

2 )] (A4)

b2

2
F* ) ln[1 + 2F* sinh2(ze�ψ(a/2)

2 )] (A5)

1 + 2F* sinh2(ze�ψ(a/2)
2 ) ) exp(b2

2
F*) (A6)

sinh2(ze�ψ(a/2)
2 ) ) 1

2F*[exp(b2

2
F*) - 1] (A7)

sinh(ze�ψ(a/2)) )
exp(b2

2
F*)

F* �[1 - exp(-b2

2
F*)] ×

�[1 + (2F*-1)exp(-b2

2
F*)] (A8)

cosh(ze�ψ(a/2)) )
exp(b2

2
F*)

F* [1 + (F*-1)exp(-b2

2
F*)]

(A9)

gsum(a/2) ) 1
F*[1 + (F*-1)exp(-b2

2
F*)] (A11)
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Abstract: Ruthenium tetracarbonyl polymer, [Ru(CO)4]n, a chainlike compound formed by
metal-metal interactions, was studied computationally. We first performed tests with selected
pure and hybrid GGA density functionals and ab initio methods at HF and MP2 levels of theory
to find the most suitable method. Calculated geometries and molecular orbitals were compared
to see effectiveness and possible differences of the methods. Hybrid functionals, especially
PBE1PBE and MPW1K, were found to produce accurate geometrical parameters compared to
the experimental structure, with reasonable computational cost. Bonding in [Ru(CO)4]n chains
was studied by calculation of Mayer bond order and theoretical structure factors followed by
multipole refinement to get bond critical points according to the quantum theory of atoms in
molecules. Ruthenium-ruthenium bonding comparable to that in a Ru3(CO)12 cluster was found
with both methods.

1. Introduction

Chainlike compounds having a transition-metal backbone
have been intensively studied in recent years. Interest toward
these compounds comes from the various properties these
one-dimensional chains exhibit: luminescence,1 solvato-
chromy2 and vapochromy,3 antitumor activity in “platinum
blue”-type compounds,4,5 and catalytic properties in ruthe-
nium chains containing carbonyl ligands.6,7 Certain transi-
tion-metal chain compounds are also semiconductors with
use in electronic devices.8

Depending on their structure, chain compounds with metal
backbone can be divided into different categories. Square
planar metal complexes can form stacks where metal atoms
line up. This is the case with, for example, Magnus’ green
salt,9,10 its derivatives,11 and many tetracyanoplatinates.12

One-dimensional coordination polymers do not have real
metal backbone. Instead, they have an alternating chain of
metal atoms and linking ligands.13 In supported chains,
including EMACs, metal atom chains are surrounded and
held together by bridging ligands.14 Unsupported chains have
metal backbone formed by direct metal-metal interactions
without aid from the ligands.15

The [Ru(CO)4]n polymer is an unsupported chain. It was
synthesized for the first time by photolysis from concentrated
Ru3CO12 solution in tetrahydrofuran using CO atmosphere
in the mid 1980s,16 and the structure was solved in the
beginning of the 1990s.17 Many of the known chainlike
transition-metal structures are mixed valence chains or
have charges. [Ru(CO)4]n, however, is neutral, and all
ruthenium atoms have the same valence, making the chain
rare and interesting.

Most of the previous studies on the unsupported transition-
metal chains focus on experimental work. These studies
include synthesis,18 X-ray studies,15 electrocatalytic prop-
erties,7,19,20 and spectroelectrochemical studies21 on similar
unsupported ruthenium- and osmium-based chains. Compu-
tational work includes a study of ruthenium and osmium
chain growth from mononuclear [M(CO)4Cl2] units and
trinuclear [M3(CO)12] clusters (M ) Ru, Os).22

The aim of our study was to examine the [Ru(CO)4]n

polymer and its properties by means of computational
chemistry. We tested the efficiency of various modeling
methods suitable for modeling unsupported metal chain
structures. We selected nine popular density functionals and
also traditional wave functional methods on modeling single
chains of [Ru(CO)4]n polymer. Additionally, we studied
bonding by calculating Mayer bond orders and by multipole* Corresponding author e-mail: pipsa.hirva@joensuu.fi.
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refinement from calculated theoretical structure factors to
locate bond critical points according to the quantum theory
of atoms in molecules.23

2. Computational Methods

Single chain calculations were carried out with the Gauss-
ian03 program package.24 Initial geometry tests were made
with selected pure GGA density functionals (HCTH,25

PBEPBE,26 and VSXC27) and hybrid GGA density func-
tionals (B1B95,28 B3LYP,29-31 B3PW91,29,32 B97-2,33

MPW1K,34,35 and PBE1PBE26). For further studies, we used
B1B95, B3PW91, and PBE1PBE (also known as PBE0)
functionals. Ab initio calculations with HF and MP2 levels
of theory were also performed for comparison. Two different
basis sets were tested for ruthenium atom: Huzinaga’s all-
electron basis set36 with an additional p-polarization function
(433321/4331/421) and Los Alamos National Laboratory
2-double-� (LanL2DZ).37 The latter is a small core ECP basis
set, with 16 valence electrons for ruthenium atom, and
incorporates mass-velocity and Darwin relativistic effects
into the potentials. The basis set used for nonmetal atoms
was the standard all-electron basis set 6-31G(d), but effects
of increasing it to 6-311+G(d) were also tested. Symmetry
was utilized in all models to speed up calculations. Frequency
calculations with no scaling were performed to ensure all
optimized molecular structures were minima.

For 3D periodic calculations, we used the CRYSTAL
program package.38 Calculations were performed with the
PBE1PBE hybrid functional. Basis sets for C39 and O40 were
selected from the CRYSTAL basis set library. For ruthenium,
we used an all-electron basis set developed for the free atom
case41 and modified it for solid-state calculations by remov-
ing the most diffuse functions. The final basis set had a
contraction of 976311/76311/631.

3. Results and Discussion

3.1. Molecular Models. Models of [Ru(CO)4]n chains
were based on crystallography information.17 Our initial
testing models were single chain models; interactions
between [Ru(CO)4]n chains are weak so neighboring chains
from crystal structure were excluded for simplicity (Fig-
ure 1).

In powder X-ray study, [Ru(CO)4]n polymer had been
estimated to be roughly an average of 90 monomers long.17

We built multiple short models [Ru(CO)4]n (n ) 2, 3, 4, 6,

8, 10) and tested hydrogen, chloride, water, and carbonyl
ligands for terminating ends of the models. We also tested
a model without a terminating group. Terminating the chain
with carbonyl distorted the geometry at the ends of the chain.
Water as terminating group constrained symmetry, which
was not to our best interest. Effects of the other tested
terminating groups on Ru-Ru distance in the middle of the
chain can be seen in Figure 2. In longer chains, the effect of
terminating group diminished. Ru-Ru distance approached
approximate value of 2.88 Å which is in good agreement
with the X-ray measured value of 2.86 Å in the crystal. We
decided to use nonterminated [Ru(CO)4]n chain models for
our studies. This way, models were simpler and stabilization
energies could be compared reliably.

3.2. Tests for Functionals. Functionals were first tested
by partial optimization of chains with selected Ru-Ru
distances. We made the tests with small models, [Ru(CO)4]n

(n ) 2, 3, 4), where Ru-Ru distances were fixed between
values of 2.70 and 3.40 Å with 0.02 or 0.04 Å increments.
Selected results for relative energies as a function of Ru-Ru
distance can be seen in Figure 3. With VSXC functional,
energy rose only slightly when the Ru-Ru bond was
lengthened, indicating that the energy minimum could not
be found easily. HCTH did better, but energy still increased
more slowly than with PBEPBE or its hybrid counterpart
PBE1PBE. All the hybrid functionals gave a curve similar
to that of PBE1PBE. Moreover, hybrid functionals converged
easily, whereas some extra work was needed with pure

Figure 1. Ten-units-long single chain of [Ru(CO)4]n. Ru-Ru bond length is 2.86 Å, and C-Ru-Ru-C dihedral angle is 45°.

Figure 2. Effect of chain length and terminating group on
the innermost Ru-Ru bond length (B3PW91, Huzinaga’s AE
basis set for ruthenium).
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functionals in n ) 3 and 4 models to reach geometry
convergence.

It is not a real surprise that HCTH and VSXC work poorly
as it has been noted before that most pure functionals do
not work well on transition-metal carbonyl complexes.42

Therefore, pure functionals were excluded from further
studies.

For further testing, we performed full geometry optimiza-
tions to longer [Ru(CO)4]n (n ) 6, 8, 10) models using only
the tested hybrid functionals and wave functional methods.
Innermost Ru-Ru bond lengths for the calculated structures
are presented in Table 1.

Many of the hybrid functionals gave results very close to
experimental values, namely B3PW91, MPW1K, and
PBE1PBE when Huzinaga’s AE basis set was used and
B1B95, MPW1K, and PBE1PBE when LanL2DZ basis set
was used. Changing the metal basis set from Huzinaga’s AE
to LanL2DZ gave a (systematic) increase of 2-4 pm to
Ru-Ru bond lengths with the density functionals. The
difference most probably results from the relativistic effects,
which the Huzinaga’s AE basis set does not account for.
However, in our previous tests for different carbonyl
complexes of group 8 transition metals (including trinuclear
cluster complexes M3(CO)12, M ) Fe, Ru, Os), we showed
that the relativistic effects are rather small for the 4d
elements, both in geometry and in decarbonylation energies.42

The very stable Huzinaga’s basis set was found especially
suitable for studying ruthenium carbonyl complexes.

The Hartree-Fock method also reproduced the overall
geometry of chains well, but the bond distances were quite
far from the experimental values and values of DFT methods.
Results obtained by the MP2 method were in good agreement
with DFT methods and experimental values for innermost
Ru-Ru and Ru-C lengths, but neighboring Ru(CO)4 units
are no longer strictly square planar. Furthermore, the
computation requirements were considerably higher with the
MP2 method, taking roughly 450 times longer than DFT
calculations and effectively prohibiting the calculation of
longer chains than [Ru(CO)4]8.

Effects of improving the nonmetal atom basis set to
6-311+G(d) were also tested. Geometries were slightly

affected; Ru-Ru bonds were 1 to 2 pm longer and C-O
bonds were about 1 pm shorter. However, these changes
occurred with all the functionals and did not change their
relative results.

[Ru(CO)4]n chains with 6-10 units had similar geometry
in the central parts of the chain as the real polymers of about
90 units. To see the effect of extending the size of the model,
we calculated a one-dimensional periodic single chain
describing an infinite polymer, [Ru(CO)4]∞.

Obtained bond lengths are shown in Table 2. Optimizations
of infinite chains with Huzinaga’s AE basis set reproduced
the results of longest finite chains with differences less than
1 pm. Again, the most accurate geometry was obtained with
the PBE1PBE and MPW1K functionals.

Stabilization energies were calculated with chosen func-
tionals. The energies were calculated using equation Estab )
(En/n) - E1, where En/n is the energy of an n-units-long chain
divided by the number of units and E1 is the energy of a
single Ru(CO)4 unit. Results are shown in Figure 4.

The chosen functionals gave similar results with a differ-
ence around 15 kJ/mol between PBE1PBE and B3PW91.
The energy difference between chains of 9 and 10 units was
only 3-4 kJ/mol, and thus the energies were slowly
approaching their limiting values.

Ruthenium complexes, which follow the 18-electron
rule, usually exhibit a singlet ground state. However, in
the case of unsaturated systems, optimizing the spin state
can lead to different electronic states, which are close in
energy.43 In our molecular models, the effect can be
expected to be the largest at the end groups of the chains,
since both of the Ru(CO)4 units are 17-electron systems.
The triplet spin state was calculated for the nonterminated
models with the PBE1PBE/Huzinaga method, which was
found to produce reliable results for the singlet state. In
the monomer and dimer, the singlet state was found
energetically favored. However, as the chain increased,
the energy of the triplet decreased, as can be seen in the
stabilization energies in Figure 4. On the other hand, since
the central Ru(CO)4 units are saturated, the effect of the
end groups converged with increasing the size of the chain.
Additionally, the effect of optimizing the spin state was
found to have a negligible effect on the optimized
geometry parameters of the longer chains (∆d ) 0.0005
Å for the central Ru-Ru bond in [Ru(CO)4]8).

3.3. Properties of [Ru(CO)4]n. Selected molecular orbit-
als of [Ru(CO)4]6 and [Ru(CO)4]8 models were calculated
and examined with B1B95, B3PW91, and PBE1PBE func-
tionals. The orbitals between HOMO-9 and LUMO+9 and
their relative energy levels were almost identical regardless
of the functional or metal basis set used. In general, the
orbitals were highly delocalized along the chain. As an
example, we have drawn selected molecular orbitals delo-
calized over metal chain (Figure 5a,b) and along the entire
molecule (Figure 5c,d). In Figure 5a,b, we can see Ru-Ru
bonding and antibonding interactions. We further examined
the nature of the M-M bonding with NBO analysis, which
revealed that the Ru-Ru bonds consisted mainly of d-d
interactions with 25-30% of s and 70-75% of dz2 char-
acter.

Figure 3. Relative [Ru(CO)4]2 energies as a function of
Ru-Ru bond length. (Huzinaga’s AE basis set.) The highest
calculated energy with each functional has been set to 0 kJ/
mol.
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According to a previous study of compounds with stag-
gered and eclipsed carbonyl groups,45 staggered conformation
maximizes the 1,3 M · · ·C interactions and strengthens M-M
bonding. This was also discussed in a powder X-ray study.17

In our study, it is possible to see bonding 1,3 M · · ·C and
1,4 C · · ·C interactions in calculated molecular orbitals, as
shown in Figure 5c,d. These interactions can be observed
with only low cutoff values, however, which suggests that
their effect on bonding between adjacent Ru(CO)4 units will
be minor even if bonding interactions exist.

We wanted to study closer the nature of bonding and
interactions in [Ru(CO)4]n chains. For this, we calculated
Mayer bond orders46 in the [Ru(CO)4]8 chain using QM-
Forge.47 Mayer bond orders in the Ru3(CO)12 cluster were
calculated for comparison. Selected results are shown in
Table 3.

According to Mayer bond orders, direct Ru-Ru bonding
in chains is stronger than that in the Ru3(CO)12 cluster despite

similar bond lengths. However, there are six weak 1,3
Ru · · ·C interactions with MBO of 0.11 in a cluster that may
strengthen overall bonding by forming weak bridges. Mayer
bond orders obtained for 1,3 Ru · · ·C interactions in the
[Ru(CO)4]8 chain were negligible. Even though there are
eight of these kinds of interactions between each Ru(CO)4

unit, their contribution to bonding seems to be small or
nonexistent, according to our study.

It should be noted that the Ru3(CO)12 cluster was
calculated in gas phase and CO groups were in staggered
conformation. In an X-ray study48 the axial CO groups
were found to be in eclipsed conformation, favoring 1,4
C · · ·C interactions. However, the eclipsed conformation
in the cluster is due to packing effects in solid state, and
information on the Mayer bond orders in the single
molecule in staggered conformation can be used for
comparison with the polymeric chain.

Table 1. Optimized Structure of [Ru(CO)4]8 Calculated with Various DFT Methods, HF, and MP2 Methoda

bond B1B95 B3LYP B3PW91 B97-2 MPW1K PBE1PBE HF MP2 exptl17

Huzinaga AE
Ru-Ru 2.825 2.919 2.878 2.896 2.837 2.849 2.959 2.858 2.860

-1.2% 2.1% 0.63% 1.3% -0.80% -0.38% 3.5% -0.07%
Ru-C 1.954 1.970 1.955 1.955 1.951 1.951 2.029 1.935 1.951

0.15% 0.97% 0.21% 0.21% 0.0% 0.0% 4.0% -0.82%
C-O 1.144 1.149 1.148 1.147 1.136 1.146 1.118 1.168 1.133

0.97% 1.4% 1.3% 1.2% 0.27% 1.1% -1.3% 3.1%

LanL2DZ
Ru-Ru 2.849 2.954 2.908 2.924 2.859 2.874 2.971 2.843 2.860

-0.38% 3.3% 1.7% 2.2% 0.035% 0.49% 3.9% -0.59%
Ru-C 1.952 1.966 1.951 1.952 1.947 1.947 2.019 1.922 1.951

0.051% 0.77% 0.0% 0.051% -0.205% -0.205% 3.5% -1.5%
C-O 1.145 1.150 1.149 1.148 1.136 1.147 1.119 1.169 1.133

1.1% 1.5% 1.4% 1.3% 0.24% 1.2% -1.2% 3.2%

a Bond lengths are in angstroms. Percent values are deviations from the experimental value.

Table 2. Optimized Structure of [Ru(CO)4]∞ Calculated with HF and Selected DFT Methodsa

bond B1B95 B3LYP B3PW91 B97-2 MPW1K PBE1PBE HF exptl17

Huzinaga AE
Ru-Ru 2.826 2.923 2.880 2.896 2.838 2.851 2.962 2.860

-1.2% 0.97% 1.3% 1.3% -0.77% -0.31% 3.6%
Ru-C 1.954 1.970 1.955 1.955 1.951 1.951 2.028 1.951

0.5% 0.97% 0.21% 0.21% 0.0% 0.0% 3.9%
C-O 1.144 1.149 1.148 1.147 1.136 1.146 1.118 1.133

0.97% 1.4% 1.3% 1.2% 0.26% 1.1% -1.3%

a Bond lengths are in angstroms. Percent values are deviations from the experimental value.

Figure 4. Stabilization energies with chosen functionals.
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3.4. Properties of [Ru(CO)4]n Based on 3D Periodic
Model. Our second periodic model was a real three-
dimensional crystal structure where the neighboring chains
were included. Parameters for unit cell and atomic positions
were taken from powder X-ray data17 and optimized using
the PBE1PBE functional and CRYSTAL program package.38

A one-dimensional chain was calculated for comparison.
[Ru(CO)4]n crystal packing and unit cell borders are shown
in Figure 6, and selected structural parameters are shown in
Table 4. The optimized unit cell was slightly smaller than
the experimental value. However, the overall structure was
very well reproduced. 1D and 3D models gave similar
Ru-Ru lengths and C-Ru-Ru-C dihedral angles, indicat-
ing that the interchain interactions have only a small effect
on the geometry of the chains.

Finally, we used CRYSTAL to calculate theoretical
structure factors for our optimized 3D periodic crystal
structure of [Ru(CO)4]n and made multipole refinement with
XD200649 for the obtained data. Bond critical points, shown

in Table 5, were calculated using Bader’s quantum theory
of atoms in molecules23 approach, which provides informa-
tion about atoms and bonding through charge density
analysis. This kind of indirect route to topological analysis
has been suggested to reduce differences between theory and
experiment.50 Obtained charge density, F(r), its Laplacian,
∇ 2F(r), kinetic energy density, G(r), potential energy density,
V(r), and total energy density, H(r), were compared to values
in the experimental charge density study of the Ru3(CO)12

cluster.48

The interactions between atoms can be classified on the
basis of the sign of the ∇ 2F(r) at bond critical point. Negative
value means charge is locally concentrated and electrons are
shared by both nuclei, which is typical, for example, for
covalent interactions (shared shell interactions). Positive
value suggests charge is locally depleted and electrons are
concentrated in each atom, which is typical, for example,
for ionic bonds (closed shell interactions). Further informa-
tion about the bond can be obtained from energy density
values G(r), V(r), and H(r) at bond critical point. These can
be calculated from FBCP and ∇ 2FBCP.51,52 Espinosa et al.53

further classified interatomic interactions to three categories
using the energy density values: pure closed shell interac-
tions (∇ 2FBCP > 0, HBCP > 0), transit closed shell interactions
(∇ 2FBCP > 0, HBCP < 0), and pure shared shell interactions
(∇ 2FBCP < 0, HBCP < 0). Metal-metal bonds fall in the transit
closed shell category, as a typical M-M bond has a low
FBCP, low and positive ∇ 2FBCP, and HBCP negative and close
to zero.54

The values of FBCP and ∇ 2FBCP in Ru-Ru, Ru-C, and
C-O bonds in the [Ru(CO)4]n polymer were very similar to
corresponding values in the Ru3(CO)12 cluster. The Ru-Ru
bonds in [Ru(CO)4]n have the typical FBCP, ∇ 2FBCP, and HBCP

Figure 5. Selected molecular orbitals for [Ru(CO)4]6. (a) H-7,
(b) H-4, (c) H-2, and (d) H-1. A cutoff value of 0.04 was used
in (a) and (b), and a cutoff value of 0.02 was used in (c) and
(d). Visualization was done with MOLEKEL 4.3.44

Table 3. Selected Mayer Bond Orders

atom pair MBO in [Ru(CO)4]8 MBO in Ru3(CO)12

Ru-Ru 0.70 0.62
Ru-C 0.88 0.87;a 0.94b

C-O 2.1 2.1;a 2.2b

1,3 Ru · · ·C 0.03 0.11;c 0.01-0.02
1,4 C · · ·C 0.01 0.02

a Axial carbons. b Equatorial carbons. c 1,3 Ru · · ·C interactions
to two axial carbons, bonded on different ruthenium atoms.

Figure 6. [Ru(CO)4]n unit cell and crystal packing.

Table 4. [Ru(CO)4]n Structural Parameters

parameter optimized 1D optimized 3D powder X-ray17

a 13.94 Å 14.15 Å
b 6.85 Å 7.06 Å
c 5.62 Å 5.64 Å 5.72 Å
Ru-Ru 2.81 Å 2.82 Å 2.860 Å
Ru-C 1.94 Å 1.94 Å 1.951 Å
C-O 1.15 Å 1.15 Å 1.133 Å
C-Ru-Ru-C 44.7° 39.8° 41.0°
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values for the M-M bond and belong to the transit closed
shell category. Plotted trajectories can be seen in Figure 7.
We could not find evidence of 1,3 M · · ·C bonding in the
polymer. The possible 1,3 M · · ·C interactions are likely to
be too weak to have bond critical points and thus do not
play a role in bonding along the Ru chain.

4. Conclusions

Various DFT functionals as well as ab initio methods were
tested for modeling ruthenium tetracarbonyl polymer,
[Ru(CO)4]n. Hybrid functionals seem to work well for
modeling [Ru(CO)4]n in either single chains or crystal state.
Functionals PBE1PBE and MPW1K gave especially accurate
results. We expect these functionals to perform well with
other similar Ru-based linear metal chains such as
[Ru(bpy)(CO)2]n. It is also noteworthy that the model does
not need to be longer than six units to obtain geometry and
results similar to longer chains.

Mayer bond orders were calculated and a bond critical
point search was performed to study bonding in [Ru(CO)4]n.
From the results, we deduced direct Ru-Ru bonding in
[Ru(CO)4]n to be similar and about the same strength as that
in the Ru3(CO)12 cluster. However, overall bonding is
stronger in the cluster because of additional interactions from
carbonyls. The bonding studies also give a point of com-

parison for the future when similar chains will be computed.
The computational approach and theoretical structure factors
may also serve as an aid in the interpretation of experimental
data, when satisfactory data is difficult or impossible to get.
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Coronado, E. Inorg. Chim. Acta 2008, 361, 3856.

(14) Berry, J. F.; Cotton, F. A.; Fewox, C. S.; Lu, T.; Murillo,
C. A.; Wang, X. Dalton Trans. 2004, 15, 2297.

Table 5. Selected Parameters in Bond Critical Pointsa

bond critical point R (Å) RBCP (Å) FBCP (e Å-3) ∇ 2FBCP (e Å-5) GBCP (hartree Å-3) VBCP (hartree Å-3) HBCP (hartree Å-3)

[Ru(CO)4]n, Optimized
Ru-Ru 2.819 1.409 0.217 2.33 0.17 -0.18 -0.01
Ru-C 1.938 1.041 0.903 11.2 1.2 -1.6 -0.4
C-O 1.150 0.418 3.440 -39.0 4.5 -11.7 -7.2
1,4 C · · ·C not found
1,3 Ru · · ·C not found

Ru3(CO)12, Experimental48

Ru-Ru 2.852 1.425 0.215 2.21 0.17 -0.18 -0.01
Ru-Cax 1.943 1.073 0.903 11.4 1.2 -1.6 -0.4
Ru-Cekv 1.924 1.065 0.985 11.3 1.3 -1.8 -0.5
C-O 1.140 0.442 3.8 -45 5 -14 -9
1,4 C · · ·C 2.815 1.439 0.12 0.99 0.07 -0.07 0.00
1,3 Ru · · ·C not found

a All shown values are averages. R ) distance between atoms, RBCP ) distance between first mentioned atom and bond critical point.

Figure 7. Trajectories with bond critical points (blue) and ring
critical points (green) for optimized [Ru(CO)4]n 3D model.

DFT Study of Ruthenium Tetracarbonyl Polymer J. Chem. Theory Comput., Vol. 5, No. 4, 2009 1089



(15) Masciocchi, N.; Sironi, A.; Chardon-Noblat, S.; Deronzier,
A. Organometallics 2002, 21, 4009.

(16) Hastings, W. R.; Baird, M. C. Inorg. Chem. 1986, 25, 2913.

(17) Masciocchi, N.; Moret, M.; Cairati, P.; Ragaini, F.; Sironi,
A. J. Chem. Soc., Dalton Trans. 1993, 3, 471.

(18) Jiang, F.; Yap, G. P. A.; Pomeroy, R. K. Organometallics
2002, 21, 773.

(19) Chardon-Noblat, S.; Collomb-Dunand-Sauthier, M.-N.; Deronzi-
er, A.; Ziessel, R.; Zsoldos, D. Inorg. Chem. 1994, 33, 4410.

(20) Chardon-Noblat, S.; Deronzier, A.; Hartl, F.; Slageren, J.;
Mahabiersing, T. Eur. J. Inorg. Chem. 2001, 3, 613.

(21) Hartl, F.; Mahabiersing, T.; Chardon-Noblat, S.; Da Costa,
P.; Deronzier, A. Inorg. Chem. 2004, 43, 7250.

(22) Hirva, P.; Haukka, M.; Jakonen, M.; Pakkanen, T. A. Inorg.
Chim. Acta 2006, 359, 853.

(23) Bader, R. F. W. In Atoms in Molecules: A Quantum Theory;
Clarendon Press: Oxford, 1990.

(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strat-
mann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;
Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople,
J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford,
CT, 2004.

(25) Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C.
J. Chem. Phys. 1998, 109, 6264.

(26) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996,
77, 3865.

(27) Van Voorhis, T.; Scuseria, G. E. J. Chem. Phys. 1998, 109,
400.

(28) Becke, A. D. J. Chem. Phys. 1996, 104, 1040.

(29) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

(30) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785.

(31) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.
J. Phys. Chem. 1994, 98, 11623.

(32) Perdew, J. P. In Electronic Structure of Solids ’91; Ziesche,
P., Eschig, H., Eds.; Akademie Verlag: Berlin, 1991; p 11.

(33) Wilson, P. J.; Bradley, T. J.; Tozer, D. J. J. Chem. Phys.
2001, 115, 9233.

(34) Becke, A. D. J. Chem. Phys. 1997, 107, 8554.

(35) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664.

(36) Gaussian Basis Sets for Molecular Calculations; Huzinaga,
S., Ed.; Physical Sciences Data 16; Elsevier: Amsterdam,
1984; p 255.

(37) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.

(38) Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-
Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison,
N. M.; Bush, I. J.; Arco, P. D.; Llunell, M. CRYSTAL06
User’s Manual; University of Torino: Torino, Italy, 2006.

(39) Catti, M.; Pavese, A.; Dovesi, R.; Saunders, V. C. Phys. ReV.
B 1993, 47, 9189.

(40) Gatti, C.; Saunders, V. R.; Roetti, C. J. Chem. Phys. 1994,
101, 10686.

(41) Towler, M. D. University of Cambridge, Private communica-
tion, 2008.

(42) Hirva, P.; Haukka, M.; Jakonen, M.; Moreno, M. A. J. Mol.
Model. 2008, 14, 171.

(43) Carreon-Macedo, J.-L.; Harvey, J. N. J. Am. Chem. Soc. 2004,
126, 5789.

(44) Flükiger, P.; Lüthi, H. P.; Portmann, S.; Weber, J. MOLEKEL
4.3; Swiss National Supercomputing Centre CSCS: Manno,
Switzerland, 2000.

(45) Bau, R.; Kirtley, S. W.; Sorrell, T. N.; Winarko, S. J. Am.
Chem. Soc. 1973, 96, 988.

(46) Bridgeman, A. J.; Cavigliasso, G.; Ireland, L. R.; Rothery, J.
J. Chem. Soc., Dalton Trans. 2001, 14, 2095.

(47) Tenderholt, A. L. QMForge, version 2.1; Stanford University:
Stanford, CA, 2007. http://qmforge.sourceforge.net.

(48) Gervasio, G.; Bianchi, R.; Marabello, D. Chem. Phys. Lett.
2005, 407, 18.

(49) Volkov, A.; Macchi, P.; Farrugia, L. J.; Gatti, C.; Mallinson,
P.; Richter, T.; Koritsanszky, T. XD2006, a computer program
package for multipole refinement, topological analysis of
charge densities and evaluation of intermolecular energies
from experimental and theoretical structure factors; SUNY
at Buffalo: Buffalo, NY, 2006.

(50) Volkov, A.; Abramov, Y.; Coppens, P.; Gatti, C. Acta
Crystallogr., Sect. A 2000, 56, 332.

(51) Abramov, Yu. Acta Crystallogr., Sect. A 1997, 53, 264.

(52) Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998,
285, 170.

(53) Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. J. Chem.
Phys. 2002, 117, 5529.

(54) Gervasio, G.; Bianchi, R.; Marabello, D. Chem. Phys. Lett.
2004, 387, 481.

CT800407H

1090 J. Chem. Theory Comput., Vol. 5, No. 4, 2009 Niskanen et al.



Transferable Coarse-Grained Models for Ionic Liquids

Yanting Wang,† Shulu Feng, and Gregory A. Voth*

Center for Biophysical Modeling and Simulation, and Department of Chemistry,
UniVersity of Utah, 315 South 1400 East Room 2020, Salt Lake City, Utah 84112-0850

Received December 10, 2008

Abstract: The effective force coarse-graining (EF-CG) method was applied to the imidazolium-
based nitrate ionic liquids with various alkyl side-chain lengths. The nonbonded EF-CG forces
for the ionic liquid with a short side chain were extended to generate the nonbonded forces for
the ionic liquids with longer side chains. The EF-CG force fields for the ionic liquids exhibit very
good transferability between different systems at various temperatures and are suitable for
investigating the mesoscopic structural properties of this class of ionic liquids. The good additivity
and ease of manipulation of the EF-CG force fields can allow for an inverse design methodology
of ionic liquids at the coarse-grained level. With the EF-CG force field, the molecular dynamics
(MD) simulation at a very large scale has been performed to check the significance of finite
size effects on the structural properties. From these MD simulation results, it can be concluded
that the finite size effect on the phenomenon of ionic liquid spatial heterogeneity (Wang, Y.;
Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192) is small and that this phenomenon is indeed
a nanostructural behavior which leads to the experimentally observed mesoscopic heterogeneous
structure of ionic liquids.

1. Introduction

Ionic liquids, also known as room-temperature molten salts,
consist of bulky organic cations and/or anions. Because their
melting temperatures are around room temperature, they may
be used as liquids in industrial applications. In recent years,
researchers have extended the possible applications of ionic
liquids from solvents1,2 to other materials, such as lubricants,3,4

embalming fluids,5 fuel cells,6 biocatalysis,7 and energetic
materials.8 These possible applications are bolstered by the
fact that there are many ionic liquid candidates to be chosen
from to meet different specific application requirements.
Given a target application with a set of specific requirements,
it would be valuable to select the best ionic liquid candidates
using a computational design approach rather than experi-
mentally testing every possible species one by one. Since
ionic liquids can usually be considered as being constructed
from smaller components, which can be enumerated, the
systematic design of ionic liquids at a coarse-grained level,

where each component is treated as one or several coarse-
grained (CG) sites, is one possible route to their computa-
tional design.

The multiscale coarse-graining (MS-CG) approach9 cal-
culates the effective nonbonded CG forces between CG sites
by a variational fitting to the total forces sampled from
atomistic MD simulations. This approach has been success-
fullyapplied to ionic liquids,10 aswell as somebiomolecular9,11

and other liquid12 systems. The MS-CG force fields ac-
curately capture the atomistic local structures at the CG level.
However, for the same underlying atomistic system, different
MS-CG models must in principle be constructed for different
temperatures. In addition, the effective forces cannot easily
be transferred to other systems, which may be essential for
the systematic computational design of ionic liquids at the
CG level.

As an alternative to the general MS-CG approach, the
effective force coarse-graining (EF-CG) method13 was
designed to focus more on the transferability and additivity
of the resulting CG force field by sacrificing some degree
of structural accuracy. With the EF-CG approach, the
effective forces between CG sites can be explicitly separated
as different contributions from the collective electrostatic and
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van der Waals (VDW) interactions, respectively, and are
generally more transferable between different temperatures
and environments (e.g., surface and bulk). The EF-CG
method works especially well for molecules which can be
divided into CG sites with good symmetry. This condition
is satisfied to some reasonable extent for many ionic liquids.
In this study, the EF-CG approach is applied to the
imidazolium-based nitrate ionic liquids with various alkyl
side-chain lengths. It is shown that a set of effective forces
constructed for a short-chain system can be extended to
generate the effective force fields suitable for CG molecular
dynamics (MD) simulations of the related ionic liquid
systems with longer alkyl side chains.

An important structural feature of ionic liquids with an
alkyl side chain is the spatial heterogeneity formed by the
cationic alkyl tail aggregation.14 It was revealed by both the
all-atom15,16 and CG14,17 MD simulations that, in a pure ionic
liquid system, the nonpolar cationic tail groups tend to
aggregate to form isolated tail domains, while the charged
head groups and anions retain their local structures un-
changed with various lengths of the side chains. The tail
domains were also found to pass through a melting-like
transition with increasing temperature.17 These phenomena
were explained by the competition between the collective
electrostatic and VDW interactions. In this paper, it will be
shown that, despite the approximations made when con-
structing the EF-CG force fields, the spatial heterogeneity
phenomenon is still captured at the CG level with satisfactory
accuracy. Additionally, a CG MD simulation with the EF-
CG model at a very large spatial scale is reported to connect
the tail aggregation mechanism to experimentally observed
liquid-crystal-like ionic liquid structures.18-21

2. Methods

In this section, the EF-CG methodology and an order
parameter quantifying the spatial heterogeneity are briefly
reviewed. The construction and manipulation of the EF-CG
force fields and the MD simulations at both the atomistic
and CG levels are described in detail.

2.1. Effective Force Coarse-Graining Methodology. The
EF-CG methodology13 aims to construct CG models with
an enhanced degree of transferability. In order to accomplish
this goal, the effective CG force fields should depend on
thermodynamic and environmental conditions as little as
possible. As a consequence, compared to the general MS-
CG approach,22 the EF-CG methodology usually leads to
CG models that have less accuracy in terms of their average
local structures.

Before constructing the EF-CG force fields, an all-atom
MD simulation at equilibrium must be performed. A coarse-
graining strategy is then defined to group atoms together to
form one or several CG sites for each molecule. With the
atomic positions sampled during the all-atom MD simulation,
the bonded coordinate Boltzmann distributions can be
determined and fitted iteratively to obtain the bonded CG
force fields,10 while the atomistic nonbonded forces between
different atoms {fij} are also explicitly calculated. For a
certain pair of CG sites I and J, all of the atomistic forces
between these two sites are summed up and projected on

the direction of the unit vector R̂IJ connecting the center-
of-masses of the two CG sites

where FIJ is the effective force between CG sites I and J.
The magnitude of this projected force FIJ as a function of R
is averaged over all pairs with the same type in all sampled
MD configurations to obtain the final effective nonbonded
EF-CG force between CG sites F̃IJ(R). Consequently, F̃IJ(R)
is actually an ensemble-averaged effective force over the
relative orientation ΩIJ between CG sites I and J, with the
probability distribution P(ΩIJ) sampled during the all-atom
MD simulation:

Different types of atomistic forces, typically electrostatic and
VDW interactions, can be calculated separately. The final
effective CG forces are simply the sum of all different types
of CG forces present in the system.

The effective electrostatic interactions are generally long-
range, while the tabulated effective CG forces are usually
required by MD simulation software to be short-ranged. It
has been found that,13 for most systems, beyond a certain
cutoff around 1 nm, the long-range interactions can be
approximated by the electrostatic interactions of the net point
charges on the CG sites, so that only the remaining effective
short-range forces need be tabulated.

2.2. Heterogeneity Order Parameter. The degree of the
spatial heterogeneity of the cationic tail groups in ionic
liquids can be gauged by the height of the first peak of the
tail-tail radial distribution function (RDF). However, it is
more convenient if the spatial heterogeneity can be quantified
by a single numerical value. In order to do this, a Gaussian-
like heterogeneity order parameter (HOP)17 is defined for
each site as

where rij is the modulation of the vector ri - rj corrected
with the periodic boundary conditions, σ ) L/N1/3 with L
the side length of the cubic simulation box and N the total
number of the CG sites.

For one configuration, the HOP is computed by averaging
over all Ns sites of interest (usually sites of the same type),
such that

The HOP is defined so that it is topologically invariant
with the absolute size of the simulation box. For a given
topology, the HOP value exhibits finite size effect when very
limited number of sites are present, but it approaches a
constant value with increasing number of sites. The HOP
values ĥ0 for the ideally homogeneous systems with N )
n3, n ) 1, 2, 3,..., in a cubic box were computed and listed

FIJ(RIJ) ) ∑
i

∑
j

fij·R̂IJ (1)

F̃IJ(R) ) ∫ dΩ F̃IJ(R, Ω) (2)

ĥi ) ∑
j

exp(-rij
2/2σ2) (3)

ĥ ) 1
Ns

∑
i)1

Ns

ĥi (4)
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in Table 1. It can be seen that the HOP approaches a constant
value of 15.7496 when N g 729.

In order to allow the HOP to have a value around zero
when the sites distribute almost uniformly, a reduced HOP
for each configuration is defined as

The reduced HOP h allows one to see more clearly how far
the structure deviates from the ideal uniform structure.

2.3. Molecular Dynamics Simulations. Without further
theoretical development, the EF-CG method cannot decom-
pose explicit many-body interactions into effective pairwise
forces. In the case of ionic liquids, the current EF-CG
approach is therefore not applicable to the electronically
polarizable models, which are known to generate more
accurate simulation results for some physical properties of
certain species of ionic liquids.23 Therefore, the atomistic
nonpolarizable model was used to perform the all-atom MD
simulations for the EMIM+/NO3

- system and to generate
atomistic MD trajectories for the EF-CG approach. Except
the electronic polarization parameters, the force field for the
nonpolarizable model is the same as the polarizable model
reported in refs 15 and 23.

The DL_POLY simulation package24 was used to perform
both the all-atom and CG MD simulations. After equilibra-
tion, the EMIM+/NO3

- system with 512 ion pairs first was
simulated in a constant NPT all-atom MD simulation at P
) 1 atm and T ) 400 K for 1 ns, with a time step of 1 fs.
The average side length of the cubic simulation box was
determined from this NPT run to be L ) 50.03 ( 0.08 Å. A
1 ns constant NVT all-atom MD simulation with the side
length of the simulation box fixed to be the above value L
was then carried out. One configuration was recorded for
every 1 ps (1000 MD steps), so totally 1000 configurations
were saved. The EF-CG method was then applied to these
configurations to obtain the EF-CG force field for EMIM+/
NO3

-, which was then extended without recalculation to
generate the EF-CG force fields for the ionic liquid systems
with longer alkyl side chains, as described in the next
subsection.

With the various EF-CG force fields, the CG MD
simulations were performed for ionic liquids with 512 ion
pairs and varying different side-chain lengths at T ) 400 K.
After appropriate equilibration runs, the CG systems were

first simulated for 4 ns in a constant NPT MD ensemble,
and then a 4 ns constant NVT MD simulation was performed
to collect data. Note that CG simulation time corresponds
to much longer atomistic simulation time, because dynamics
of the CG systems are generally faster than those of the
corresponding atomistic systems. Because the CG sites have
heavier masses, the time step for the CG MD runs was set
to the larger value of 4 fs. Totally 1000 configurations were
sampled for each constant NVT CG MD run, with one
configuration saved for every 1000 MD steps. The cutoffs
for the effective VDW interactions and the real space part
of the effective electrostatic interactions were both set to be
14 Å. In the NVT runs, the side length of the cubic simulation
box was the average values obtained from the preceding NPT
runs.

2.4. Transferable Coarse-Grained Model of Ionic
Liquids. For imidazolium-based ionic liquid cations with
an alkyl side chain, most of the positive charges are
distributed close to the cationic ring. The net partial charges
on the carbon groups, which are five sites or farther from
the cationic ring, are so small that they can be effectively
considered to be zero. Also, only imidazolium-based ionic
liquids with a nitrate anion are studied in this paper. For
convenience, the ionic liquid systems are denoted as Cn,
where n is the number of carbon groups on the alkyl side
chain. For example, EMIM+/NO3

- is denoted as C2, and
HMIM+/NO3

- is denoted as C6. Because the structural
properties of ionic liquid systems with an even number of
carbon groups follow different rules than those for the ILs
with odd numbers,20 in the paper, only those with even
numbers are investigated.

The atomistic partial charges and polarizable force fields
for C2 to C12 have been reported in ref 15. The CG strategy
follows the previous one;10 the entire nitrate anion is coarse-
grained as a single CG site D, the imidazole ring as CG site
A, the single methyl group as CG site B, the terminal methyl
group on the side chain as CG site E, and the ethyl group
adjacent to site E as CG site C, and the other four ethyl
groups are denoted as CG sites M1, M2, M3, and M4,
ordered from the cationic ring to the terminal of the side
chain.

For the ionic liquid systems with different side-chain
lengths, the atomistic net partial charges on each CG group
are slightly different. To unify the CG models, the atomistic
net partial charges were averaged and adjusted so that they
have the same values for systems with a side-chain length
equal to or larger than C6. The net partial charges for C2

were unchanged. The CG scheme for C2 is shown in Figure
1, and the CG structures for C2 to C12 systems are shown in
Figure 2. The partial charges for the CG groups are also
given in Figure 2. Since the partial charges for the CG model
of C4 cannot be unified, it is not directly related to the main
focus of this study. Therefore, the study of the CG model
for the C4 system is not included in this paper.

The EF-CG approach was applied to C2 with the effective
VDW and electrostatic forces between CG sites computed
separately. These force calculations have been reported in
ref 13. The tails of the effective VDW forces approach 0
smoothly, and the middle to long-range parts of the effective

Table 1. Heterogeneity Order Parameter ĥ0 (Equation 4)
for Uniformly Distributed Systems with Different Number of
Sites Ns

Ns ĥ0

1 1.0000
8 4.1464
27 10.8388
64 12.9513
125 15.3220
216 15.5285
343 15.7368
512 15.7431
729 15.7495
1000 15.7495
1728 and larger 15.7496

h ) ĥ - ĥ0 (5)
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electrostatic forces are almost equal to the point charge
forces, indicating that the EF-CG forces very weakly depend
on the environment and thermal conditions. However,
because of the multipole interactions, the short-range parts
of the effective electrostatic forces are generally quite
different from the point charge forces.

For atomic groups with the same atomic structure in
different ionic liquid systems or in different positions in the
same molecule, such as the CH2 groups on the alkyl side
chain, they should have very similar interactions at the CG
level. If the difference caused by the orientation distributions,
as shown in eq 2, is negligible, the effective VDW forces
between these groups should be the same, and the long-range
electrostatic forces should be proportional to their net partial
charges. This has been verified by comparing the effective
forces obtained for C2 and C6 systems (data not shown).
Therefore, the effective forces for C2 can be used as a set of
general force fields to construct the CG force fields for
imidazolium-based nitrate ionic liquids with arbitrarily long
side chains.

The EF-CG force field for C2 was first extended to
construct the effective forces for C6. The unified CG model
for C6 is shown in Figure 2. The effective VDW forces were
copied from the C2 system to the C6 system for the CG
groups with the same atomic structure, and CG sites M1,
M2, M3, and M4 are the same as CG site C. For example,
the effective VDW force between sites M1 and E in the C6

system is the same as that between sites C and E in the C2

system. The effective electrostatic forces were rescaled by
the net partial charges on the CG sites. For example, the
effective electrostatic force between CG sites M3 and A in
the C6 system is equal to that between CG sites C and A in
the C2 system multiplied by 0.1235. The total effective forces
used to perform the CG MD simulations are the sum of the
corresponding effective VDW forces and the modified
effective electrostatic forces. For systems with longer side
chains (C8, C10, and C12), more CG sites C with zero partial
charges were inserted between CG site C and E in the C6

system, as shown in Figure 2. Since the effective electrostatic
forces for CG sites C and E are all zero, their effective VDW
forces are their total effective forces.

3. Results

The EF-CG force fields for ionic liquids with different side-
chain lengths extended from C2 were then used to perform
CG MD simulations at T ) 400 K. The absolute accuracy
of these extended force fields was verified by comparing the
CG MD simulation results for C8 with those for the MD
simulations with the atomistic polarizable model, which is
known to be closer to the experimental results.23 Besides
the difference between the nonpolarizable and polarizable
force fields, the modified partial charges for the unified CG

Figure 1. Coarse-graining scheme of EMIM+/NO3
- (C2) ionic

liquid.

Figure 2. Coarse-grained molecular structures of the imidazolium-based nitrate ionic liquids with various side-chain lengths.
The numbers shown on the coarse-grained sites are their effective partial charges.
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model and the slight difference in the orientation distributions
also lead to errors for the CG MD simulations. Nevertheless,
the results with the EF-CG model are still close enough to
those with the all-atom polarizable model for the purpose
of studying the general trends of the global behavior of ionic
liquids.

All of the all-atom and CG MD simulations were
equilibrated by annealing from T ) 1000 K down to T )
400 K with a temperature interval of 100 K. At each
temperature, a 106-step constant NVT simulation was per-
formed. The systems were then equilibrated at 400 K for a
longer time. The systems were verified to be equilibrated at
T ) 400 K by observing that the ionic diffusion constants
were nearly unchanged.

3.1. Validity of the Extended Coarse-Grained Force
Fields. The results for the CG MD simulations of C8 are
compared with those for the all-atom MD simulations with
the atomistic polarizable model previously reported in ref
15. The radial distribution functions (RDFs) between cationic
head (CG site A), tail (CG site E), and anions (CG site D)
are shown in Figure 3. It can be seen that, although there
are some differences in these plots (primarily in the
anion-anion structure), the RDFs for the CG MD simula-
tions follow reasonably well those for the simulations with
the atomistic polarizable model.

3.2. Thermodynamic and Structural Properties with
the Coarse-Grained Models. With the atomistic polarizable
model, it has been shown15 that the density of ionic liquids
decreases with increasing side-chain length, which agrees
with the experimental results.25-27 The densities of the ionic
liquids with different side-chain lengths simulated by the EF-
CG force fields at T ) 400 K are shown in Figure 4,
compared with those obtained with the atomistic polarizable
model. For the C2 system, the atomistic polarizable model
gives a significantly higher density, because the electronic
polarization effect leads the ions to a closer packed struc-

ture.23 With increasing side-chain length, so that more
nonpolar tail groups exist in the system, the polarization
effect becomes more localized. Therefore, the density dif-
ference is much smaller for the ionic liquids with longer side
chains. Despite the numerical differences, the CG model is
able to reproduce the trend of decreasing density with
increasing alkyl side-chain length.

The reduced HOPs obtained from the CG simulations are
shown in Figure 5. With increasing side-chain length, the
reduced HOPs for the cationic tail and head groups and for
the anions all increase. The tail groups have larger HOPs
than the head groups and anions, and the difference increases
for the systems with longer side chains. This indicates that
the tail groups aggregate more than the head groups and
anions, and the tail aggregation is more pronounced for
longer side-chain systems. This is consistent with the tail
aggregation phenomenon revealed with both the MS-CG14,17

and atomistic polarizable15 models.
The RDFs between head groups, tail groups, and anions

for different systems from the CG simulations are shown in
Figure 6. The peak positions and the plot shapes are relatively

Figure 3. Comparison of radial distribution functions for the C8 system with the atomistic polarizable model (dashed lines) and
the EF-CG model (solid lines): (a) tail-tail (CG sites E-E); (b) head-head (CG sites A-A); (c) anion-anion (CG sites D-D);
(d) head-anion (CG sites A-D). See Figure 2 for CG site definitions.

Figure 4. Average densities of the imidazolium-based nitrate
ionic liquids with various side-chain lengths from both the
atomistic polarizble models (solid line) and the EF-CG models
(dashed line).
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unchanged, indicating that the local structures of these groups
are retained for different systems. Because of the stronger
tail aggregation of the tail groups, the first peak of the
tail-tail RDFs increases with various side-chain lengths. The
peaks of the RDFs between head groups and anions also
increase with side-chain length, because systems become
more heterogeneous with longer chains due to the tail
aggregation phenomenon. This is also consistent with the
all-atom simulation results with the polarizable model.15

From the above results, it can be concluded that, despite
the differences in structural and thermodynamic properties,
the transferable EF-CG ionic liquid model reproduces the
spatial heterogeneity of ionic liquids studied to a satisfactory
degree.

3.3. Mesoscopic Ionic Liquid Structure. Before the
present work, the largest size MD simulation performed for
studying the spatial heterogeneity of ionic liquids contained
512 ion pairs, with a cubic simulation box size of only several
nanometers along its edges. As the simulations with a smaller
system containing 64 ion pairs show quite different results

from the 512 ion-pair system,15 a question is raised: is the
system with 512 ion pairs large enough so that the observed
microscopic spatial heterogeneity phenomenon due to tail
aggregation is the real nanostructural behavior, or is the finite
size simulation structure observed frustrated relative to the
real structure having a larger characteristic length scale? The
EF-CG model was therefore used to simulate a much larger
system to study the change in structural properties. If the
observed structure is a frustrated one, the larger system
should show a significant structural change compared to the
system with 512 ion pairs.

The EF-CG C12 system with 512 ion pairs was thereby
duplicated in three dimensions to have a system with 4096
ion pairs. The corresponding all-atom ionic liquid system
has a total of 217 088 atoms. After going through the same
annealing steps as described above, a 1 ns constant NPT run
yielded an average side length of the cubic simulation box
of 127.8 Å, which is almost exactly twice of the box size of
63.8 Å for the C12 system with 512 ion pairs. Therefore, the
CG MD simulations with the two sizes yield the same
density. A subsequent 1 ns constant NVT run was carried
out, with 1000 configurations evenly sampled. The time step
of these runs was 4 fs.

The HOPs of the 512 and 4096 systems with the EF-CG
force fields are compared in Table 2. Although the numbers
are not the same, the ones for the system with 4096 ion pairs
are only a little smaller than those for the system with 512

Figure 5. Reduced average heterogeneity order parameter
(HOP) values 〈h〉 of the tail (CG site E), head (CG site A),
and anion (CG site D) groups for the imidazolium-based nitrate
ionic liquids with various side-chain lengths. See Figure 2 for
CG site definitions.

Figure 6. Radial distribution functions of (a) tail-tail (CG sites E-E), (b) head-head (CG sites A-A), (c) anion-anion (CG site
D-D), and (d) head-anion (CG sites A-D) by the EF-CG models for imidazolium-based nitrate ionic liquids with various side-
chain lengths. See Figure 2 for CG site definitions.

Table 2. Reduced Heterogeneity Order Parameters
(Equations 4 and 5) Measured for C12 Systems Containing
512 and 4096 Ion Pairs, Respectively

512 ion pairs 4096 ion pairs

tail groups 4.50 ( 0.19 4.19 ( 0.11
head groups 2.24 ( 0.08 2.10 ( 0.05
anions 2.00 ( 0.07 1.87 ( 0.05
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ion pairs. The RDFs of the two systems are compared in
Figure 7. The only noticeable difference is that the peaks
for the system with 4096 ion pairs are somewhat lower. From
these results, it can be concluded that the C12 system with
512 ion pairs only has a slightly stronger tail aggregation
than the one with 4096 ion pairs, and its finite size effect is
not significant for the spatial heterogeneity phenomenon. It
can be further anticipated that the observed structure will
not change with increasing simulation size beyond 4096 ion
pairs. Since the ionic liquid systems with longer side chains
have a more significant finite size effect, the size of 512 ion
pairs should also be large enough for the other systems
investigated (C2-C10).

4. Conclusions

By sacrificing some degree of accuracy in local liquid
structure, the EF-CG method has been successfully applied
here to imidazolium-based ionic liquids with varying alkyl
side-chain lengths. In addition to the transferability in
temperature shown in ref 13, the EF-CG method is also
shown here to have good transferability and additivity
between systems with various side-chain lengths. Therefore,
a small set of effective CG force fields is adequate to
represent a series of ionic liquids having different side-chain
lengths. This will be of particular importance for building a
library of ionic liquid interactions and for the systematic
computational design of ionic liquids at the CG level.

For organic systems with large molecules, such as ionic
liquids, the finite size effect can generally be significant due
to the bulkiness of the underlying molecules. Testing the
finite size effect of such systems at the CG level is convenient
and efficient. The present EF-CG model for ionic liquids
has, for example, been used to verify that the spatial
heterogeneity in ionic liquids due to tail aggregation is truly
a nanoscale phenomenon.14-17 Although the finite size effect
is still noticeable, the ionic liquid systems with 512 ion pairs

were shown to be large enough for the qualitative study of
such spatial heterogeneity in ionic liquids with alkyl side
chains of C12 and shorter in length.

Although the current study has applied the EF-CG method
to only the imidazolium-based/nitrate ionic liquids to build
a set of transferable CG force fields, the method can be
applied to other kinds of ionic liquids, as well as other
organic molecular systems. Its extendibility, transferability,
and additivity will prove to be important for the systematic
computational design of these systems at a coarse-grained
level.
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Abstract: HIV-1 protease performs a vital step in the propagation of the HIV virus and is
therefore an important drug target in the treatment of AIDS. It consists of a homodimer, with
access to the active site limited by two protein flaps. NMR studies have identified two time
scales of motions that occur in these flaps, and it is thought that the slower of these is responsible
for a conformational change that makes the protein ligand-accessible. This motion occurs on a
time scale outside that achievable using traditional molecular dynamics simulations. Reversible
Digitally Filtered Molecular Dynamics (RDFMD) is a method that amplifies low frequency motions
associated with conformational change and has recently been applied to, among others, E. coli
dihydrofolate reductase, inducing a conformational change between known crystal structures.
In this paper, the conformational motions of HIV-1 protease produced during MD and RDFMD
simulations are presented, including movement between the known semiopen and closed
conformations, and the opening and closing of the protein flaps.

1. Introduction

Human immunodeficiency virus-1 protease (HIV-1 PR)
performs a vital step in the life cycle of HIV and is therefore
an important drug target for the treatment of acquired
immunodeficiency syndrome (AIDS).1 The enzyme is re-
sponsible for the cleavage of the viral polyproteins to yield
their functional constituent proteins, a crucial process for the
correct assembly and maturation of the HIV virions.

HIV-1 PR is a homodimeric enzyme of 198 residues,
containing two mobile flaps that cover the active site. For
convenience, the residues of the two monomers are numbered
1 to 99, and 101 to 199. The HIV-1 PR active site consists
of catalytically important, spatially neighboring aspartic acid
residues, 25 and 125, at the base of a hydrophobic cleft. Each
flap contains two �-sheets (residues 43 to 49 and 52 to 66)
connected by a flexible Gly-Gly-Ile-Gly-Gly sequence
(residues 48 to 52). Access to the active site requires
substantial conformational change in the flap residues, and
the nature of this motion has been the topic of much research.

In this paper, an investigation into the flap motions of
HIV-1 PR is presented, including molecular dynamics

trajectories obtained at a range of temperatures, and reversible
digitally filtered molecular dynamics (RDFMD) simulations
performed using a variety of protocols. Conformational
motions are discussed according to relevant experimental
data, and the accessibility of the active site is reported
following different opening events.

1.1. Experimental Studies of HIV-1 PR. The HIV-1 PR
system has been extensively studied by experimental meth-
ods. Abundant structural data of the apoenzyme and the
complex formed with a number of substrate analogues and
inhibitors is available from the protein data bank (pdb)2 and
HIV structural reference database (HIVSDB).3,4 A review
of the X-ray data was performed using 73 differing struc-
tures,5 locating rigid regions of the protein (such as the
residues that surround the active site) and more flexible areas
(such as the “flap elbows” around residue 40).

The flap region is seen to exhibit a semiopen conformation
in the majority of experimentally determined structures of
the free protein, with one structure showing the flaps in an
open arrangement allowing access to the active site, obtained
with the use of mutations. The flaps have been shown to be
in a more ordered, closed conformation in the presence of a
ligand. The semiopen (pdb structure 1HHP6), open (pdb
structure 1TW77) and closed (pdb structure 1G6L8 observed
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in a tethered dimer) conformations are shown in Figure 1.
There is a significant change in the packing of the flap tips,
which reach past each other in the closed form but cross in
front of the other in the semiopen state. Also shown in Figure
1 are residues 81 and 181 which belong to the hydrophobic
P1 loops (residues 79 to 81 and 179 to 1819) and are known
to be important in flap motions.

In the inhibitor-bound state, all of the available X-ray
structures show the flaps to persist in the closed conforma-
tion, with one exception, where the structure possesses a
metal carborane inhibitor bound to part of the flaps, causing
them to be held in an open-type conformation (pdb structure
1ZTZ10).

Of particular interest to this study are two NMR studies
which shall be referred to in later sections of this paper. In
1999, a model of the flap mobility of HIV-1 PR was proposed
by Ishima et al.11 This was based on a detailed NMR
investigation of a mutant that exhibits the same catalytic
activity as the wild type protein but is stable in the
concentrations required for NMR. The free enzyme was
proposed to exist mainly in a semiopen state in solution, and
two flap motions were detected. One occurs on a time scale
well within 10 ns and involves the flap tip residues, 48 to
52. The other is a larger movement involving more of the
flap residues and exists on a time scale of approximately
100 µs. The less ordered protein flaps are proposed to be in
an open conformation that allows access to the active site.
It was also suggested that an approaching substrate could
facilitate the opening of the flaps via interaction with
phenylalanine 53.

An extension of the study by Ishima et al., that includes
the effects of a bound substrate, was published in 2003.12 It
was proposed that the association rate of substrates was not
controlled by diffusion, but by a rare event, such as a flap
opening motion. It is noted that the motions previously

observed in the free protein are of limited amplitude in the
substrate complex.

1.2. Theoretical Studies of Flap Mobility in HIV-1
PR. A number of computational studies of the apoenzyme
have sampled a variety of flap conformations, the most
successful being those which employed approaches which
enhance conformational sampling.

Of studies which used conventional MD and explicit
solvent, only one reports significant motion of the flaps. Scott
et al. report a large opening event within 3 ns which persists
until the end of the 10 ns simulation.9 In this conformation,
the flaps are lying in an asymmetric arrangement with
isoleucine 50 interacting with the P1 loop, residues 79 to
81, and with isoleucine 47 and 54. This motion is stabilized
by the clustering of hydrophobic sidechains, including those
of valine 32, proline 79, and proline 81. Within this
hydrophobic cluster is a hydroxyl group of threonine 80,
proposed to keep the flap regions mobile by destabilizing
the open conformation. The motion is not sampled in the
presence of an inhibitor. Scott et al. claim that the simulation
results are in agreement with the presence of a motion
occurring in a time scale less than 10 ns, reported in the
NMR study by Ishima et al. However, the motion described
by Ishima et al. should be reversibly sampled well within
10 ns and should include only residues 49 to 52. It seems
more likely that a motion more similar to the slower event
described by Ishima et al. has been sampled in this study.
This motion exists on the 100 µs time scale, in which the
protein moves to a less ordered, more open state which is
considered to be ligand-accessible. It is possible that Scott
et al. have simulated this rare event, but the lack of a reverse
path, which has not been previously reported, limits the
conclusions that can be taken from this study. Other possible
causes for sampling the opening motion have been suggested
to be the use of the GROMOS forcefield13 or issues with

Figure 1. Cartoon representation of HIV-1 PR of semiopen (pdb 1HHP) (a and d), closed (pdb 1G6L) (b and e), open (pdb
1TW7) (c and f)) conformations. For the top view (d, e, and f), only flap and P1 loop residues are shown for clarity (residues 44
to 59, 76 to 83, 144 to 159, and 176 to 183). The van der Waals radii of particularly significant residues are displayed; the active
site, residues 25 and 125, are shown in red, the flap tips, residues 50 and 150, are shown in blue, and residues 81 and 181 of
the P1 loop are shown in green.
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inadequate solvation of the protein cavity.14 A longer 22 ns
MD simulation using explicit solvent, carried out by Perry-
man et al., does not observe this large conformational change
in the WT apoenzyme and only sees one flap of a more
flexible mutant move from the intial closed conformation to
one similar to the semiopen state.13

Several simulations have been carried out using techniques
which enhance sampling and these observe an increased
range of conformations compared with conventional MD
alone. Zhu et al. apply a constraint on the interflap distance
in order to sample open conformations of the flaps.15 The
free energy profile calculated for the apoenzyme shows an
initial barrier to opening, and after an opening of ap-
proximately 3 Å between the R-carbon residues, the profile
is flat, suggesting a significant flexibility of the open
conformation.

The transition between the closed and semiopen states in
the apoenzyme was modeled using a single reaction path
method by Rick et al. in 1998.16 Although neither state allows
access to the active site, the transition between semiopen
and closed conformations is enzymatically important, pos-
sibly describing a closing motion over bound substrates. A
loss of �-sheet structure was noted during the simulations,
and significant flexibility was reported in the flap tips. Results
suggest that the semiopen state exists at a higher potential
energy but is stabilized by entropy.

Hornak et al.,17 Tozzini et al.,18 Tóth and Borics,19 and
Hamelberg and McCammon20 all observed flap opening from
semiopen/closed starting structures in their simulations. In
the Hornak publication,17 unrestrained molecular dynamics
performed on the apo protein using a continuum Generalized-
Born solvation model showed multiple conversions between
the closed and semiopen forms, along with several reversible
large-scale flap opening events. It was noticeable that the
most significant opening events were not associated with flap
tip curling, as has been postulated elsewhere.9 In the
publication of Hamelberg and McCammon,20 the accelerated
molecular dynamics approach21 was used to overcome the
time scale limitations, and a closed-semiopen-open con-
formational transition was observed with the use of explicit
solvent. In addition, frequent cis-trans isomerization events
of the Gly-Gly ω dihedral angles in the flap tips were
observed, suggesting that the flexibility if the Gly-rich flap
tips contributes to the opening motion. This conclusion is
supported by experimental mutagenesis data, which shows
that the Gly residues are nearly intolerant of any substitution.
A study by Tóth and Borics19 used Langevin dynamics, a
continuum solvent model, and only considered torsion angles,
keeping bond angles and distances rigid. Starting from the
semiopen conformation, they sampled the open conformation
of the flaps in addition to a range of conformations including
curling of the flap tips. In addition, Tozzini et al.18 also
observed flap opening among other conformations starting
from a coarse-grained model of the semiopen structure. The
simulations revealed four types of flap conformation, closed,
open, wide-open, and semiopen. They also show that in the
open form, the flap-tips have van der Waals contact with
the laterally located residue 80 (residue of P1 loop) of the
opposite monomer. This observation agrees with the same

observation seen in a crystallographic study of the more open
HIV-1 PR structure (pdb code 1TW7).7

1.3. Protonation State of the Aspartic Acid Dyad. A
range of theoretical and experimental studies have been
performed to determine the protonation state of the active
site of HIV-1 protease, in which the aspartic acids 25 and
125 are in close proximity. At pH 7, both acids would
normally be modeled in the deprotonated state,22 although
their close proximity complicates this issue.

A number of experimental studies show that the protona-
tion state of the catalytic dyad is monoprotonated at the active
pH range of 5-6, where the stability and activity of this
protease is at a maximum.23,24 At neutral pH, the dyad would
lose its proton and become more unstable.25 In contrast, there
is an NMR study by Smith et al. which concludes that the
dianionic form exists in solution.26

Theoretical studies also report contrasting protonation
states for the aspartic acids. Wang et al.22 suggest a dianionic
state as this form gives inter-residue aspartate distances to
be closest to the crystal structure. However, the MD
simulations in implicit solvent are only 120 ps and showed
little deviation from starting structures for any protonation
state. The simulations of Scott et al. have been confirmed as
using a dianionic dyad in the active site (personal com-
munications), and the reported six counterions used by
Perryman et al. also suggests an unprotonated active site.

In support of the monoprotonated form of the active site
aspartates are the MD and ab initio studies of Piana et al.27,28

In the free enzyme, the dyad was considered to be almost
ionic, with the aspartic acid residues sharing one proton. It
is suggested that the ionic state of the proton may account
for the interpretation of the NMR data by Smith et al.26 Also,
at each step of the proposed catalytic cycle, the aspartic acid
dyad exists either in the monoprotonated form, or in a
transition state, sharing protons with the substrate or with
water molecules.

An MD study of the stability of the monoprotonated and
deprotonated forms of the aspartic dyad under physiological
conditions29 concluded similar dynamics for both systems,
independent of the protonation state of the dyad. A sodium
ion was shown to closely bind to the catalytic dyad in the
deprotonated state, which blocks the effects of the repulsion.
In the absence of this ion, the dimer became unstable, leading
to a fully open structure and perhaps explaining the result
of Scott et al.

There is therefore no clear choice of protonation state of
the aspartic acid in the apoenzyme, and so, in this study,
both the monoprotonated and deprotonated states have been
investigated.

1.4. Summary. The HIV-1 PR apoenzyme is believed to
exist in a semiopen structure in solution and is known to
undergo two conformational motions: a limited motion on a
time scale well within 10 ns that involves a few residues on
the flap tips, and an opening event on a 100 µs time scale
(Ishima et al.11). Scott et al.9 report an opening event during
10 ns of simulation which increases the accessibility of the
active site although the motion is not reversibly sampled.
Perryman et al.13 report 22 ns of simulation which did not
sample the large opening event seen by Scott et al. but
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presented results in agreement with the rapid flap curling
motion reported by Ishima et al. Hornak et al.17 and
Hamelberg and McCammon20 have both observed flap
opening, the former using unrestrained molecular dynamics
in a continuum solvent, and the latter using an enhanced
sampling method and accelerated molecular dynamics.

In light of these results, we have applied our own enhanced
sampling approach, Reversible Digitally Filtered Molecular
Dynamics (RDFMD), to the simulation of flap motion in
HIV-1 PR. This approach is computationally efficient and
offers the advantage of being useable with explicit solvent
models. In addition, these RDFMD simulations are supple-
mented by a range of normal and high temperature MD
simulations, for the monoprotonated and dianionic aspartic
acid dyad.

2. Computational Methodology

2.1. Reversible Digitally Filtered Molecular Dynamics.
RDFMD is a method of amplifying motions of a specific
frequency during a simulation. It has been used to promote
conformational motions in the pentapeptide YPGDV,30 the
Syrian hamster prion protein31 and E. coli dihydrofolate
reductase.32 There are a number of interdependent parameters
that are associated with the method and a protocol optimized
to maximize induced motion in dihedral angles will be
applied here.32,33 This parameter set was previously shown
to be suitable for application to flexible regions of protein
systems.32

RDFMD is performed by the combination of filter
sequences separated by periods of traditional molecular
dynamics. During the filter sequences, a short simulation is
performed in the NVE ensemble with the internal velocities,
Vint,i, saved at each step, i, to create a velocity buffer. A digital
filter is a set of coefficients designed to create a certain
frequency response. A suitable digital filter is applied to the
velocity buffer by multiplying the coefficients of the filter,
ci, by the Cartesian components of the internal velocities,
Vint, i, and summing across the velocity buffer (of length 2m
+ 1 steps), as shown in eq 1. Depending on the digital filter
applied, the set of velocities produced, Vfilt, will have certain
frequencies of motion amplified or suppressed. The filtered
velocities are then multiplied by an amplification factor, A,
which determines the level of amplification performed by
each filter application and are summed with the original
velocities from the center of the velocity buffer, V0. This
creates a new set of velocities, V′, as shown in eq 2.

Vfilt ) ∑
i)-m

m

ciVint,i (1)

V ′ )V0 +AVfilt (2)

Simulation can be continued using the coordinate set
corresponding to the center of the velocity buffer, with the
new velocity set, V′. Another velocity buffer can be filled,
to which the digital filter can again be applied, thus
progressively amplifying motions of a specific frequency. It
is desirable to control the number of steps between filters,
d, and if this is to be less than half the buffer length (i.e., if
d < m), the simulation after the first filter must be run both

forward and backward in time, as illustrated in Figure 2. If
the time between filter applications is too long, the effects
of each filter dissipate before the next is applied, but if too
short, the filter sequences are computationally expensive and
the system has no time to respond to the amplification of
velocities.32

The repeated application of filters is performed until the
internal energies of the targeted residues breach a specified
internal temperature cap. This parameter will be discussed
in a later section. Once this cap is reached, the filter sequence
is ended, and molecular dynamics is performed for a period
of time before another set of filters are applied. During this
period the effects of the filters are allowed to dissipate, and
the simulation temperature quickly returns to that set by a
thermostat.

A suitable set of parameters for use with flexible regions
of a protein has been optimized on a pentapeptide system32

and shall be applied here. This includes the use of a digital
filter designed to amplify frequencies between 0-100 cm-1

(for which 201 coefficients has been found to be sufficient),
an amplification factor of 2, and a delay between filters of
either 50 or 100 steps (any value in this region is suggested
to be suitable). Filter sequences are separated by 4 ps of
molecular dynamics simulation in either the NVT or NPT
ensembles. This is sufficient time for the system temperature
to return to the desired 300 K, and during this time
conformers are sampled for analysis.

Full details of RDFMD, digital filter design, and the
methods of optimizing RDFMD parameters can be obtained
from previous publications.30-32

2.2. Computational Details. The 1HHP pdb structure6

of the apo enzyme in a semiopen conformation was used as
a starting point for both the monoprotonated and unproto-
nated active site systems. This structure consists of a single
monomer, and a transformation of (x, y, z) to (y, x, -z) is
used to generate the symmetrical dimer. The crystal structure
was checked, and polar hydrogen atoms were placed, using
WHAT IF.34 All other hydrogen atoms were placed and the
structures solvated within the XLEAP utility of the AMBER
package.35 In the monoprotonated form of the enzyme, the
proton was placed on the OD2 oxygen of aspartate 125,
which lies close to the catalytic aspartate of the second
monomer. Solvent was added to give a minimum distance
of 12 Å from the protein surface to the cell boundary. The

Figure 2. RDFMD sequence showing the delay parameter,
d, and the filter length, 2m + 1.
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overall charge was neutralized by the addition of chloride
ions within XLEAP. The CHARMM27 force field36 has been
used with TIPS3P37 explicit solvent.

All simulations presented here have been performed using
the NAMD package38 (NAMD was developed by the
Theoretical Biophysics Group in the Beckman Institute at
UrbanasChampaign) with cuboid periodic boundary condi-
tions, a particle mesh Ewald treatment of electrostatics (with
an interpolation order of 6), a 2 fs time step, and a switching
function applied to Lennard-Jones interactions between 9
Å, and the 10.5 Å cutoff. All bonds containing hydrogen
atoms have been constrained to equilibrium lengths using
SHAKE with a tolerance of 10-8 Å. Simulations performed
in the NVT ensemble use a Langevin thermostat, with an
associated damping parameter. Simulations in the NPT
ensemble also use a Nosé-Hoover Langevin barostat (with
piston period and decay parameters).

During system setup a total of 96 000 steps of minimiza-
tion were performed using the conjugate gradient line-search
algorithm.38 The system was then heated in the NVT
ensemble for 40 ps at temperatures from 50 to 300 K, at 50
K intervals. A 10 ps-1 thermostat damping parameter was
used to control the system temperature. An NPT simulation
was then used to equilibrate the system pressure to a target
of 1 atm; 100 ps of molecular dynamics was performed using
a decay parameter of 100 fs and a piston period of 200 fs.
A further 200 ps was then performed using a decay parameter
of 300 fs and a piston period of 500 fs. The equilibrated
system contained 9370 water molecules and 7 chloride ions
and had cell dimensions of 61.08, 60.98, and 82.37 Å.

Molecular dynamics simulations are performed in the NVT
ensemble using a 5 ps-1 thermostat damping parameter. The
RDFMD simulations use either the NVT or NPT ensembles
between filter sequences (which are performed under NVE
conditions), using a 5 ps-1 thermostat damping parameter, a

barostat decay parameter of 300 fs and a piston period of
500 fs as applicable.

3. Results

It is likely that the protonation state of the catalytic dyad is
important for determining the forces in the cavity of the
protein, and these may influence the conformational motions
of the protein flaps. Initial simulations have therefore been
performed with the monoprotonated and unprotonated dyad
states and the distance between the R-carbons of the aspartic
acid residues are shown in Figure 3. The distance observed
in the crystal structure of 1HHP is shown with a dotted line.

The monoprotonated dyad sees two distinct states. The
first has an R-carbon separation between residues 25 and
125 of over 7 Å, and the second has a distance less than 7
Å. Visualization of the simulation trajectories (not presented
here) indicates that this change, which occurs rapidly at 5
ns, involves the removal of a water molecule from between
the aspartic acid sidechains. This water molecule entered the
region during the equilibration stage. This is not unexpected,
as a water molecule is involved in the reaction catalyzed by
HIV-1 PR. The second state has a similar inter-residue
distance to that seen in the crystal structure.

The unprotonated dyad begins with an aspartic acid
separation similar to that seen in the crystal structure, but
this distance quickly increases due to the insertion of several
water molecules between the aspartic acid side chains.
Similar insertions of water molecules have been previously
observed during MD simulations.29 The resulting structure
indicates a distance approximately 2 Å larger than that seen
in the crystal structure.

It would therefore appear that the dimer interface is more
stable when using a monoprotonated dyad, and subsequent
simulation results presented here are all performed on the
monoprotonated dyad system.

Figure 3. Inter-residue distance between catalytic aspartic acids 25 and 125. Results from 10 ns of MD simulation using the
unprotonated and monoprotonated conformations are shown. The dotted line indicates the inter-residue distance in the 1HHP
crystal structure.
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3.1. Molecular Dynamics. It is difficult to describe the
flap motions of HIV-1 PR in graphical form, and analysis is
shown by characteristic interaction distances and by snap-
shots of the protein displayed in a manner consistent to
Figure 1. Trajectories of simulations presented in this study
may be available by request from the corresponding author.
Three conformations are identified during MD simulations,
which can be defined by the location of the flap tip isoleucine
residues 50 and 150, with respect to important hydrophobic
side chains. How open the structure is can be described using
the distance between the two flap tips, and the distances
between the flap tips and the catalytic residues.

The starting semiopen structure, 1HHP, requires the side
chain of the isoleucine flap tips to be closely associated with
the side chain of the phenylalanine residue on the opposite
flap (for example, an interaction between residues 50 and
153). The closed conformation, seen in crystal structures with
inhibitors or substrate analogues, is characterized by the two
flaps reaching ‘past’ each other, interacting with the P1 loop
(residues 79 to 81) of the opposite monomer. This can be
most clearly seen when looking at the distance between the
side chains of the isoleucine flap tips and a proline residue
in the P1 loop (residue 81 or 181). The semiopen and closed
conformers can be identified using rmsd against the 1HHP
and 1G6L pdb structures presented in Figure 1. Superposition
is performed over residues 1 to 45, 55 to 99, 101 to 145,
and 155 to 199 (those residues deemed not to be part of
protein flaps) and the rmsd of the remaining flap residues
(46 to 54 and 146 to 154) measured. A third conformation,
with the flap tips curled back toward the P1 loop of the same
monomer is also frequently observed, and can be defined
by the close interaction between the isoleucine 50 to proline
81 (or residue 150 to 181) side-chain distance.

No significant opening events are sampled by the flaps
during the 10 ns MD simulation. The first flap (assigned the
lower residue numbers) fluctuates between the semiopen and
curled conformations (demonstrated by the close distances
between residues Ile50 and Phe153 (semiopen) and Ile50
and Pro81 (curled); see Supporting Information) and the
distance between the flap tips and the catalytic residues is
maintained at approximately 15 Å, indicating the stability
of the cavity structure.

The second flap also begins in a state similar to the
semiopen form; however, after 0.7 ns, a clearly defined
closed conformation is obtained. The rmsd against the
semiopen structure increases, and the rmsd against the known
closed structure falls from 6 to 3 Å. This change is
accompanied the movement of flap tip residue 150 into close
proximity with proline 81. After 1.7 ns, the second flap
returns to a semiopen conformation. After this point, the flap
interchanges between the semiopen and curled forms, in a
similar manner to that seen in the first flap.

Conformations adopted by the HIV-1 PR flaps during this
simulation are representative of those referred to as semiopen,
curled, and closed. Figure 4 shows examples of each of these
states. For clarity, only the flap and P1 loop regions of the
protein as shown in the top views in Figure 1 are displayed.
The nature and timescales of the motions observed suggest
that it is the interconversion between these conformers that

account for the fast motions (<10 ns) observed by Ishima
et al. There is no evidence of flap-opening or of increased
accessibility to the active site. It is also worth noting that
although the closed conformation is sampled, this only occurs
in one flap rather than in both as seen in X-ray structures
with bound inhibitors.

3.2. Raised Temperature Molecular Dynamics. To
assess the flexibility of protein residues, and to determine
the stability of the HIV-1 protease system, a range of 10 ns
simulations were performed at 50 K intervals from 350 to
500 K. Simulations began from the same starting point as
the 300 K simulation, and the temperature was adjusted using
the Langevin thermostat. The results are briefly discussed
here using the locations of the flap tip residues isoleucine
50 and 150 to describe the conformers observed.

The flap conformations sampled in the 350 K MD
simulations are similar to those of the 300 K MD simulation.
As in the 300 K simulation, the closed conformation is only
attained in one flap, indicating that although mobile between
the semiopen, closed and curled conformers, the change to

Figure 4. Top: Right-hand flap exhibits curled conformation
with close contact between residues 150 (blue) and 181
(green). Middle: Left-hand flap in the semiopen conformation
as seen by the close contact between residues 50 (blue) and
153 (orange). Bottom: Left-hand flap in closed conformation,
with close contacts between residues 50 (blue) and 181
(green). Conformers obtained after 10 ns (top and middle) or
1.3 ns (bottom) of monoprotonated dyad MD simulation at 300
K. Residues 44 to 59 and 76 to 83 of each flap are shown, as
presented in Figure 1.
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a stable state with both closed flaps may be outside the 10
ns time scale. It is worth noting the consistency with the
results of Perryman et al., performed on a mutant similar to
the wild-type protein used here, which sampled transitions
from the closed to semiopen form in only one flap within a
22 ns simulation.

The 400 K simulation samples conformations to those at
300 and 350 K. However, the simulation at 450 K observes
a significant flap opening event where the second flap moves
away from the active site, and another, smaller flap opening
event through the curling back of the flap tips (see Supporting
Information). This opening could be similar to that reported
by Scott et al., although Scott et al. sampled an immediate
opening.

At 500 K, the two flaps both drop toward the active site
near the start of the simulation, completely excluding water
from the protein cavity. There is no experimental data to
suggest the existence of this conformation, although a similar
event was sampled during a simulation performed by David
et al.39 with an implicit solvent distance-dependent dielectric
model. It is possible that the accessibility of this conformation
may be associated with a change in the solvation properties
of the water model with temperature, but it is more likely to
indicate a deficit of the simulation procedures and model
for this system using a rapid jump to such a high temperature.

3.3. RDFMD. RDFMD has the ability to selectively
enhance motions in certain regions of the protein, without
increasing the energy in all degrees of freedom. This is ideal
for the HIV-1 PR system, which has been shown to be highly
flexible and unstable at elevated temperatures. The flap tip
residues are known to be mobile and have been shown to
adopt distinct conformers. Indeed, in the recent work of
Hamelberg and McCammon,20 the flexibility of the Gly-rich
flap tips has been shown explicitly to contribute to the
opening and motions of the flaps. RDFMD is therefore
applied to the flap tip residues 49 to 51 and 149 to 151 using
the previously described protocol. One hundred filter se-
quences are performed in an RDFMD simulation, with each
sequence being separated by 4 ps of NPT or NVT MD
simulation which is pieced into a trajectory for analysis. The
protocol used is designed to increase dihedral angle motion
in targeted regions as previously described. An important
limitation of the RDFMD method when applied to increase
dihedral motions is that the frequencies of these motions are
similar to those in the ω peptide dihedral. However, by
limiting the energy put into the system, ω angle isomerization
can be excluded because of the higher energy barriers of
isomerization of this dihedral, compared with those of ψ and
φ. Within each filter sequence, amplification of low frequency
motions is therefore repeated only until the targeted residues
reach a desired temperature cap. No simulations presented
here include isomerization of peptide bonds.

Twelve RDFMD simulations have been performed, visit-
ing each permutation of protocol found by varying either
NVT or NPT MD between filter sequences, a temperature
cap of 900, 1100, or 1300 K, and 50 or 100 steps between
filter applications. A range of protocols are used so to
investigate the response of the system to different parameter
choices, and to test the reproducibility of results when using

this nonequilibrium method. Two of the simulations with a
1300 K temperature cap saw isomerization of the peptide
bonds and have therefore been discarded. A total of ten
RDFMD trajectories are therefore considered here.

Similar motions to those observed during molecular
dynamics simulations are seen using RDFMD, with transi-
tions occurring at an increased rate between closed, curled
and semiopen states. However, the RDFMD results discussed
here can be grouped into three categories, each sampling a
significant motion to a greater extent than seen (if seen at
all) during the MD simulations: reversible flap opening,
transitions between the semiopen and closed conformations,
and flap separation via curled conformations. For each
category, the clearest simulation results obtained are pre-
sented, along with an indication of how often this type of
motion is observed. Simulations that are not presented
contain lesser movements or do not sample transitions as
completely. Where flap opening motions are noted, the
shortest distance between all atoms of residues 45 to 55 and
those of 145 to 155 is reported (giving the separation of the
flaps looking at the flap tips and four residues either side).
This is intended to indicate the extent of accessibility to the
active site. Simulation snapshots are considered a clear way
of describing conformers sampled and are included as a
replacement to full graphical analysis, which is included only
where of particular interest.

When considering the motions induced by RDFMD it is
important to note that only three residues at the tip of each
flap are targeted by the applied protocol.

3.3.1. ReVersible Flap Opening. Reversible flap opening
is observed in two of the ten 400 ps RDFMD simulations.
The simulation presenting the largest opening event used a
filter delay of 100 steps, a temperature cap of 1100 K, and
NPT MD simulation. Prior to the opening event, both flaps
undergo dynamics similar to those reported for MD, with
the first flap remaining in the semiopen conformation and
the second flap converting between curled and semiopen
conformations (indicated by proximity of the isoleucine 150
side chain with the side chains of phenylalanine 53 and
proline 181, see Supporting Information).

At 280 and 305 ps, significantly open conformations which
are believed to be similar to those reported by Scott et al.9

are sampled. The flap separation reaches a maximum of 10.1
Å at 305 ps, indicating an opening motion of more than 6.5
Å (see Supporting Information). Snapshots illustrating the
significant simulation conformations are shown in Figure 5.
As Figure 5a and 5b show, in the most open conformation,
flap 2 adopts a curled conformation and the first flap slowly
increases its distance from the active site with no interaction
with the P1 loop, previously seen to stabilize the curled state.
After 320 ps, the opening is reversed, indicated by the
decrease in the distance between the nearest flap residues
and the flaps return to a conformation where the active site
is inaccessible with the flaps approaching a closed conforma-
tion at the end of the simulation (Figure 5c and 5d).

This simulation appears to sample more completely the
motion reported by Scott et al., with both an opening motion
away from the active site, and a closing that Scott et al. did
not observe. The secondary structure observed during this
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RDFMD simulation shows no significant differences to that
obtained from the 10 ns MD trajectory (analysis not shown),
with limited variation in the �-sheet content of the flaps. This
is the case for all RDFMD simulations performed in this
study.

A complete opening and corresponding closure was also
obtained by the RDFMD simulation with a filter delay of
100 steps, a temperature cap of 900 K, and NVT MD
simulation between filter sequences. An opening of 8.3 Å is
observed in a similar fashion with one flap lifting from the
protein cavity, and the other flap adopting a curled confor-
mation. Analysis shows similar results for this lesser opening
event (not presented). The opening motion of one flap has
therefore been observed in two out of the ten RDFMD
simulations performed.

3.3.2. Transitions between the Semiopen and Closed
Conformations. One of the ten RDFMD simulations sampled
a closed conformation from the initial semiopen starting
structure, a conformational change not sampled during the
MD simulations where, similar to several of the RDFMD
simulations, only one flap moves toward a closed state. In
Figure 6, six snapshots from this trajectory are presented.
The conformation sampled by the RDFMD simulation where
both flaps are in the closed state is similar to the closed 1G6L
X-ray structure obtained from a tethered apo dimer and is
commonly seen in the presence of an inhibitor. In this
conformation, the flap tips swap sides (as shown in Figure
1d and 1e). This conformational change starts after 50 ps
during the RDFMD simulation and does not require any
significant separation in the flaps (see Supporting Informa-
tion).

We consider the pathway between the semiopen and closed
conformers to be similar to that seen in a reaction path study,
published in 1998, by Rick et al.40 There is little movement
in the flap residues that are involved in the �-sheet structure
of the protein flaps, and the flap tips (residues 48 to 52 and
148 to 152) do not cross above or below each other but pass
directly in front. This is facilitated in the work of Rick et al.
by the tips bending toward the direction they are to move
in. However, in this simulation, the bend is toward the P1
loop in the opposite direction. The movement therefore is
initially similar to the flap curling motion. Once the flaps
have crossed, the flap tips straighten to give the closed
conformation as seen in Figure 6 at 82 ps. Interestingly, as
noted by Rick et al., it is the flap tip residues that are
primarily involved in this motion, and these are assigned by
Ishima et al. to the faster motion observed in a time scale of
less than 10 ns by NMR. However, the single occurrence of
this event in this study suggests that the transition of both
flaps between semiopen and closed conformations does not
occur on this time scale, and it is the semiopen to curled
motion that is observed by Ishima et al.

Also noted in this simulation is the occurrence of a brief
opening event just before 100 ps, during which a maximum
flap separation of 6.5 Å is observed at 127 ps. Figure 6 shows
snapshots of the simulation trajectory, in which, at 127 ps,
a conformation is seen with strong interactions between the
flap tips and the P1 loop of the opposite protein monomers
but with no contact between the two flap tips, as in pdb
structure 1TW7. From this state the second flap undergoes
an opening motion, reaching a maximum flap separation of
9.8 Å and making no contact with the opposite P1 loop. This

Figure 5. Snapshots of RDFMD simulation using a filter delay of 100 steps, an internal temperature cap of 1100 K and NPT
simulation between filter sequences. Presentation is as described in Figure 1.
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is most clearly seen in Figure 6 at 215 ps. Following this
opening motion, the flaps temporarily close back to the closed
conformation, with both flaps in contact. The flaps do
separate again to a lesser extent, with contact between the
flap tips and the P1 loop of the opposite monomers
maintained.

This RDFMD simulation has therefore shown a transition
between the semiopen and closed conformations in both flaps
that was not sampled in the 300 K or raised temperature
MD simulations. This motion was observed in only one of
the ten RDFMD simulations and could be an important step
of the protein’s catalytic cycle. It was noted that no flap
separation was required to move between states. Also
suggested is that flap opening from the closed conformation
is possible, perhaps making use of an intermediate state with
no contact between the flap tips. Such a state is observed in
the open conformation pdb structure 1TW7.

3.3.3. Flap Separation Via Curled Conformations. A
separation of flaps achieved by both flaps adopting tightly curled
conformations was seen in several RDFMD simulations. The
simulation with a filter delay of 50 steps, a temperature cap of
900 K, and NPT between simulations showed the largest
separation which reached a maximum of 8.4 Å by 400 ps. Of
greater interest, despite the smaller opening of 6.7 Å, is the
RDFMD simulation with a filter delay of 100 steps, temperature
cap of 1100 K, and NVT between simulations, which sampled
the opening in a reversible manner (see Supporting Information).
Three other RDFMD simulations also sample flap separation
via both flaps adopting curled conformations, and with five out
of the ten simulations observing this event, it is the most
frequently seen of the large motions presented here using
RDFMD. It was also noted to a lesser extent very briefly during
the 400 K MD simulation, where flap contact was broken for
approximately 15 ps.

Figure 6. Conformers observed during the 400 ps RDFMD simulation of HIV-1 PR using a filter delay of 100 steps, an internal
temperature cap of 1300 K, and NPT simulation between filter sequences. Presentation is as described in Figure 1.
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Initially, in the simulation with a filter delay of 100 steps,
temperature cap of 1100 K, and NVT between simulations,
the first flap is seen in a semiopen state and the second flap
is curled. After 120 ps, the first flap swaps to the curled
conformation. With both flaps curled, the flaps are separated
(see Supporting Information). A channel is then revealed with
a clear path to the active site for which no movement of the
flaps away from the protein cavity and active site is required
(as seen in RDFMD simulations already presented here). The
flap curling is also an extension of the motion seen frequently
within the 10 ns MD simulation and appears to be inherent
to the HIV PR protein.

After 212 ps, the extent of the flap curling is decreased,
and the contact between the flaps is regained. However,
shortly afterward at 250 ps, the second flap moves again into
a tightly curled conformation, and another separation of the
protein flaps is seen. At 268 ps the second flap returns to

the semiopen state and the flaps again close, maintaining
contact until the end of the simulation. Snapshots from the
simulation showing the reversible nature of the curled
opening motion are shown in Figure 7. The side view shown
for other simulations is replaced by a view taken from an
angle to the protein, revealing the channel that opens above
the active site.

4. Discussion

Analysis of the molecular dynamics simulations indicates a
stable dimer interface and cavity region using the monopro-
tonated dyad. A conformational change to and from the
closed state in one flap occurs, and the semiopen and curled
conformers interconvert at a time scale well within that of
the simulation. These two motions are likely to correspond
to the fast event described in the NMR study by Ishima et

Figure 7. Conformers observed during the 400 ps RDFMD simulation of HIV-1 PR using a filter delay of 100 steps, an internal
temperature cap of 1100 K and NVT simulation between filter sequences. Presentation is as described in Figure 1, with an
angled view replacing the side view.
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al. The flaps do not separate in either simulation as seen by
Scott et al. although we believe our results to be consistent
with those of Perryman et al., who also sampled a closed
protein cavity and curling of the flap tips at room temperature.

The opening event described by Ishima et al. as occurring
on a 100 µs time scale has not been sampled in the molecular
dynamics simulations, and investigation was therefore con-
tinued at elevated temperatures. At 350 and 400 K, the
protein flaps interconvert between clearly defined semiopen,
closed, and curled conformations. Only a brief separation
of flap tips is observed at 400 K, and the 350 and 400 K
simulations otherwise yield results considered to be similar
to those at 300 K. At 450 K, an opening event was sampled
in which one flap moves away from the active site. The
requirement of such high temperatures to break the otherwise
stable contact of the flap tips adds strength to the conclusion
that flap opening is outside the time scale of the faster motion
observed by Ishima et al. At 500 K, both flaps moved into
the protein cavity, adopting a collapsed conformation that
indicates an instability of the protein or a breakdown of the
simulation model at such a high temperature.

RDFMD simulations show three types of large scale
conformational change: the transition of both flaps between
the known semiopen and closed conformations, and the
increased accessibility of the active site via both reversible
flap opening and by flap curling. The flap opening is similar
to that reported by Scott et al. although the corresponding
closure is also sampled here in two of the ten RDFMD
simulations.

The opening via both flaps adopting curled conformations
is seen in five of the ten RDFMD simulations presented in
this study, of which four sampled the corresponding closure.
It is possible that this motion involves overcoming a
comparatively smaller energy barrier than an opening by a
flap moving away from the cavity. However, since the
opening is an extension of a curling motion seen frequently
in the MD simulations, it is also possible that the RDFMD
method, which amplifies only motions that exist in a
simulation buffer, is more likely to sample the double curling
event.

It is important to note that RDFMD is seen in this study
to induce large motions in the protein by targeting very few
residues. This suggests that RDFMD is not necessarily
driving the motion, but is assisting the protein in overcoming
the initial barriers to flap tip separation. This is consistent
with the observation of Hamelberg and McCammon20 that
flexibility of the flap tips contributes to their opening,
although it should be noted that the simulations reported here
explicitly exclude cis-trans isomerization of ω dihedral
angles. The corresponding RDFMD-induced openings and
conformational changes involve more residues than those
targeted. It is also an important result that the reverse of
opening motions are sampled within periods in which filter
amplifications are applied. This confirms that RDFMD is not
simply disrupting the structure as frequency independent
heating may be expected to do, but is successfully assisting
in conformational motions inherent to the system. The
repeated sampling of the opening events induced by RD-
FMD, and the similarity of the closed conformer obtained

to a known X-ray structure, also adds confidence in RDFMD
as a conformational sampling tool.

5. Conclusions

In this manuscript, the application of an enhanced sampling
technique, Reversible Digitally Filtered Molecular Dynamics,
to the motion of the flaps in HIV-1 PR has been described.
A range of motions are sampled in the simulations including
the reversible opening of one of the flaps in a fashion similar
to that reported by others, transitions between the known
semiopen and closed conformations, and finally the reversible
opening of the flaps by a mechanism in which both flaps
curl back toward the P1 loop of their own monomer. It is
important to note that all these motions are seen to be
reversible, lending confidence to the results. Furthermore,
all these transitions are brought about by amplifying the low
frequency vibrational motions in the flap tips.

It must of course be noted that although RDFMD is
efficient and capable of being used in explicit solvent, it is
a nonequilibrium simulation method. For this reason, a
number of RDFMD trajectories have been produced for
analysis, and consistency in the conformational transitions
observed has been sought. That reversible transitions from
the initial semiopen to the known closed structure are
observed supports the assertion that RDMFD is successfully
assisting in sampling conformational motions inherent to the
system. The preponderance of RDFMD trajectories following
the double-curling opening mechanism may therefore reflect
the presence of this type of motion in normal molecular
dynamics.
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Abstract: Free-energy changes are essential physicochemical quantities for understanding most
biochemical processes. Yet, the application of accurate thermodynamic-integration (TI) computa-
tion to biological and macromolecular systems is limited by finite-sampling artifacts. In this paper,
we employ independent-trajectories thermodynamic-integration (IT-TI) computation to estimate
improved free-energy changes and their uncertainties for (bio)molecular systems. IT-TI aids
sampling statistics of the thermodynamic macrostates for flexible associating partners by
ensemble averaging of multiple, independent simulation trajectories. We study peramivir (PVR)
inhibition of the H5N1 avian influenza virus neuraminidase flexible receptor (N1). Binding site
loops 150 and 119 are highly mobile, as revealed by N1-PVR 20-ns molecular dynamics. Due
to such heterogeneous sampling, standard TI binding free-energy estimates span a rather large
free-energy range, from a 19% underestimation to a 29% overestimation of the experimental
reference value (-62.2 ( 1.8 kJ mol-1). Remarkably, our IT-TI binding free-energy estimate
(-61.1 ( 5.4 kJ mol-1) agrees with a 2% relative difference. In addition, IT-TI runs provide a
statistics-based free-energy uncertainty for the process of interest. Using ∼800 ns of overall
sampling, we investigate N1-PVR binding determinants by IT-TI alchemical modifications of
PVR moieties. These results emphasize the dominant electrostatic contribution, particularly
through the N1 E277-PVR guanidinium interaction. Future drug development may be also guided
by properly tuning ligand flexibility and hydrophobicity. IT-TI will allow estimation of relative free
energies for systems of increasing size, with improved reliability by employing large-scale
distributed computing.

Introduction

The free-energy change upon binding is the fundamental
thermodynamic quantity to evaluate inhibitor affinity for
a target protein. Reliable free-energy changes can be

estimated by computer simulations via thermodynamic-
integration (TI) methods.1-5 In practice, such calculations
are highly accurate for small compounds within the force
field and model resolution employed.6,7 In principle, TI
approaches should also provide accurate binding free
energies for large biological systems.8,9 However, TI
approaches require a sufficient sampling of the phase-space
regions where the Hamiltonians corresponding to two
states of the system differ significantly.1,10,11 Therefore,
the practical use of TI-based approaches in the context of
macromolecular processes is still rather limited.
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Finite sampling problems for a given equilibrium ther-
modynamic state can be alleviated by multiple independent
simulations.12-14 This enhances phase-space sampling and
allows distribution of the computation into a number of
independent runs, which is particularly appealing in consid-
eration of the rapid and steady increase of computational
power in the form of multiple CPU clusters vs single CPU
supercomputers (e.g., http://www.sdsc.edu; http://www.nccs.
gov; http://www.bsc.es).

Here, we present the independent-trajectories thermody-
namic-integration (IT-TI) approach to calculate free-energy
changes for (bio)molecular systems. IT-TI employs multiple,
independent TI calculations to calculate a free-energy change
of interest, while incorporating both soft-core potentials15,16

and ligand translational restraints17,18 to effectively improve
the extent of phase-space accessed. Our results show that
IT-TI allows significantly increased accuracy compared with
standard TI. Using IT-TI in the context of protein-ligand
binding and macromolecular association seems particularly
motivated for highly flexible binding partners. This is the
case for the H5N1 avian influenza neuraminidase receptor
studied in this work (Figures 1 and 2).

The avian influenza virus type A, particularly its H5N1
form, is becoming a worldwide pandemic threat due to its
high virulence and lethality in birds, rapidly expanding host
reservoir, and exceptionally elevated mutation rate (http://
www.who.int/csr/disease/avian_influenza). Extraordinary re-
search efforts are devoted to understanding the molecular
basis of inhibitor susceptibility to avian influenza viral
enzyme neuraminidase (NA) mutations, particularly for the
lethal and drug-resistant group 1 NA enzymes that include
H5N1.19-21 The inhibitor peramivir (PVR, also known as
BCX-1812 or RWJ-270201; developed by BioCryst Phar-
maceuticals, Birmingham, AL; see Scheme 1) is demon-
strated to be active in vitro and in vivo against both group
1 and 2 viral NA.22,23 Therefore, PVR constitutes a promising
candidate for further drug-design research.24

In this paper, we explore the changes of conformational
dynamics and hydration of PVR upon binding to avian

influenza virus H5N1 NA (Figure 1). We perform IT-TI
calculations that yield an accurate estimate for the N1-PVR
free energy of binding, within ∼1 kJ mol-1 of experiment.
Then, we investigate N1-PVR binding determinants and
quantify their thermodynamic role in the binding process
through IT-TI alchemical modifications of selected PVR
moieties. This work represents a first step in the computer-
based development of a putative novel class of N1 inhibitors
from accurate free-energy calculations. We anticipate that
IT-TI will allow, in general, the estimation of relative free
energies for systems of increasing size, with improved
reliability, by employing large-scale distributed computing.25

Materials and Methods

Molecular Models. The initial coordinates for the N1
neuraminidase monomer bound to the PVR inhibitor (N1-
PVR) were taken from the X-ray crystal structure26 of N1
bound to oseltamivir (PDB ID: 2HU4; chain A), because no
N1-PVR structure has been deposited to date. Atom posi-
tional coordinates for PVR were taken from the correspond-
ing N8-PVR structure26 (PDB ID: 2HTU; chain A) and
superimposed onto 2HU4 using the protein backbone CR

Figure 1. The avian influenza virus N1 neuraminidase protein receptor and its PVR binding site. (a) N1-PVR model structure
and scaffold structures containing important PVR-binding residues (green, �-sheet 406; red, �-turn 277; orange, �-turn 222;
pink, loop 119; blue, loop 150). (b) Close up of the N1-PVR binding site with key residues highlighted.

Figure 2. Time series of the CR atom-positional root-mean-
square deviation (rmsd) of each N1-PVR binding site loop or
secondary structure element from the X-ray structure. Color
code as in Figure 1. Running averages over 20-ps windows
are used for graphical purposes.
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atoms; this results in superimposition of the oseltamivir and
PVR ring atoms. The N1-PVR complex was solvated in (pre-
equilibrated) cubic boxes large enough (∼8.3 nm3) to avoid
any interactions between mirror images under rectangular
periodic boundary conditions. Three randomly chosen water
molecules (minimum ion-ion distances of 1.0 nm) were
replaced with Na+ ions to neutralize the system. Initial
configurations for the water (wt-PVR) and vacuum (vc-PVR)
reference states were defined using the same PVR coordi-
nates. For a summary of N1-PVR, wt-PVR, and vc-PVR
simulated systems, see Table 1.

Molecular Dynamics Simulations. All simulations were
performed using the GROMOS05 software for biomolecular
simulation27 and the GROMOS force field28 (45A3 parameter
set7). Amino acid charges were defined to reproduce an apparent
pH 7. GROMOS PVR force-field parameters were derived from
existing building blocks28-30 (Supporting Information, Table
S1). The GROMOS compatible SPC water model31 and
previously reported SPC-water compatible parameters for ions32

were employed. For ligand simulations in vacuo (vc-PVR) the
corresponding 45B3 parameter set was employed.

For N1-PVR, a first steepest-descent energy minimization
(EM) was performed to relax solvent and ions, while protein
atom positions were restrained by using a harmonic potential
(force constant k ) 2.5 × 103 kJ mol-1 nm-2). A second
EM run without restraints eliminated any residual strain. All
EM runs were extended until the energy change per step
became <0.5 kJ mol-1. The system was then brought to the
reference temperature (T ) 300 K) in six consecutive MD
periods of 25 ps (50 K increments). During the heating of
N1-PVR, protein atom positions were restrained with a
harmonic potential, using a k from 104 to 0 (decreased in
steps of 2.5 × 103 kJ mol-1 nm-2). In addition, four
independent MD runs were initialized by reassigning random
velocities from Maxwell-Boltzmann distributions at 5 K.
All five independent trajectories were extended (at least 2
ns) to reach equilibration of the separate system Hamiltonian
components. Independent trajectories for the wt-PVR and
vc-PVR systems were similarly prepared. One MD run for
each system was extended for 20 ns and used for confor-
mational analysis (see below).

Newton’s equations of motion were integrated using the
leapfrog algorithm33 with a 2-fs time step. The SHAKE
algorithm34 was applied to constrain all bond lengths (relative
geometric tolerance of 10-4). All simulations were carried out
in the N,p,T ensemble (reference pressure 1 atm) by separately
coupling the temperature of solute and solvent degrees of
freedom to a 300 K heat bath35 (relaxation time 0.1 ps) and by
coupling the pressure (estimated based on an atomic virial) to

Scheme 1. Summary of the Modification Perturbations (COO-, NR3
+, TAIL1, and TAIL1) for PVR Moleculea

a The IT-TI free-energy changes due to PVR hydration ∆Gj hydr(L) and N1-PVR binding ∆Gj bind(L) are shown as well as PVR alchemical
modification ∆∆Gj hydr(L*) and ∆∆Gj bind(L*). All values are given in kJ mol-1 with corresponding σ∆Gj uncertainties between parentheses.

Table 1. System Setup for MD Simulations of PVR Bound
to the N1 Active Site (N1-PVR), Free in Water (wt-PVR),
and in Vacuum (vc-PVR)

N1-PVR wt-PVR vc-PVR

T [K] 300 300 300
no. Na+ ions 3 0 0
total system charge [e] 0 0 0
no. solute atoms 3863 30 30
no. water molecules 17046 1748 0
no. atoms in system 55004 5274 30
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a pressure bath35 via isotropic coordinate scaling [relaxation
time 0.5 ps; isothermal compressibility 4.574 × 10-4 (kJ mol-1

nm-3)-1]. Nonbonded interactions in the range 0.0-0.8 nm were
recalculated every time step and in the range 0.8-1.4 nm every
five time steps and truncated at 1.4 nm. A reaction-field
correction was applied to account for the neglected interactions
beyond 1.4 nm,36 using a relative dielectric permittivity of 61
for the SPC water model.37 A fast grid-based pairlist-construc-
tion algorithm38 was employed (cell-mask edge of 0.4 nm;
atomic-level cutoff) as implemented in the GROMOS05
MD++ module.27

Conformational Analysis. Trajectory snapshots were
extracted every 2 ps from the 20-ns simulations. Structural
fitting was performed by (i) superimposing solute centers of
mass (to remove overall translation) and (ii) performing an
atom-positional least-squares fitting procedure39 (to remove
overall rotation) using N1 CR atoms or all PVR atoms.
Transient N1-PVR interactions identified as important bind-
ing motifs were monitored using the GROMOS++ analysis
software.27 Hydrogen bonds were defined to have a maxi-
mum hydrogen-acceptor distance of 0.3 nm and a minimum
donor-hydrogen-acceptor angle of 125°. An extended hy-
drogen bond criterion was used (0.35 nm; 120°) to capture
additional relevant interactions. Salt bridges and hydrophobic
contacts were considered formed for atom pair distances
<0.45 nm. Secondary structure elements were defined by the
following N1 residue sequences: loop 119, V116-P120; loop
150, T148-S153; loop 277, I222-E227; �-turn 277,
H274-C278;�-turn292,V290-N294;loop347,G345-K350;
loop 371, S368-G373; �-sheet 406, S404-G408; loop 430,
R430-W438.

Independent-Trajectories Thermodynamic-Integra-
tion Method. The free-energy change between two states
A and B can be estimated by thermodynamic integration (TI)
as40

where H(λ) denotes the system Hamiltonian from a single
trajectory as a function of the coupling parameter λ and 〈 ...〉
denotes ensemble averaging at a given λ value.

In IT-TI, Hi(λ) is the system Hamiltonian for the ith
independent trajectory, and the mean free-energy change
∆GjAfB reads

where the integration runs over N independent trajectories.
In principle, under the assumptions of (i) infinitely long

trajectories and (ii) a fully accessible system phase space,
eq 1 will provide an estimate of the free-energy change
between two states A and B which is identical to that
provided by eq 2. This follows in the limits of validity of
the ergodic hypothesis. In practice, however, due to the fact
that (i) only finite simulation times can be achieved and (ii)
the phase space of a solvated macromolecule is far from
being fully accessible (i.e., its corresponding free-energy
landscape is a very rough and frustrated surface at standard/
physiological conditions), eqs 1 and 2 provide significantly
different free energy estimates (see Results and Discussion).
IT-TI overcomes this practical limitation by enhancing phase-
space sampling of the thermodynamic systems of interest,
therefore adding to the reliability and predictive power of
free-energy calculations.

Two types of thermodynamic perturbations AfB were
performed in this study, alternatively employing eq 1 or 2:
(i) from ligand L full potential (λ ) 0) to zero nonbonding
interactions (λ ) 1); (ii) from the L full potential (λ ) 0) to
that of a chemically modified ligand L* (λ ) 1); see Scheme
2. In both cases, soft-core interaction potentials16 were used
for L atoms involved in the perturbation (sLJ ) 0.5 and sC )
0.5)27,28 to avoid singularities and to enhance phase-space
sampling. Equations 1 and 2 were integrated numerically
using the trapezoidal rule.

Scheme 2. Thermodynamic Cycles: Annihilation Perturbationa and Modification Perturbationb

a The binding free energy ∆Gj bind(L) for ligand L can be estimated by an annihilation perturbation (λ ) 0 f λ ) 1) of the nonbonded ligand
interactions in the protein and water-solvated thermodynamic states. b The impact on the binding free energy, ∆∆Gj bind(L*), for a ligand modification
L* can be estimated by corresponding perturbations (L f L*) in both thermodynamic states. An additional cycle was employed to estimate
hydration free energies ∆Ghydr(L).

∆GAfB ) ∫λA

λB dλ〈 ∂H(λ)
∂λ 〉λ

(1)

∆GjAfB ) ∫λA

λB dλ
∑
i)1

N 〈 ∂Hi(λ)

∂λ 〉
λ

N
(2)
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Statistical Analysis of Uncertainties. Two alternative
statistical procedures were employed to evaluate the uncer-
tainty σ for ∆GAfB or ∆GjAfB free-energy estimates.

First, a simulation standard error σsim(t) of the time-varying
Hamiltonian derivative at a given λ can be calculated as

with T being the total number of block averages41 throughout
the single ith trajectory or all N concatenated independent
trajectories. (∂Ht(λ)/∂λ)λ denotes the Hamiltonian derivative,
block-averaged at time t, and 〈∂HT(λ)/∂λ〉λ is the ensemble
average over the entire simulation time at a given λ. As an
example, σsim(t) uncertainties are reported as error bars for
〈∂HT(λ)/∂λ〉λ vs λ in Figure 3 (solid black curve). Then, a
corresponding free-energy uncertainty can be obtained as

This follows from the standard assumption that (∂Ht(λ)/
∂λ)λ values are statistically uncorrelated along the time over

different values of the coupling parameter λ. However, the
σ∆Gi

uncertainty includes the physically based fluctuations
of (∂Ht(λ)/∂λ)λ, though corresponding noise is typically
reduced by block-averaging.41 Therefore, despite its wide
use in the literature, σ∆Gi

is a questionable measure of
uncertainty for a free-energy change of interest. For example,
considering that overlap of phase space at neighboring λ
values is a requirement for smooth 〈∂HT(λ)/∂λ〉λ vs λ curves
(Figure 3), one could claim that (∂Ht(λ)/∂λ)λ time series are
statistically correlated. Nonetheless, the abovementioned
uncertainty defined in eq 4 is representing the lowest possible
uncertainty for a free-energy-change estimate from standard
TI. Thus, it seems the fairest choice for this study comparing
TI vs IT-TI results.

Second, for IT-TI, a statistics-based uncertainty σ∆Gj on a
given free-energy change ∆GjAfB from eq 2 can be calculated
as the standard deviation from the mean (standard error) of
the N ∆Gi results

where σ∆G is the standard deviation of the free-energy change
over the N IT-TI trajectories employed. Importantly, σ∆Gj has
a clear statistical validity,42 because of its explicit dependence
on the repeated independent estimates.

Similarly, for a general overall free-energy change ∆GjAfB,
calculated as the difference between two free-energy changes
∆Gj B and ∆GjA, a corresponding uncertainty can be obtained
by propagating the respective uncertainties as42

Then, the relative uncertainty for a given free-energy
change A f B reads

In this study, IT-TI runs were extended to obtain suf-
ficiently smooth curves of 〈∂Hi(λ)/∂λ〉λ vs λ (Figure 3). IT-
TI trajectories were independently equilibrated (0.5 ns) for
each of the 26 λ points (from five initial equilibrated λ ) 0
configurations), followed by independent sampling periods
(0.5 ns) used for free-energy estimation. Increased sampling
(up to 2.5 ns) times were required in the ranges 0.12 e λ e
0.24 and 0.76 e λ e 0.92. A summary of these calculations
is given in Supporting Information, Table S2. All annihilation
and modification perturbations fulfilled the criterion σ∆Gj(%)
< 6%. Only N1-TAIL1 and N1-TAIL2 modification per-
turbations had larger σ∆Gj(%) values (up to 52%) due to the
corresponding small ∆GjAfB values (Supporting Information,
Table S3).

Separation of Thermodynamic States. For ∆Gj N1(L)
(Scheme 2a), the potential U(rL) ) -1/2k
(rL - r0)2 was applied to harmonically restrain ligand
translation and ensure its sampling of a finite phase-space
volume VΙ. An optimal k value of 246.5 kJ mol-1 nm-2

was estimated from the ensemble-averaged L root-mean-

Figure 3. 〈∂H(λ)/∂λ〉λ values and corresponding uncertainties
σsim(t) vs λ. (a) Annihilation of PVR in N1 binding site (∆Gj N1(L);
Scheme 2a). (b) Annihilation of PVR in water (∆Gj wt(L);
Scheme 2a). Black lines: average values over all N individual
trajectories. Gray lines: individual trajectory TI curves. Inset
panels highlight λ regions where IT-TI averages outperform
standard individual TI calculations.

σsim(t) ) � 1
T - 1 ∑

t)1

T [(∂Ht(λ)

∂λ )
λ
- 〈 ∂HT(λ)

∂λ 〉
λ]2

/√T

(3)

σ∆Gi
) (∫λA

λB σsim
2(t) dλ)1/2

(4)

σ∆Gj )
σ∆G

√N
(5)

σ∆GjAfB
) √(σ∆GjA

)2 + (σ∆GjB
)2 (6)

σ∆GjAfB
(%) )

σ∆GjAfB

∆GjAfB

× 100 (7)
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square deviation (rmsd) by applying the equipartition
theorem as18

where rL is the position of L during 20-ns of unrestrained
simulation at λ ) 0, r0 is the initial position of L in the
pre-equilibrated starting configuration, P(rL) is the 3-D
positional probability distribution of L, R is the molar gas
constant, and T ) 300 K. In this study, rL and r0 are the
instantaneous and initial positions of the PVR C4 ring
carbon.

The phase-space volume VΙ can be defined as18

where � ) 1/RT. Thus, the correction17 to the restraining
potential bias for ∆GjN1(L) in Scheme 2 reads

Results and Discussion

Conformational Analysis of the N1-PVR Binding
Site. Figure 1 shows the six-bladed �-propeller structure of
N1 neuraminidase bound to PVR and important active site
residues, monitored throughout 20 ns of N1-PVR MD
simulation. To investigate N1-PVR receptor flexibility and
conformational changes, the CR atom-positional rmsd from
the X-ray crystal structure was monitored for the secondary
structure elements forming the N1-PVR binding site (Figure
2). Loop 150 deviates the most (up to ∼0.7 nm) to sample
stable open-loop configurations (∼0.5 units) throughout the
MD simulation (Figures 1 and 2, blue). This observation is
similar to that recently reported for both apo and oseltamivir-
bound N1 neuraminidase (up to ∼0.6 nm).43 Additionally,
we find that loop 119 demonstrates significant flexibility and
samples conformations with rmsd of ∼0.4 and ∼0.3 nm in
the N1-PVR complex (Figures 1 and 2, pink). The dynamics
of loops 150 and 119 in water indicate a significant relaxation
from the crystal-packed conformation captured in X-ray
experiments. The �-sheet 406 and �-turns 277 and 222 show
comparatively lower rmsd deviations (0.1-0.3 nm) and
smaller fluctuations on the 20-ns time scale.

Table 2 summarizes the N1-PVR intermolecular hydrogen
bonding. Scheme 1 defines PVR atom nomenclature. A
dominant multicenter hydrogen bond between N1 E277 and
the PVR guanidinium group is stable for the entire simulation
time, with PVR NR3 and NR1 atoms alternating as hydrogen
donors to E277 carboxyl oxygen atoms OE1 and OE2
(50-69% occurrences). E277 also transiently interacts with
the PVR methyl acetamide polar hydrogen (HP; 57%). Yet
another hydrogen bond (54%) is observed between the PVR
carboxyl oxygen (OD1) and the N1 Y406 hydroxyl (O-H).

Interestingly, the Y406 residue is homologous to other key
catalytic tyrosine residues found in the avian influenza virus
family of glycosidases (Carbohydrate Active Enzymes
database; http://www.cazy.org/). Thus, targeting Y406 could
be important for drug design, as suggested by a computa-
tional solvent mapping analysis.44 An extended hydrogen
bond between N1 R152 on loop 150 and PVR (O-H group)
occurs for 44% of the simulation time (Table 2 and Figure
1) and contributes to the stability of open loop 150 ensemble
of configurations.

Figure 4 describes the conformational sampling of PVR
in the N1 binding site. N1 protein atoms that maintain strong
interactions with either (i) charged ligand moieties (salt
bridges) or (ii) hydrophobic groups (hydrophobic packing)
display distance probability distributions with one sharp,
high-intensity peak. Those residues experiencing varied
interactions have broader distributions and/or multiple peaks.
Throughout the 20-ns simulation, the PVR guanidinium
group (CR atom, Scheme 1) maintains a well-defined salt-
bridging interaction with the N1 E277 carboxyl group (0.38
nm average distance). The broad distribution for the PVR
CR-N1 E119 distance (0.52 nm) and the doubly peaked
distribution for the PVR CR-N1 E227 distance (0.47 and
0.65 nm for first and second peak) correspond to transient

〈rmsd2〉 ) 〈(rL - r0)
2〉 ) ∫ (rL - r0)

2P(rL) drL ) 3RT
k

(8)

VI ) ∫V
exp[-�U(rL)] dr (9)

VI ) ∫V
exp[ 1

2RT
k(rL - r0)

2]dr ) (2πRT
k )3/2

(10)

∆GjN1(L) ) ∫λ)0

λ)1
dλ

∑
i)1

N 〈 ∂Hi(λ)

∂λ 〉
λ

N
+ RT ln(CVΙ) (11)

Table 2. N1-PVR Intermolecular Hydrogen Bonds from 20
ns of Molecular Dynamics Simulationa

donor acceptor occurrence (%)

PVR (NR3-HR3) E277 (OE1) 69
PVR (NR3-HR3) E277 (OE2) 69
PVR (NR1-HR1) E277 (OE1) 50
PVR (NR1HR1) E277 (OE2) 57
PVR (NP-HP) E277 (OE2) 57
Y406 (O-H) PVR (OD1) 54
R152 (NH2-H22)b PVR (O5) 44

a PVR atom nomenclature as in Scheme 1. OE refers to
glutamate carboxyl, O-H to tyrosine hydroxyl, and NH2-H22 to
arginine guanidinium. All N1-PVR intermolecular hydrogen bonds
occurring >5% are shown. b Using extended hydrogen-bonding
criterion. See also Materials and Methods.

Figure 4. Conformational sampling of PVR moieties in the
N1 neuraminidase binding site from 20-ns N1-PVR molecular
dynamics simulation. Distance pairs are labeled according to
the atoms monitored: PVR CR to N1 E277 (blue), E119
(green), and E227 (red) carboxyl group carbon; PVR CD to
N1 R118 (pink), R292 (yellow), and R371 (violet); PVR C11
to N1 I222 side chain carbon (black) and W178 aromatic ring
carbon (cyan). See Scheme 1 for PVR atom nomenclature.
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salt bridges formed by these N1 glutamate residues to the
PVR guanidinium group.

Stable long-range interactions between PVR and the
arginine triad of R118, R371, and R292 residues (Figure 1)
are observed along our 20-ns N1-PVR simulation, with
distribution peaks at 0.68, 0.8, and 0.96 nm, respectively
(Figure 4). This triad of positively charged residues also
contributes to binding via the conserved ligand carboxyl
group in both the natural ligand, sialic acid, and other
synthetic neuraminidases inhibitors (e.g., DANA, oseltamivir,
and zanamivir).26,45 Our results support the fundamental role
of R118 and R371 in N1-PVR binding. The distal position
of R292 indicates less reliance of PVR on this residue and
could account for the retained PVR affinity for the N2
resistance mutation R292K.23,46

The PVR aliphatic tail (Scheme 1) has been designed45

to fill a small hydrophobic subpocket, comprised of W178
and I222 residues, which is conserved among both group 1
and 2 NA (Figure 1). Our MD simulation confirms that PVR
tail atoms interact with the branched I222 side chain (C11
peak at 0.40 nm average distance; Figure 4). The same PVR
tail atoms are also stably close to the W178 aromatic carbons
(C11 peak at 0.42 nm; Figure 4). These results highlight the
occurrence of important hydrophobic-packing interactions in
the N1 subpocket.

We note that the majority of the conserved residues
described above have been suggested to also participate in
key interactions between sialic acid and inhibitors DANA,
zanamivir, and oseltamivir, as well as PVR, in both group 1
and 2 NA receptors.26,44-48

Changes of PVR Hydration upon N1 Binding. PVR
hydration and its changes upon N1 binding were also
analyzed. Figure 5 shows the radial distribution functions
(rdf) for water oxygen atoms from wt-PVR and N1-PVR
simulations. The PVR guanidinium group (CR atom; Scheme
1) undergoes ∼0.5 units decrease in its first peak intensity
upon N1-PVR binding. We can explain this desolvation
effect by considering the tight interaction of this bulky,
positively charged PVR group with the negatively charged
N1 E277 carboxyl (Figure 4 and Table 2). Desolvation upon
N1 binding is also observed for the PVR aliphatic tail by
the intensity decrease of its first solvation shell peaks (C10
and C11 atoms, ∼0.5-0.9 units; Figure 5). This is consistent
with the formation of more favorable interactions between
PVR and N1 residues I222 and W178.

A different hydration behavior can be noticed for the PVR
carboxyl group (CD atom), with a similar strong intensity
for its first peak at ∼0.35 nm in both wt-PVR and N1-PVR
simulations. Its second peak intensity diminishes only
marginally upon N1-PVR binding (∼0.3 units). Thus, the
PVR carboxyl group is still solvated in the N1 binding site
by dynamic water molecules on an ensemble averaged basis.
The presence of water molecules in the N1-PVR binding
site and the lack of persistent ligand-solvent hydrogen bonds
confirm this point. A PVR carboxyl group-N1 Y406
hydroxyl hydrogen bond is transiently formed (54% occur-
rence; Table 2), allowing this PVR moiety to still repeatedly
interact in the N1-PVR binding site with water molecules.
Water exchange in charged protein cavities49 and water-
mediated interactions in flexible carbohydrate-protein bind-
ing50 have been previously reported.

The PVR hydroxyl group displays a first peak with reduced
intensity when N1-bound (O5 atom, ∼0.5 units; Figure 5).
This moiety forms a competing hydrogen bond to N1 R152
(44%; Table 2), yet water molecules are maintained in the
first solvation shell upon binding. The PVR acetamide group
(NP atom) has limited solvent accessibility due to the
adjacent hydrophobic tail. Its solvation is further decreased
(∼0.5 units) in the bound state upon formation of a hydrogen
bond to N1 E277 (57% occurrence; Table 2).

Overall, the interactions of the PVR guanidinium group
with N1 E277, E227, and E119; the PVR carboxyl group
with catalytic N1 Y406; and the PVR aliphatic tail with N1
W178 and I222 in the hydrophobic subpocket appear most
relevant to drive N1-PVR binding based on conformational
and hydration analyses.

IT-TI Free-Energy Change upon N1-PVR Binding. The
free-energy change upon N1-PVR binding was estimated
using the IT-TI method and compared with standard TI
values from single trajectories, as well as with experiment.

Examples of 〈∂Hi(λ)/∂λ〉λ vs λ curves are shown for
standard TI and the improved IT-TI calculations of the N1
protein and water reference states (Figure 3). The IT-TI
curves are smoother than those obtained from individual
standard TI runs, because of increased sampling and im-
proved overall statistics obtained through N ) 5 independent
ensembles. Their integration (eq 2) provides ∆Gjwt(L) and
∆GjN1(L) values to estimate ∆Gj bind (Supporting Information,
Table S3). This is summarized in the thermodynamic cycle
of Scheme 2a.

Table 3 reports the IT-TI results and their comparison with
the available experimental data. Our IT-TI ∆Gj bind estimate
(-61.1 ( 5.4 kJ mol-1) matches the ∆Gj bind

exp value derived
from multiple IC50 measurements21,51,52 (-62.2 ( 1.8 kJ
mol-1; see Supporting Information, Table S4). A free-energy
difference of 1.1 kJ mol-1 (i.e., 2% relative difference) has
no statistical significance within the above uncertainties.
Remarkably, such an IT-TI prediction of the experimental
value relies on individual ∆Gj bind(N) estimates that span a
rather large free-energy range (see Table 3). In fact, these
standard TI estimates are at variance with the independent
calculation performed, ranging from a substantial underes-
timation (i ) 4; 19% relative difference) to a substantial
overestimation (i ) 5; 29% relative difference) of the ∆Gj bind

exp

Figure 5. Ensemble-averaged solvation of PVR moieties
when free in solution (left panel) or bound to the N1 protein
binding site (right panel). Radial distribution functions of the
water oxygen atoms from 20-ns molecular dynamics simula-
tions are shown centered on PVR atoms CR (blue), C10
(black solid), C11 (black dashed), CD (red), O5 (green), and
NP (cyan). See Scheme 1 for PVR atom nomenclature.
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value. Only one of the individual standard TI results is in
good agreement with the ∆Gj bind

exp value (-63.7 ( 11.0 kJ
mol-1, i ) 1; 2% relative difference). The remaining four
TI estimates have relative differences >9%. A significantly
different N1-PVR binding free-energy estimate of -1180.9
( 31.8 kJ mol-1 has been reported based on MM-PBSA
calculations.48

The IT-TI free-energy estimate also has a lower σ∆Gj(%)
relative uncertainty compared to the σ∆Gi

(%) from standard
TI, i.e. 9% of the calculated free-energy difference (Table
3). σ∆Gi

(%) values associated with independent ∆Gbind(N)
estimates are larger, ranging between 12% (i ) 4) and 19%
(i ) 5). We stress that the uncertainties σ∆Gi

typically
evaluated for single standard TI trajectories are not statistical
indicators of the ∆Gbind accuracy (see Materials and Methods,
eq 4). Instead, repeated IT-TI runs allow calculation of the
more representative free-energy uncertainty σ∆Gj (see Materi-
als and Methods, eq. 5). In addition, for this study, the latter
is directly comparable to the standard error of ∆Gj bind

exp

determined from N experimental values (Supporting Infor-
mation, Table S4).

Overall, our results underscore the improved predictive
power of IT-TI vs standard TI, due to the increased statistical
reliability. The large deviations observed among standard
TI estimates can be explained, in part, by the flexibility of
the N1 binding site. Loops 119 and 150 demonstrate
heterogeneous conformational sampling among different λ
regions; their rmsd from the initial equilibrated structure
reach values up to 0.4 and 0.7 nm, respectively (data not
shown). This is consistent with both the dynamic loop
behavior from the longer 20-ns MD simulation (Figure 2)
and with the large σ∆Gi

values for standard TI estimates
(Table 3). We conclude that the IT-TI method significantly
aids sampling of thermodynamic macrostates for flexible
receptors by ensemble averaging of independent trajectories.

IT-TI Free-Energy Changes for PVR Alchemical
Modifications. N1-PVR binding determinants were also
investigated using IT-TI free-energy changes upon computer
alchemical modifications and their underlying thermody-

namic cycle (Scheme 2b). Scheme 1 summarizes the cor-
responding ∆∆Gj bind values together with the PVR free energy
of binding ∆Gj bind. A positive or negative value of ∆∆Gj bind

indicates thermodynamically unfavorable or favorable al-
chemical modifications of the ligand L.

Neutralizing COO- and NR3
+ charges has large but

opposite effects on ligand binding (∆∆Gj bind of +55.1 ( 3.1
and -79.7 ( 4.2 kJ mol-1, respectively). The TAIL1 and
TAIL2 modifications both have small, favorable impacts on
ligand binding (∆∆Gj bind of -5.8 ( 2.4 and -1.5 ( 2.0 kJ
mol-1, respectively). To understand these results, one must
look at the effects on receptor-ligand interactions and ligand
hydration free-energy changes (∆∆Gj hydr) upon alchemical
perturbation. In other words, a given ∆∆Gj bind change can
arise from different compensating effects. For example, a
positive ∆∆Gj bind value may be driven by (i) unfavorable
(enthalpic or entropic) N1-ligand interactions, (ii) a more
favorable ∆∆Gj hydr, or (iii) a thermodynamically unfavorable
combination of the previous effects. Similarly, a negative
∆∆Gj bind value may be driven by (i) favorable (enthalpic or
entropic) N1-ligand interactions, (ii) a more unfavorable
∆∆Gj hydr, or (iii) a thermodynamically favorable combination
of the previous effects. In this section, we address the impact
of different IT-TI modification perturbations on N1-ligand
binding; in the next section, we consider the ligand hydration
free energy. Both are needed to fully describe a given
∆∆Gj bind binding free-energy change.

Throughout the λ ) 0 f λ ) 1 N1-COO- modification
perturbation, R292 and R371 residues move on average apart
from the ligand scaffold. The closest arginine, R118, reduces
its average distance to the ligand CD atom (Supporting
Information, Figure S1a). The important ligand carboxyl-
Y406 interaction (Table 2) is partially disrupted, while
guanidinium interactions with E119, E227, and E277 are
maintained.

During the λ ) 0 f λ ) 1 N1-NR3
+ modification, N1

R371 samples a more stable conformation close to the ligand
CD atom, as revealed by a sharper distance distribution peak
(cf. λ ) 0 vs λ ) 1; Supporting Information, Figure S1b).
The aforementioned ligand carboxyl-Y406 interaction is
destabilized. Moreover, the ligand guanidinium loses its
favorable electrostatic interaction with N1 E277, which shifts
away from the perturbed moiety. However, the ligand
acetamide group is pushed closer to residue R156, which
forms a hydrogen bond with atom OP (data not shown). This
residue is not observed to closely interact with the unper-
turbed PVR molecule.

Following the λ ) 0 f λ ) 1 TAIL1 perturbation, I222
and W178 distance distributions for the modified PVR
aliphatic tail (C8 and C9 atoms) transition to sharper and
fewer peaks (cf. λ ) 0 vs λ ) 1; Supporting Information,
Figure S1c,d). On the other hand, the λ ) 0f λ ) 1 TAIL2

perturbation has a limited effect, as the distributions of tail
atoms C8 and C10 with I222 and W178 residues remain
predominantly broad (0.4-0.9 nm; Supporting Information,
Figure S1e,f).

Role of Ligand Hydration in N1 Binding Thermody-
namics. Scheme 1 summarizes the hydration free energy for
PVR, ∆Gj hydr, and the changes of this quantity for its

Table 3. Free-Energy Change upon N1-PVR Bindinga

free energy (kJ mol-1)

uncertainties

change σ∆Gj
d σ∆Gj (%)e

∆Gj bind
exp b -62.2 1.8 3

∆Gj bind
c -61.1 5.4 9

∆Gbind(N)f σ∆Gi
g σ∆Gi(%)

i ) 1 -63.7 11.0 17
i ) 2 -55.3 9.0 16
i ) 3 -55.8 10.1 18
i ) 4 -80.6 9.9 12
i ) 5 -50.1 9.7 19

a The average ∆Gj bind
exp value from repeated experiments can be

compared with the IT-TI ∆Gj bind estimate. Corresponding ∆Gj bind(N)
values from individual standard TI trajectories are also reported.
b Derived using data in refs 21, 51, and 52 (see Supporting
Information, Table S4). c Equation 2. d Equation 5, with
propagated uncertainties as in eq 6. e Equation 7. f Equation 1, N
) 5. g Equation 4.
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alchemical modifications, ∆∆Gj hydr. The corresponding bind-
ing free-energy, ∆Gj bind, and changes of this quantity,
∆∆Gj bind, are also reported. Figure 6 illustrates the relative
components involved for PVR alchemical modifications.

We estimate an IT-TI ∆Gj hydr value of -107.8 ( 1.2 kJ
mol-1 for the PVR molecule. No experimental data is
available to date for a direct comparison of this result. We
note that this value is in qualitative agreement with hydration
free energies of a large variety of compounds used to
calibrate the force field used in this study.6,7,30 The value of
-820.5 ( 40.2 kJ mol-1 reported based on MM-PBSA
calculations significantly overestimates the favorable ther-
modynamic effect of PVR hydration.48

The COO- perturbation gives a positive ∆∆Gj hydr value
of 15.7 ( 5.1 kJ mol-1. The PVR carboxyl group gives
distinct primary and secondary rdf peaks in water. When
deleting its charge, water structure is reduced (λ ) 0 vs λ )
1; wt-COO-; Supporting Information, Figure S2). Ligand
hydration around this moiety is maintained in the N1 binding
site, yet its first solvation shell is displaced (cf. λ ) 0 vs λ
) 1; N1-COO-; Supporting Information, Figure S2). A
sufficiently unfavorable ligand hydration free energy in the
unbound state would drive hydrophobic binding. However,
this effect is not large enough to compensate for the loss of
favorable N1-ligand interactions (see the previous section).
The COO- charge perturbation has the largest unfavorable
impact in the N1-bound state, leading to a ∆∆Gj bind value of
55.1 ( 3.1 kJ mol-1.

A different thermodynamic compensation occurs between
the bound and unbound states for the NR3

+ charge perturba-
tion, with a large unfavorable ∆∆Gj hydr value of +124.9 (
1.8 kJ mol-1. The single solvation peak of the PVR
guanidinium group in water shifts to larger distances (cf. λ
) 0 vs λ ) 1; wt-NR3

+; Supporting Information, Figure S2)
due to hydrophobic desolvation of this bulky charge group.
The limited hydration of the charged PVR guanidinium in
the N1 active site is almost unaffected by the perturbation
(cf. λ ) 0 vs λ ) 1; N1-NR3

+; Supporting Information,

Figure S2). The NR3
+ charge perturbation has the largest

unfavorable impact on the unbound state, overcompensating
for the loss of N1-ligand favorable interactions (see previous
section). This leads to a net ∆∆Gj bind change of -79.7 ( 4.2
kJ mol-1, significantly more favorable than the PVR ∆Gj bind

value. The experimentally observed, improved binding of
inhibitors to N2 neuraminidase by hydrophobic substitution
at the PVR guanidinium position supports these results.53

In water, TAIL1 and TAIL2 modifications increase the
solvation around the unperturbed atoms (cf. λ ) 0 vs λ ) 1;
Supporting Information, Figure S2) and correlate to the
∆∆Gj hydr values of -1.4 ( 0.6 and 7.3 ( 0.3 kJ mol-1,
respectively. In the N1 binding site, a distinct decrease (∼0.5
units) for TAIL1 solvation (C9 atom; Supporting Information,
Figure S2) agrees with the rearrangement of N1 hydrophobic
residues I222 and W178 (see above). The opposite signs of
∆∆Gj hydr offset the changes observed in the protein as well
as entropic changes to the aliphatic tail, resulting in similar
∆∆Gj bind values of -5.8 ( 2.4 and -1.5 ( 2.0 kJ mol-1 for
TAIL1 and TAIL2 alchemical modifications (Figure 6).

Overall, these results emphasize the dominant electrostatic
contribution to the free energy of N1 binding for PVR and
its alchemically modified variants and suggest that future
drug development may also be guided by conveniently tuning
ligand flexibility and hydrophobicity.

Conclusion

The independent-trajectories thermodynamic-integration (IT-
TI) approach was presented. It allows for estimation of
improved free-energy changes for biomolecular systems
based on multiple independent simulations. Our results
underscore the improved predictive power of IT-TI vs
standard TI, due to the increased statistical reliability.
Standard TI estimates from individual trajectories span a
rather large free-energy estimate range, from a 19% under-
estimation to a 29% overestimation of the experimental
reference value (-62.2 ( 1.8 kJ mol-1). Remarkably, our
IT-TI binding free-energy estimate (-61.1 ( 5.4 kJ mol-1)
is in excellent agreement, i.e. 2% relative difference. A
general formulation is proposed to evaluate corresponding
IT-TI free-energy uncertainties that rely on a statistical
treatment of error analysis. Overall, IT-TI seems particularly
promising in the case of highly flexible protein receptors,
ligands, and macromolecular binding partners in general.

Using 20-ns molecular dynamics simulation of the N1-
PVR complex, we find a number of key binding interactions.
The interactions of the PVR guanidinium group with N1
E277, E227, and E119; the PVR carboxyl group with
catalytic N1 Y406; and the PVR aliphatic tail with N1 W178
and I222 in the hydrophobic subpocket appear most relevant
to drive N1-PVR binding, based on conformational and
hydration analyses. This dynamic, atomistic description was
correlated with key thermodynamic contributions to binding.

Furthermore, IT-TI was applied to explore the binding
determinants of avian influenza N1 neuraminidase inhibi-
tion using alchemical modification of the PVR molecule.
Charge annihilation of its carboxyl and guanidinium
groups has the largest unfavorable impact in the N1-bound
and unbound states, respectively. These results emphasize

Figure 6. Binding free energies (∆∆Gj bind, gray solid bars)
and corresponding hydration free energies (∆∆Gj hydr, diagonal
lined bars) for all modification perturbations in this study.
Vertical bars display the corresponding uncertainties σ∆Gj .
Corresponding free-energy values and uncertainties can be
found in Scheme 1 and in Supporting Information, Table S3.
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the dominant electrostatic contribution to N1-PVR binding
free energy. Alchemical modifications of the PVR aliphatic
tail suggest that future drug development may also be
guided by conveniently tuning ligand flexibility and
hydrophobicity.

Finally, this study allows us more general conclusions on
free-energy calculations in the context of protein-ligand
binding. The key to designing improved inhibitors for a given
target relies on an accurate thermodynamic description of
both ligand-bound and ligand-unbound receptor and ligand
states. Consequently, we suggest that the most reliable and
predictive free-energy calculations will likely rely on the use
of explicit solvent simulations and MD force fields based
also on a direct and general parametrization of solvation
thermodynamics. We anticipate the application of the IT-TI
approach to develop improved and potent drugs to inhibit
flexible macromolecular receptors.
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Abstract: An approach based on relief of molecular strain in the parent hydrocarbon, extended
conjugation in the radical, and the driving force toward aromaticity is used to design molecules
with ultraweak C-H bonds. The molecular strain is generated by two fused rings containing
(5,5)-, (5,6)-, or (6,6)-membered ring structures. Homodesmotic reactions are used to calculate
the molecular strain enthalpy (MSE) of the parent hydrocarbons and the corresponding radicals,
and to analyze how it changes through these reactions. B3LYP calculations are used to obtain
the bond dissociation enthalpies (BDEs) for breaking one or more C-H bonds as well as the
C-O bond formed after oxygen addition to the radical. Loss of a second H-atom can lead to
very low R-H BDE values, especially when the ultimate product is aromatic. Molecular structures
based on these ideas may be of interest as novel antioxidants based on carbon-centered radicals.

Introduction
Several research groups have recently analyzed the formation
of carbon-centered radicals from their parent hydrocarbons
R-H and have shown how such hydrocarbons can be used
to design novel antioxidants.1-4 They identified several
factors that led to increased stability, including (i) benzylic
resonance stabilization, (ii) unpaired spin delocalization onto
oxygen or other (unreactive) heteroatom, (iii) stereoelectronic
effects, (iv) electron-withdrawing effects, and (v) steric
effects. These effects are primarily focused on stabilization
of the carbon-centered radical, with resulting weakening of
the C-H bond. We have studied the relative contributions
of these and other categories in previous work by the present
authors,5 for a large number of examples. Using the same
methodology, in this Article, we calculate gas-phase R-H
and R-OO• bond dissociation enthalpies (BDEs) for a new
series of molecules. We analyze the origin of the bond
weakening effect and take advantage of a rather neglected
structural feature, that is, molecular strain in the parent
molecule and the oxygen adduct. We then use this theme,
as well as the driving force toward aromatization, to explore
a series of hydrocarbons containing fused rings. Some of
these proposed compounds have low first and very low
second C-H BDEs, forming stable products.

The term “molecular strain” is frequently used in discuss-
ing geometries and reactions of small molecules such as
cyclopropane and cyclobutane, where the hybrid orbitals do
not point along the carbon-carbon bonds, or in structures
where the C-H bond orbitals are forced to be eclipsed. A
few studies have focused on estimating its origin and
magnitude. In early work, Wiberg6 discussed the origins of
strain and provided a quantitative analysis of each source.
Other relevant approaches can be found in works of
Nicolaides et al.,7 Bond,8 and Rogers et al.,9 who have
compared different theoretical methods for calculation of
heats of formation and hydrogenation of olefins. Peck et al.10

have performed similar studies on benzenoid aromatics. In
general, most of these methods derive strain energies by
comparison between calculated heats of formation of the
strained molecules versus the nonstrained congeners.

To provide a basis for comparison, we briefly summarize
the magnitude of the effects of different categories of
functional groups from previous work by Wright and
Shadnia.5 We found that hyperconjugation effects, for
example, as in (CH3)3C-H, lower the R-H BDE by up to
11 kcal/mol relative to the methyl radical, but have only a
minor effect on the R-OO• BDE. Electron-withdrawing
groups, particularly nitro and cyano, decrease the R-H BDE
by up to 10 kcal/mol and the R-OO• BDE by up to 15 kcal/* Corresponding author e-mail: hooman@shadnia.com.
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mol. Lone pair donors can also lower the R-H BDE by up
to 13 kcal/mol, the strongest effect being seen for the amino
group. Conjugative delocalization effects are more powerful
and can lower the R-H BDE by up to a full 36 kcal/mol,
and also decrease the R-OO• BDE by a maximum of 25
kcal/mol, for example, for trivinylmethane. Benzylic reso-
nance stabilization also is very effective and can decrease
the R-H BDE by up to 26 kcal/mol and the R-OO• BDE
by up to 23 kcal/mol, as in triphenylmethane. Finally,
captodative effects, which were not treated by Scaiano et
al.,1 show some of the largest bond-weakening effects, up
to a maximum of 35 and 28 kcal/mol for R-H and R-OO•,
respectively. Note that it was not always possible to separate
these effects from one another and that molecules containing
multiple functional groups do not necessarily act additively.
However, this brief summary provides a reference standard
against which any novel bond-weakening effects can be
compared.

Method of Calculation

A density functional approach using the B3LYP functional
with small (6-31G(d)) and large (6-311+G(2d,2p)) basis sets,
termed the Medium-Level Model 3 (MLM3) method, was
defined previously.5,11 Briefly, geometries and frequencies
are obtained using B3LYP/Small, with a correction factor
of 0.98 for frequencies. Single-point energies at the computed
minimum are obtained using B3LYP/Large for closed shells,
or the restricted open-shell specification ROB3LYP/Large
for open-shell radicals. A correction factor of +2.0 kcal/
mol is added to the (absolute) enthalpy of doublet radicals,
whereas no correction factor is used for triplet states (e.g.,
the oxygen molecule) or the hydrogen atom. This method
gave gas-phase R-H and R-OO• BDEs to within 2 kcal/
mol where experimental data were available for comparison.
This is sufficiently accurate to make discussion of BDEs and
radical stability meaningful.

Most structural features including conjugation and elec-
tronic effects are well treated using B3LYP.5,12 For highly
strained hydrocarbons, however, the method has been
demonstrated to underestimate the magnitude of molecular
strain energies. For example, Walker et al.13 used homodes-
motic reactions (HDRs) and several theoretical techniques
to calculate molecular strain energies for a variety of highly
strained hydrocarbons. Actual measurements are usually in
terms of enthalpies, so we can define the molecular strain
enthalpy (MSE) for cyclopropane as the enthalpy change for
the reaction cyclopropane + 3CH3CH3 f 3CH3CH2CH3

where the HDR matches hybridization types (all sp3) and
C-H substitution patterns (e.g., 3CH2 groups for reactants
and products, 6CH3 groups each). The same approach can
be used to define the HDR for a radical; for example, for
the cyclopropyl radical the appropriate HDR would be
cyclopropyl• + 3CH3CH3 f CH3CH•CH3 + 2CH3CH2CH3.

In the next section, we investigate the discrepancy between
the molecular strain enthalpy (MSE) as calculated by Walker
et al.13 using the more accurate G1 method with that obtained
using B3LYP (their calculations and ours). For this discus-
sion, we use their set of highly strained hydrocarbons. It will
be shown that the MSE values obtained with B3LYP can be

adjusted, so that use of B3LYP methodology becomes as
accurate as G1, no matter how highly strained the system.

Results and Discussion

A. Correction of B3LYP Values for Strained Systems.
A subset of the structures used by Walker et al. is shown in
Figure 1. The subset was chosen so as to span the range of
values of MSEs in approximately equal increments. These
highly strained hydrocarbons show a combination of ring
strain and steric strain, the latter caused by eclipsing of C-H
bond orbitals. Table 1 shows the molecular strain enthalpy
(MSE) obtained for the homodesmotic reaction for each
structure, using G1 and B3LYP calculations of Walker, along
with our own B3LYP calculation done with the MLM3
method.

As shown in Table 1, MSEs for these compounds (using
G1 values) range from the moderately strained cyclobutane
(26 kcal/mol) to the very highly strained prismane (143 kcal/
mol); this should be sufficient to show any defects in the
B3LYP methodology. Comparing B3LYP implementations,
our own B3LYP protocol is closer to G1 and is therefore
preferable, although both are significantly underestimating
the MSE for the more highly strained systems.

Figure 2 shows a plot of our B3LYP values of the MSE
versus the G1 values of Walker. There is a near-perfect linear
fit with R2 ) 0.9995 for the equation:

Inverting this equation gives

Thus, the B3LYP method does indeed underestimate the
MSE, by about 12%. However, this can be corrected for.
Using the above equation, a corrected value for MSE(B3LYP)
is equivalent to setting it equal to MSE(G1), which is
determined from eq 2. Denoting the corrected value

Figure 1. A subset of structures used from the data set of
Walker et al.

Table 1. Calculation of Molecular Strain Enthalpy, Defined
as the Enthalpy Change, ∆Ho

298(g), for Homodesmotic
Reactions Involving Structures Shown in the First Column
(See Figure 1)a

MSE (Walker et al.13) MSE (this work)

structure G1 B3LYPb B3LYPc

CBT 26.0 22.7 23.9
BCP 55.4 46.1 48.4
BCB 66.8 55.7 58.7
TCH 81.5 66.8 70.5
TCP 106.2 90.2 94.2
PSM 143.4 121.7 126.9

a All units are in kcal/mol. b Small basis ) 6-311G(d,p); large
basis ) 6-311+G(3df,2p); unrestricted open-shell method. c Small
basis ) 6-31G(d); large basis ) 6-311+G(2d,2p); restricted
open-shell method.

MSE(B3LYP) ) -0.0288 + 0.8821MSE(G1) (1)

MSE(G1) ) +0.0326 + 1.1338MSE(B3LYP) (2)
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asMSE(B3LYP*), the correction factor is ∆ ) MSE(B3LYP*)
- MSE(B3LYP). Because ∆ is positive, adding ∆ to the
absolute enthalpy of the strained system effectively corrects
for the B3LYP underestimate.

We have repeated this correlation for radicals using HDRs
and obtained the same correlation parameters as those given
above (data not shown). Thus, to obtain a BDE, for example,
for R-H f R• + H•, the MSE is calculated for parent and
radical independently. Absolute enthalpy values H°298 are
corrected for each, and the (gas-phase) BDE is the enthalpy
change for the dissociation reaction.

It is also important to mention that because the magnitudes
of MSE for the parent molecule and its radical are often very
similar, the B3LYP error on absolute enthalpies of these
species is canceled out in calculation of BDE values. Thus,
as shown in Table 2 for the structures of Figure 1, even
though these structures contain significant amounts of strain
(MSE ) 25-145 kcal/mol), the difference in MSE of parent
and radical is much smaller (2-20 kcal/mol). This leads to
the corrected BDE values (BDE*), which differ by no more
than 2.6 kcal/mol from the uncorrected BDE values.

B. BDE Values for Fused Ring Systems. Figure 3 shows
the ring structures of interest in this Article. Many of these
structures have two exchangeable hydrogen atoms. Because
they can form intermediate radicals, oxygen adducts, and
second dissociation products, a reaction scheme showing the
various possibilities is given in Figure 4.

Structures A1 and A2, also shown in Figure 5a, are two
forms of pentadiene, that is, the conjugated 1,3-pentadiene

and the “skipped diene” 1,4-pentadiene. A3 and A4 are the
equivalent cyclic structures 1,3-cyclohexadiene and 1,4-
cyclohexadiene, respectively. B1-B7 are formed from the
fusion of two cyclopentane rings, denoted (5,5), and contain
variable amounts of unsaturation. Structures B1, B2, B5, and

Figure 2. Molecular strain enthalpy (MSE) for B3LYP (our
calculation) versus G1 (from Walker et al.).

Table 2. Comparison of the R-H BDE Values Calculated
Using B3LYP (Our Work) versus G1 (Walker et al.)a

G1 B3LYP

structure BDE BDE MSE (parent) MSE (radical) BDE*

CBT 100.5 98.5 23.9 25.6 98.8
BCP 100.1 99.0 48.4 50.5 99.3
BCB 101.1 100.4 58.7 62.3 100.9
TCP 103.6 102.9 94.2 100.2 103.6
TCP 113.4 112.6 94.2 112.1 114.9
PSM 107.9 106.9 126.9 139.1 108.5

a For the structure codes, see Figure 1. BDE* is the corrected
B3LYP value for BDE. All values are in kcal/mol. Figure 3. Molecular structures.

Figure 4. Reactivity scheme. (a) trans-D1 (two exchangeable
hydrogen atoms at ring junction), (b) B3 (second exchange-
able H-atom from ring).
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B6 can have cis- or trans-dihydrogen stereochemistry at the
central bond. C1 is the (5,6) ring combination, whereas
D1-D4 are the (6,6) combinations. Finally, E1 and E2 are
two additional multiring structures.

The MLM3 method was used to calculate gas-phase BDEs
for loss of the first H-atom from R-H, denoted R-H BDE1,
and for loss of oxygen after addition to the corresponding
radical R•, denoted R-OO• BDE1. For most of the com-
pounds discussed in this Article, there is an additional weak
C-H bond present in the initial carbon radical. Loss of the
second H-atom from R• is denoted R-H BDE2. Similarly,
loss of oxygen after addition to the product of this step is
denoted R-OO• BDE2.

The products of the second hydrogen abstraction are
closed-shell molecules. In one-half of the cases, addition of
oxygen to such molecules results in high-energy molecules,
which are nevertheless trapped in a potential minimum. High
energies of such adducts are reflected in positive enthalpy
changes for the addition reaction, and correspondingly
negative BDE values. These high-energy complexes are
nevertheless bound by long C-O bonds but must overcome
an energy barrier to separate. In other cases, mostly for
structures that are less crowded around the radical center,
energy minimization gradually increases the C-O bond
distance beyond the limits for a covalent bond and results
in structures in which oxygen lies in a shallow van der Waals
minimum relative to the parent compound. This weak van
der Waals interaction results in small positive BDE values
in the range of 1-4 kcal/mol. Such cases are identified with
an asterisk in Table 3. For all compounds, the four calculated
BDE values are given in Table 3.

Corrected values of the R-H BDEs were obtained by
applying the correction factor ∆ to the parent compound,
and a second value of ∆ for the radical. The appropriate
homodesmotic reactions are given in the Supporting Infor-
mation. Both corrected (BDE*) and uncorrected R-H BDEs
are given in Table 3. No correction factors were determined
for oxygen addition reactions. The table also contains a
column labeled strain release enthalpy (SRE). This is the
difference in (corrected) molecular strain enthalpy between
the radical R• and its parent hydrocarbon R-H. The sign
follows the convention for enthalpy change, so when the SRE
is negative the parent is more strained than the radical.

We found the data in Table 3 for structures A1-A4 to
give a surprising result, and further analysis led to develop-
ment of the main theme of this Article. Thus, the conjugated
pentadiene A1 and the skipped diene A2 give rise to the
same pentadienyl radical; see Figure 5a. Because of 4-center
conjugation, the parent hydrocarbon A1 is more stable than
A2, which has two isolated double bonds, so A1 should have
the larger R-H BDE1. As expected, the BDE1 values of 82.7
and 74.1 kcal/mol for A1 and A2, respectively, reflect this
difference in stability of the parent molecule. Note that A2
is very nonplanar, due to the sp3 hybridization at the central
carbon, thus minimizing any interaction of the isolated
π-systems via hyperconjugation through the center methylene
group. For the analogous cyclic compounds, both 1,3-
cyclohexadiene (A3) and 1,4-cyclohexadiene (A4) give rise

Figure 5. (a) Structures of the pentadienes and their radical; and (b) structures of cyclohexadienes and their radical.

Table 3. BDE Values of Compounds in Figure 3a

R-H R-OO•

structure BDE1 SRE BDE1* BDE2 SRE BDE2* BDE1 BDE2

A1 82.7 11.9
A2 74.1 6.5
A3 75.2 23.4 8.7 2.4*
A4 75.4 23.4 8.7 2.4*
cis-B1 94.9 -0.3 94.8 36.2 -5.3 35.4 32.8 -23.4
trans-B1 85.0 -9.1 83.6 39.0 -2.9 38.6 30.9 -19.3
cis-B2 87.2 9.4 88.5 44.4 2.9 44.8 24.0 -15.7
trans-B2 74.8 -12.4 73.0 44.4 2.9 44.8 -10.4 -15.7
B3 81.9 -2.0 81.6 46.8 32.0 51.4 18.6 -15.8
B4 77.2 2.6 76.9 52.1 6.2 2.5*
cis-B5 81.0 3.9 81.5 50.2 8.5 51.4 16.5 -10.9
trans-B5 63.4 -11.5 61.7 50.2 8.5 51.4 -15.6 -10.9
cis-B6 90.2 12.8 92.0 40.1 27.9 44.1 5.8 -19.4
trans-B6 65.9 -29.9 61.6 45.9 38.2 51.5 -0.1 -19.4
B7 73.5 -4.3 72.8 51.3 -0.8 51.2 9.5 -12.9
cis-C1 69.1 3.8 69.7 26.5 1.1 2.4*
trans-C1 61.8 -2.6 61.5 23.0 -5.7 3.2*
cis-D1 95.4 1.6 95.6 32.7 8.9 34.0 32.3 -28.7
trans-D1 96.0 2.2 96.3 35.6 11.4 37.3 8.1 -28.7
cis-D2 87.0 -6.4 86.1 31.5 0.6 31.6 -23.9 3.4*
trans-D2 95.3 0.9 95.2 31.5 0.6 31.6 -23.9 3.4*
cis-D3 81.2 -1.7 81.7 44.6 16.7 -16.2
trans-D3 80.1 -2.7 79.7 44.4 15.6 -15.3
cis-D4 60.2 -6.3 59.3 6.8 -4.7 2.6*
trans-D4 60.5 -6.0 59.7 6.8 -4.6 2.6*
cis-E1 79.1 9.0 6.2 2.5*
trans-E1 57.7 25.5 -9.3 1.9*
cis-E2 56.0 10.3 -13.2 3.8*
trans-E2 46.9 10.3 -13.2 3.8*

a All values in kcal/mol. SRE is the corrected strain release
enthalpy, and BDE1* and BDE2* are the corrected values of BDE1

and BDE2.
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to the same cyclohexadienyl radical (Figure 5b) and would
be expected to follow the above trend in R-H BDE1.
However, their BDEs are essentially identical at 75.3 ( 0.1
kcal/mol.

Why is the cyclic system so different from the straight
chains? The carbon skeleton of the cyclohexadienyl radical
is planar, as is the 1,4-cyclohexadiene A4 (Figure 5b).
However, the carbon skeleton of 1,3-cyclohexadiene, A3, is
twisted out of plane by 8°. The adjacent methylene groups
show a dihedral angle H-C-C-H of 27° instead of the
optimal 60° (in cyclohexane). The resulting steric strain
caused by adjacent bond pair repulsions destabilizes A3,
causing an out-of-plane twist for the conjugated group,
partially neutralizing its 4-center conjugation, and giving
(coincidentally) the same absolute enthalpy for both A3 and
A4.

Loss of a second H-atom from the cyclohexadienyl radical
formed in A3 and A4 converts the molecule into the closed-
shell aromatic benzene ring, so there should be a strong
driving force, as reflected in a low value for R-H BDE2.
This is certainly the case, with the remarkably low value of
23.4 kcal/mol for both A3 and A4 (the intermediate carbon
radical has the same structure for each). The R-H BDE2

for both A3 and A4 is so low that they should transfer the
H-atom to any available radical whose BDE for forming the
parent molecule is greater than 23.4 kcal/mol, that is, to
almost anything. Thus, at the same time the target radical is
deactivated by H-atom transfer, the cyclohexadienyl radical
will be converted into the highly stable closed-shell molecule
benzene.

Next, consider the tendency of molecular oxygen to add
to the carbon radical R• to form R-OO•. For comparison,
methane has an R-H BDE of 106.1 and an R-OO• BDE
of 32.0 kcal/mol.5 To prevent oxygen addition, we need to
weaken the R-OO• bond as much as possible. We showed
previously5 that there is a good correlation between the R-H
and R-OO• BDEs, given by R-OO• BDE ) -67.2 + 0.95
R-H BDE, with correlation coefficient R2 ) 0.925. There-
fore, in general, molecules with weaker R-H bonds lead to
radicals that form weaker R-OO• bonds, that is, are more
resistant to oxygen addition. Structures A1-A4 show this
characteristic weakening of the R-OO• bond as the R-H
bond gets weaker. When the second H-atom is lost from A3
or A4, and benzene is formed, molecular oxygen does not
form a covalent bond to benzene but forms a weakly bound
van der Waals complex. Table 3 shows that the binding
energy is only 2.4 kcal/mol, consistent with a van der Waals
complex.

Compounds B1-B7 introduce molecular strain into parent
R-H and oxygen adduct. Figure 6 shows the parent
compound bicyclopentane, B1, in both its trans and cis
isomers. Clearly, the trans-parent compound is more strained,
because its BDE1 is ca. 11.2 kcal/mol smaller than that for
the cis-compound (83.6 vs 94.8 kcal/mol, respectively). Note
that where cis and trans isomers are possible, as in B1, the
R-H BDE2 can be different, in this case 35.4 versus 38.6
kcal/mol for cis and trans, respectively. The structures of
the cis- and trans-radicals are different, and because our
optimization procedure begins with the parent compounds,

different local minima result, which we believe cannot be
easily interconverted.

Compounds B2-B7 continue this theme, introducing
additional stabilization to the radical by allowing for allylic
(B2, B3, B6) or pentadienylic (B4, B5, B7) conjugation. For
the allylic case, this causes R-H BDE1 to drop by 6-10
kcal/mol (compare B2 vs B1) with an equivalent drop in
R-OO• BDE1. The pentadienylic case is even more dramatic,
where for example in trans-B5 the R-H BDE1 has dropped
to a very low 61.7 kcal/mol.

Using only one double bond in cis-B2 and trans-B2 affects
the first hydrogen abstraction and reduces R-H BDE1 to
fall within a favorable range (73.0 kcal/mol for trans-B2)
for an antioxidant.14 Also, the R-OO• BDE1 in these
compounds has decreased substantially in comparison with
B1. The trans-B2 compound has negative values for dis-
sociation of oxygen in the first or second step and is therefore
resistant to oxygen addition. By moving the position of the
double bond, the parent molecule in B3 is more planar than
trans-B2 so the strain release enthalpy for this compound
(SRE ) -2.0 kcal/mol) falls between those of the cis- and
trans-B2. Clearly, the BDE1 values follow the trend (88.5 >
81.6 > 73.0).

Placing two double bonds on the same ring in B4 reduces
the R-H BDE1 even further because the radical is stabilized
by pentadienylic conjugation. At the same time, because the
planar side of the structure (the cyclopentadiene ring) does
not interfere with the nonplanar side (cyclopentane), the
molecular strain in this structure is diminished, as confirmed
by SRE ) 2.6 kcal/mol.

Placing both double bonds on different rings in B5 gives
the skipped diene conjugation similar to A2. The difference
from the strain-free A2 is that the two isomers of B5 release
different amounts of strain through the hydrogen abstraction
reaction (SRE ) 3.9 and -11.5 kcal for the cis- and trans-
B5, respectively), predictably changing the BDE1 values from

Figure 6. Optimized geometries of bicyclopentanes (cis-B1
and trans-B1), their radicals, and the ultimate product,
bicyclopentene.
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75.2 kcal/mol for A2 to 75.2 + (3.9) ) 79.1 (ca. 81.5 kcal/
mol) for the cis and 75.2 + (-11.5) ) 63.6 (ca. 61.7 kcal/
mol) for the trans isomer.

When placing two double bonds adjacent to either active
hydrogen in cis-B6 and trans-B6, the conjugative stabiliza-
tion effect is divided among both first and second hydrogen
abstractions. At the same time, in the trans isomer the two
cyclopentene rings are highly twisted due to the opposite
location of the double bonds, because the structure tends to
become planar on the sp2 centers and nonplanar on the sp3

centers. Thus, the trans-B6 compound shows the highest
amount of strain release enthalpy (SRE ) -29.9 kcal/mol),
leading to a low BDE1 of 61.6 kcal/mol. Overall, trans-B6
shows low R-H BDE values and negative BDEs for both
oxygen adducts, which makes it another potentially interest-
ing antioxidant. The compound B7 uses the same skipped
diene system as B5, with the difference that the double bonds
in B7 give both rings a quasi-planar conformation, which
have very little strain, resulting in a small amount of strain
release (SRE ) -4.3 kcal/mol).

Overall, the calculated SRE values reveal that the trans
conformations of (5,5)-membered ring structures in general
show considerable strain release (SRE ) -9 to -29 kcal/
mol), which causes the lowering of R-H BDE1 values, while
the cis conformations show only slight to moderate strain
release (SRE ) -0.3 to +12.8 kcal/mol) for the first
hydrogen abstraction. The variations of the SRE and BDE
values reveal that while it is relatively easy to induce
molecular strain into a structure, it is difficult to cause it to
be released in a hydrogen abstraction reaction. The results
also reveal that the position of double bonds and ring fusions
needs to be designed properly to give maximum molecular
strain for the parents while giving increased conjugation and
lower molecular strain for the radical.

Fusing a 5- and 6-membered ring, as in C1, allows an
additional factor, aromaticity, to stabilize the final product.
Now the indene ring can form, containing one benzene unit,
so that both R-H BDE1 and R-H BDE2 are very low for
C1, in both cis and trans configurations (69.7, 26.5 vs 61.5,
23.0 kcal/mol, respectively). From the SRE values (3.8, -2.6
kcal/mol for the cis and the trans isomers, respectively), it
is clear that these structures undergo only slight changes in
molecular strain through the hydrogen abstraction reaction.

This trend can be continued with fusion of two 6-mem-
bered rings, as in D1-D4. The two isomers of D1 are almost
strain-free (SRE ) 1.6, 2.2 kcal/mol for cis and trans,
respectively) for the abstraction of the first hydrogen. D2 is
similar to D1 because the double bonds are not conjugated
with the central bond. The double bonds in cis-D2 cause a
small amount of molecular strain that is released by hydrogen
abstraction (SRE ) -6.4 kcal/mol), lowering its R-H BDE1

to 86.1 kcal/mol. D4 is particularly interesting because in
both cis and trans configurations BDE1 is very low (ca. 59
kcal/mol), and BDE2 is only 6.8 kcal/mol; that is, after the
first dissociation the second H-atom is almost unbound. The
SRE values (-6.3, -6.0 kcal/mol for cis-D4 and trans-B4,
respectively) reveal that there is no significant amount of
strain release for the abstraction of first hydrogen. Thus, the
major driving force is the extended conjugation. For the

second step, the driving force is aromatization, forming the
product naphthalene.

In general, SRE values reveal that the (5,6)- or (6,6)-
membered ring systems are not as useful as the (5,5)-
membered ring for taking advantage of molecular strain in
lowering R-H BDE values. They can, however, take
advantage of conjugation and aromaticity to yield very low
R-H BDE values.

An extreme form of this approach to weakening the C-H
bond would be trans-E1, a (6,6,5,5) fragment of a buckyball,
where its R-H BDE1 has dropped to ca. 58 kcal/mol. One
could imagine a buckyball that has been modified to include
a local single bond, as in E1. In that case, the weakening of
the C-H bond should be even more extreme.

As a final example consider E2, with its (6,6,6,6) structure.
As in D4 and E1, the periphery of the parent molecule is
fully conjugated, but the molecule is not aromatic (Figure
7). Now the R-H BDE1 has dropped to 46.9 kcal/mol for
the trans isomer, the lowest value in Table 3.

We conclude this discussion with some observations on
trends in Table 3. Similar to the comparison made in Table
2, comparison of the values for BDE1 and the corrected
values BDE1* shows very little difference between the two.
Approximately one-half of the entries release strain, whereas
the other half increase it; the magnitude of the correction
never exceeds ca. 4 kcal/mol and is usually less than 2 kcal/
mol. This means that uncorrected values of B3LYP energet-
ics could have been used for these calculations with relatively
little error. In general, this also applies to BDE2 values,
although there is one case where the deviation is as large as
6 kcal/mol. The significant amounts of strain introduced into
the parent molecule in the trans geometry mean that these
structures are “strain traps”, which is the cause of their low
BDE values.

Relevance to Experimental Work

Ferjančić et al.15 studied free radical additions to strained
cycloalkenes and concluded that the strain relief in the
intermediate radical accelerates the addition reaction. The
reactions we studied in this work do not involve high energy
transition states as those of the Ferjančić study, but they do
involve strain relief (in hydrogen abstraction reactions) or
gain (in oxygen addition reactions). Thus, it is possible that
the strain affects the kinetics of these reactions favorably.
This is particularly interesting, because antioxidants that
generate carbon radicals are known to have slower reaction
rates than those that generate oxygen-centered radicals.

Regarding more highly conjugated compounds, Small et
al.16 have studied the ultraweak σ-bond formed in dimer-
ization of phenalenyl radical and estimated the BDE of this
C-C bond to be about 16 kcal/mol. Our calculations show
that similar to radicals formed by E1 and E2, the weak C-H
bond in phenalenyl radical is the result of increased conjuga-

Figure 7. Compounds cis-E2 and trans-E2.
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tion and relief of strain for radical formation. While the
phenalenyl radical tends to self-associate and form a dimer,
it has been shown17 that by using appropriately bulky
functional groups, a persistent radical can be isolated and
even crystallized. A similar steric approach can be used to
inhibit the possible dimerization reactions of our about-to-
be formed aromatic compounds such as E1 and E2. This
approach has been exploited to generate a continuous source
of radicals for use as chain-breaking antioxidants.18

Verevkin et al.19 found the compound cis-D4 to be the
“thermodynamic sink” (the most stable) of all interconver-
sions of (CH)10 compounds. Because they only confined their
search to experimentally discovered compounds, the trans
compound was not considered. According to our calculation,
the trans conformer is 0.3 kcal/mol more stable.

Antioxidant Design

Antioxidants that form carbon-centered radicals by abstrac-
tion from a C-H bond are limited in usefulness because
they react more slowly than antioxidants based on abstraction
from an O-H bond.20 However, as the R-H BDE drops
drastically, these kinetic differences should be reduced. There
is an interesting point of comparison with phenolic antioxi-
dants. Phenols are often metabolized biologically to catechols
and hydroquinones. These are good H-atom donors and
oxidize first to the semiquinone and ultimately to the quinone.
Reducing agents such as ascorbate or glutathione are often
required to send the reactive semiquinones back to parent
catechols (or hydroquinones), or else the very electrophilic
quinones can act as tumor initiators by alkylating DNA.21

When reducing agents are present, the catechol (or phenol)
acts as a catalytic antioxidant because the parent compound
is regenerated from the reducing power in the cell. However,
when oxidation (often autoxidation) exceeds reduction of the
oxy-radical, the cell enters into a state of oxidative stress,
usually with negative consequences for the organism.

Now consider antioxidants based on carbon-centered
radicals as described in Table 3. The first BDE is low, so
reaction with a target radical such as peroxyl should be
relatively fast. The second BDE is very low, so the reaction
will quickly go to completion, forming the relatively stable
olefin product. Because olefins are much less electrophilic
than quinones, they should pose much less of a tendency to
cause oxidative stress. Once formed, the olefin is unlikely
to be reduced. Such an antioxidant is then acting in a
stoichiometric rather than in a catalytic mode. This will
require restoring the supply of starting material. However,
due to the presence of two exchangeable H-atoms, the parent
compound is acting as a bivalent donor antioxidant. This is
an improvement over a monovalent antioxidant. One could
continue this theme by designing structures that are poly-
valent donors with multiple weak C-H bonds.

Conclusions

Molecular strain and conjugation effects can be effectively
used to design structures that produce carbon-centered
radicals. Classical substituent effects that stabilize the radical
center can be used in combination with molecular strain to

design molecules with ultraweak C-H bonds. One possible
strategy is to design structural motifs suitable for the quasi-
planar orientation of bonds on the radical center, so that the
tetrahedral orientation of bonds in the parent and oxygen
adduct will be strained. Some simple examples of compounds
following this theme were demonstrated, including (5,5)-,
(5,6)-, (6,6)-membered fused rings.

Homodesmotic reactions were used to derive correction
factors for the absolute enthalpy of both parent and radical.
The corrected enthalpies were used to obtain the corrected
values of the BDE and the strain release enthalpy (SRE).
We demonstrated that this parameter (MSE) can be used to
correct for the B3LYP error in highly strained molecules
and to obtain BDE values that correspond closely to higher
level calculations. The magnitude of this correction however
was usually small. The SRE value reveals how much the
molecular strain that is engineered in the parent molecules
is released through a hydrogen abstraction reaction. The SRE
values reveal that the trans isomers of (5,5)-membered
systems are ideal “strain traps”, which can lower the R-H
BDE1 values by up to 30 kcal/mol.

The fused-ring compounds can undergo subsequent hy-
drogen loss and show low first and especially low second
R-H BDEs. At this stage, these compounds end up as stable
closed-shell products, effectively terminating the propagation
of oxidative chain reactions. While for classical carbon-
centered radicals the reaction rates of C-H bond dissociation
are slower than ideal for antioxidant activity, it is likely that
the very weak C-H bonds of the parent molecules in our
suggested compounds will increase these reaction rates
considerably. This leads naturally to the idea of a stoichio-
metric, bivalent donor antioxidant generating nontoxic
products.
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Abstract: We have developed and tested molecular mechanics parameters for [FeS] clusters
found in known [FeFe] hydrogenases. Bond stretching, angle bending, dihedral and improper
torsion parameters for models of the oxidized and reduced catalytic H-cluster, [4Fe4S]+,2+Cys4,
[4Fe4S]+,2+Cys3His, and [2Fe2S]+,2+Cys4, were calculated solely from Kohn-Sham density
functional theory and Natural Population Analysis. Circumsphere analysis of the cubane clusters
in the energy-minimized structure of the full Clostridium pasteurianum hydrogenase I showed
the resulting metallocluster structures to be similar to known cubane structures. All clusters
were additionally stable in molecular dynamics simulations over the course of 1.0 ns in the fully
oxidized and fully reduced enzyme models. Normal modes calculated by quasiharmonic analysis
from the dynamics data show unexpected couplings among internal coordinate motions, which
may reflect the effects of the protein structure on metallocluster dynamics.

Introduction

The biological mechanisms for production of hydrogen gas
are a current topic of great interest.1,2 In particular, [FeFe]
hydrogenases are understood to catalyze H2 production more
effectively than the reverse uptake reaction.3 As naturally
occurring enzymes, they must catalyze reduction of protons
at ∼10-7 M concentration, ambient or slightly elevated
temperatures, and modest reduction potentials. Furthermore,
the delivery of electrons from biological electron donors such
as ferredoxin and protons from the cellular milieu must be
coordinated. These properties make the [FeFe] hydrogenases
attractive models for the development of engineered enzy-
matic catalysts, protein maquettes,4 or chemical catalysts.

The most complex [FeFe] hydrogenase so far structurally
characterized, hydrogenase 1 from Clostridium pasteurianum,
contains not only the [2Fe]-[4Fe4S] H-cluster but also two
auxiliary cubane-type [4Fe4S] clusters with tetracysteinate
ligation, a single [4Fe4S] center with unique Cys3His ligation,
and a [2Fe2S]Cys4 cluster. Given that C. pasteurianum is a
strict anaerobe, it is reasonable to expect these clusters to
function either as redox cofactors shuttling between their
most reduced and next-most reduced states or as structural

centers in one of those two states. Barring the example of
the nitrogenase Fe protein which can achieve a remarkable
[4Fe4S]0 state, in biological systems this implies cluster
valence states of [2Fe]H

I,II;I,I, [4Fe4S]2+,+, and [2Fe2S]2+,+,
where Roman numerals refer to the formal valence of
individual iron ions, and Arabic numerals to the overall
valence of the inorganic cluster core.

In principle, the now widespread availability of user-
friendly molecular dynamics and quantum chemistry pack-
ages together with communal supercomputing resources
brings to bear unprecedented power to simulate and under-
stand the catalytic dynamics of [FeFe] hydrogenases. How-
ever, the lack of a complete, consistent set of mechanical
parameters derived under a single set of assumptions for the
electron transfer and catalytic centers hampers more wide-
spread study of these systems. [2Fe2S] and [4Fe4S] cluster
parameters derived from crystallographic study are available
(HIC-UP) but with arbitrary force constants. To our knowl-
edge, a systematic effort to derive quantitative bond, angle,
and dihedral parameters for the hydrogenase [2Fe],
[4Fe4S]Cys4, [4Fe4S]Cys3His, and [2Fe2S]Cys4 centers has
not been reported. Here, we use ab initio quantum chemistry
to generate the force parameters for the metalloclusters.
Technical complexities such as the formally multireference* Corresponding author e-mail: christopher_chang@nrel.gov.
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character of antiferromagnetically coupled metalloclusters
and the challenge of defining dihedral angles in cage
structures make this process somewhat tedious. However,
the ab initio calculation of force parameters for these systems
has several attractions. Although the ring or cage structures
of [2Fe2S] and [4Fe4S] centers make dihedral definition
complicated, their lack of rotational freedom means no
rotational isomers need consideration, and thus the behavior
of dihedral potential functions away from their cluster-
associated values may be reasonably neglected. Furthermore,
few ad hoc decisions need to be made regarding particular
data to fit. Finally, results may be systematically improved
through the use of higher levels of theory, more complete
basis sets, and fewer assumptions as needed.

In this spirit, we here report a first-generation set of
molecular mechanical parameters and topology files for these
centers in their expected functional valence states. Results
of these parameters for energy minimization, molecular
dynamics, and vibrational analysis are compared to quantum
mechanical calculations as well as experimentally measured
frequencies for the diatomic ligands on the H-cluster [2Fe]
core.

Methods

Structural Models. Models for the catalytic center
comprised the basic structure of the [2Fe]H H-cluster core
found in [FeFe] hydrogenase, with the sole cysteinate ligand
replaced with methylthiol. The use of a proton to approximate
[4Fe4S]H on this core is precedented.5-7 The oxidized form
of formal iron valence FeIFeII was modeled with an open
ligation site on the distal Fe motivated by the unusually long
Fedistal-X bond observed in the original crystallographic
structure of the Clostridial enzyme8 and the apparent lack
of a corresponding ligand in the DesulfoVibrio desulfuricans
[FeFe] hydrogenase structure.9 The reduced form was
modeled with proton ligation to the distal FeI. Although this
model is of questionable relevance to reaction mechanisms
involving solely bridging hydride species,7,10 it is consistent
with other mechanisms that have been proposed,5 particularly
in the presence of a DTMA bridging dithiolate.11,12 Meth-
ylthiolate replaced cysteinate for all [2Fe2S] and [4Fe4S]
clusters. For the special [4Fe4S]HisCys3 model, histidine was
ligated via Nε, as modeled in the crystallographic structure
for CpI (PDB code 1FEH).

Quantum Chemistry. Geometry optimization and fre-
quency calculations employed the Gaussian 2003 package,
rev. C.2, and a BLYP/6-31+G* model chemistry. Coulomb
fitting was employed to accelerate the SCF process. Higher
symmetries possible for the [2Fe2S]Cys4 and [4Fe4S]Cys4

clusters were not enforced, i.e., all calculations were
performed within C1 symmetry. Geometries were optimized
to default criteria (maximum and rms forces of 0.45 and 0.30
mHa/Bohr, displacements of 1.8 and 1.2 mBohr), and the
rms change in the density matrix was set to 10-8 (“SCF)Tight”)
with the default pruned (75,302) integration grid. In certain
cases, SCF nonconvergence observed for the iron-sulfur
clusters was circumvented by constructing initial guesses
from localized Natural Bond Orbitals13 generated from

loosely converged Kohn-Sham wave functions. In these
cases, broken-spin-symmetry electronic configurations were
input, with majority R- and �-spin ions distributed arbitrarily
within the model cluster. Frequencies were calculated from
analytical second derivatives. Output of the Hessian in
internal coordinates was achieved using the Gaussian route
flag IOp(7/32) and keyword option Freq)InternalModes.
Hessian diagonal elements were scaled by (0.9945)2, based
on empirical frequency scaling studies.14 The Urey-Bradley
terms included as part of the CHARMM force field were
not calculated, which may simply be thought of as neglecting
anharmonicity in the angle bending coordinates. To convert
force constants from atomic units (Hartree/Bohr2 or Hartree/
radian2) to those used in the program package CHARMM
(kcal/(mol ·Å2) and kcal/(mol · rad2)), force constants were
further scaled by 2242.3 (bonds) and 627.49 (bends and
torsions).

Definition of Dihedral Angles. Where possible, the force
constants calculated with density functional theory are used
in harmonic potential functions, which differs from the
common parametrization as a trigonometric function. This
was the case for angles that could be defined with a single
minimum-energy value, which in turn depends on both
the dynamic rigidity in three-dimensional space as well as
the chosen definition of atom types. Thus, although the cage
structures of [FeS] clusters imply limited rotational flexibility,
to make our force field as simple as possible we have chosen
to limit cluster atom types to one per element, per [FeS]
cluster type. In doing so, for the auxiliary electron transfer
clusters (i.e., not the [2Fe]H component of the H-cluster),
optimum dihedral angles typically clustered as one or more
(θ pairs; unfortunately, such a pattern is difficult to encode
exactly with either a single harmonic or trigonometric
function. Nevertheless, for these cases with multiple minima
arising from degeneracy in our atom type definitions, we
have chosen simplicity over precision by choosing the lowest
multiplicity of a cosine function that places minima near all
optimum θ values. A particularly pernicious example is the
FEIR-SIR-FEIR-SIR dihedral associated with the iron and
sulfide core of the reduced [4Fe4S]HisCys3 cluster, with a
multiplicity of 40 and phase angle of 180° to encompass
true minima at approximately (9° and (91°. The CHARMM
potential function Vdihedral)A[1+cos(nθ+�)], with multiplic-
ity n and phase angle � produces the requisite minima at 9
and 90 degrees, at the cost of introducing numerous spurious
minima. However, the relatively rigid cage topology of this
cluster type arising from effective dihedral constraints by
bond and angle forces prevents sampling of these spurious
dihedral minima, as illustrated in Figure 2. We have made a
further approximation in taking the harmonic force constants
from our ab initio calculations directly as cosine amplitudes.
Again, however, the lack of physical transitions among the
function’s minima and the effective constraints from the
stiffer bond and angle force constants makes the fine detail
of the high-energy values mostly irrelevant.

Approximations for Fe-C-O/N Bending Parameters.
The linear angles found in the Fe-C-(O/N) and trans
S-Fe-C angles created two particular difficulties in pa-
rameter derivation. First, care was required to exclude any
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dihedral angle definitions involving three such atoms; the
effects of the singularity produced by a linearity in an
A-B-C-D system manifested as sudden atomic accelera-
tions and immediate cessation of dynamics simulations. This
observation is the primary driver behind our decision to
abandon automatic generation of internal coordinates and the
explicit definition of bonding topologies we have used.
Second, linear bending coordinates are described along
deformations in two orthogonal directions; however, the
natural mechanism in classical biomolecular force fields is
an improper torsion. The two linear bending force constants
calculated quantum mechanically were used as constants to
describe one improper torsion and one angle bend. By way
of example, the FEL1-CLC-CLO1-OL4 (Feprox-Cbr-COprox-
OCO) improper torsion force constant was assigned the DFT-
calculated force constant for the linear FEL1-CLO1-OL4
bend within the FEL1/CLO1/CLC plane, and the FEL1-
CLO1-OL4 bending constant was assigned the average of

the above linear bend constant and that for the FEL1-CLO1-
OL4 bend perpendicular to the FEL1/CLO1/OL4 plane as a
compromise to describe all possible FEL1-CLO1-OL4 bend-
ing motions relative to the FEL1/CLO1/OL4 plane.

van der Waals radii were primarily taken from standard
CHARMM atom types, including “S” (sulfide and DTMA
thiolate), “CT2” (DTMA methylene C), heme OM (carbonyl
O), heme CM (carbonyl C), HA (DTMA methylene H) and
HC (HCR hydride), wildcard N (cyanide N, DTMA nitro-
gen), and heme Fe.15 We note that the Fe van der Waals
interactions are neglected in CHARMM27 with an ε value
of 0.0 in the standard Lennard-Jones 6-12 potential form.

Test Simulations. Energy minimization, molecular dy-
namics, and analysis calculations of the protein system with
the exception of frequency estimations were carried out using
the NAMD16 and VMD17 program packages. Metallocluster
normal modes and frequencies were calculated from the
trajectory data using the CHARMM program package,
version 34.18 After projecting out translational and rotational
motions of the clusters, modes and frequencies were obtained
by quasiharmonic analysis.19 To estimate localized “C-O”
and “C-N” stretching frequencies for the H-cluster diatomic
ligands, the normal modes were projected onto the appropri-
ate localized mode and vibrational frequency of the localized
mode calculated from the weighted rms over the set of
normal-mode frequencies20

where L is the matrix of eigenvectors (i.e., normal modes)
of the Hessian in internal coordinates Hint, L† is its adjoint,
Λ is the diagonal matrix of eigenvalues λi, mb is the localized
mode vector of interest, νi is the frequency of the ith normal
mode, νm is the frequency of the localized mode of interest,
and wi ) mbi

t ·mbi is the weight of the ith normal mode in the
localized mode.

Simulation parameters other than the force constant and
atomic charges considered here were as previously de-
scribed.21 Circumsphere plots of iron and sulfide angular
coordinates were made with the Python plotting module
Plothon version 0.1.2 (now SVGFig22). Ellipsoid plots were
constructed by determining the appropriate rotations to
achieve the desired perspective and then applying these to a
reference dynamics frame prior to calculation of anisotropic
temperature factors using an in-house VMD script imple-
menting the appropriate calculations.23 PDB files including
the calculated ANISOU records were constructed and used
as input to the Raster3D package.24

Results and Discussion

Atom Type Definitions. We have limited our efforts to
the two most relevant valence states of each metallocluster
considered here, given the requirements for reduction of

Figure 1. Schematic and CPK representations of [FeFe]
hydrogenase electron transfer and catalytic centers considered.

Figure 2. Dynamic stability of the Fe1-S1-Fe2-S2 dihedral
angle from [4Fe4S]+HisCys3 over 1 ns simulation time of the
CpI hydrogenase.
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protons to H2 and typical redox potentials in anaerobic
bacterial cytoplasm. For the H-cluster [2Fe] core, we have
likewise considered two forms; however, given the greater
bonding flexibility as compared to [FeS] cluster cofactors,
we were forced to make several choices regarding the nature
of the open coordination site found on Fedistal. First, although
the nature of the (µ2,µ2)-bridging dithiolate ligand has been
variously proposed as 1,3-propanedithiolate,9 di(thiomethyl)-
amine,11,25 or di(thiomethyl)ether,26 we have chosen di(thi-
omethyl)amine (DTMA) due to its attraction as a proton
transfer intermediary and the presence of Cys299 within
hydrogen bonding distance of the central atom of this
bridging ligand. This choice in turn favors a proton transfer
mechanism involving a terminal binding mode to Fedistal, at
least in the initial stages of proton reduction at [2Fe]H. Thus,
for the “active oxidized” FeIFeII form (as compared to the
“inactive oxidized” diferrous form found in certain as-isolated
enzymes, e.g., DesulfoVibrio Vulgaris27,28), the distal coor-
dination site was left open based on the unusually long Fe-O
bond found in the crystallographic structure and on the need
for an open site to permit terminal hydride binding. The fully
reduced [2Fe]H unit was modeled as a terminally protonated
FeIFeI species.

Our atom type nomenclature in this report is summarized
in Table 1. There are three noncatalytic electron carrier
cluster types, each with two potential redox states. The
oxidized or reduced state is signaled through a terminal “O”
or “R”, respectively, on the atom type name for Fe and
inorganic sulfide atoms. The nature of the cluster is iden-
tified through an index character immediately following

the element name, with (I, J, K) ) ([4Fe4S]Cys3His,
[4Fe4S]Cys4, [2Fe2S]Cys4). The bonding changes between
oxidized and reduced forms of [2Fe]H were associated with
different nomenclature. Atoms of the oxidized cluster are
denoted with “M” following the elemental character, with
the exceptions of “HCM1”, “HCM2”, and “CCM1” denoting
DTMA methylene hydrogen atoms pointing toward Feproximal,
DTMA methylene hydrogen atoms pointing toward Fedistal,
and DTMA methylene carbons, respectively. Terminal car-
bonyl oxygen atoms are denoted by an index number of “4”,
the bridging carbonyl oxygen atom by “6”, and the terminal
cyano nitrogen atoms by “5”: thus, “OM6” is the oxygen
atom of the bridging CO group. Diatomic ligand carbon
atoms bound to Feproximal have a numeric index of “1”; those
bound to Fedistal an index of “2”, leading to “CMN2”
corresponding to the terminal cyano carbon bound to Fedistal,
for example. Nomenclature for reduced [2Fe]H is identical
save for the replacement of “M” with “L” and the terminally
bound proton denoted by atom type “HH”. The atom naming
and typing system is illustrated in Figure 3 for the reduced
[2Fe]H center.

Force constant values and NPA charges are given in their
entirety in the Supporting Information. We have generated
CHARMM-style topology files with explicit definitions of
bond, angle, dihedral angle, and improper torsion angle
definitions, allowing the general user to avoid certain
problems associated with linear angles found in the [2Fe]H

center and to map cleanly to the available force parameters.
In addition, explicit internal coordinate definitions cor-
responding to the density functional theory-optimized struc-

Table 1. Residue Names, Atom Type Labels, and Atom Names for Metalloclusters Considered

structure residue atom types atom names

[2Fe2S]Cys4 F2(O/R) FEK(O/R), SK(O/R) FE1, FE2, S1, S2
[4Fe4S]Cys4 F4(O/R) FEJ(O/R), SJ(O/R) FE1...FE4, S1...S4
[4Fe4S]Cys3His FH(O/R) FEI(O/R), SI(O/R) FE1...FE4, S1...S4
[2Fe]H HC(O/R) FE(M/L)1, FE(M/L)2, S(M/L)1, S(M/L)2,

N(M/L)M, O(M/L)4, N(M/L)5, O(M/L)6,
C(M/L)O1, C(M/L)N1, C(M/L)O2, C(M/L)N2,
C(M/L)C, HC(M/L)1, HC(M/L)2, CC(M/L)1

FE1, FE2, S1, S2, N1, (O3 or O7),(N4 or N6),
O5, C3, C4, C7, C6,C5, (HB1 or HB4),
(HB2 or HB3), (CB1 or CB3)

Figure 3. Atom names (left) and types (right) associated with the force field calculated for the reduced [2Fe]H core of [FeFe]
hydrogenases. Oxidized types may be trivially derived from the reduced types by replacing “L” with “M” and neglecting bound
hydride “HH”.
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tures for [2Fe]H are included for automatic regeneration of
the complete cluster structure from partial experimental
structures, with direct user intervention limited to minor text
editing of the Protein Data Bank file. Beyond general build
practices for proteins, user responsibility is limited to
ensuring proper atom naming in the input PDB file consistent
with that in Figure 3 and our convention of naming the Fe
atom bound to histidine in [4Fe4S]Cys3His as FE1.

Quantum Chemistry. Geometry optimizations and charge
calculations were straightforward. The three terminal hy-
drogen charges of methylthiolate were adapted to the two
methylene hydrogen atoms of cysteine simply by redistribut-
ing the sum of the former three atoms over two, thereby
preserving overall the integer charge of the system. Calcula-
tion of force constants as diagonal Hessian elements often
required repeated calculations with manually specified
internal coordinates, as program-generated redundant internal
coordinates did not always include those desirable for a
molecular mechanics force field. However, after initial
storage of force constants in the checkpoint file, such
repetitions were very brief, requiring only conversion of
Cartesian force constants to internal coordinates and output
of the Hessian including the manually specified internal
coordinates.

As expected, the orthogonality of coordinates decreases
as one moves from two-body bonds, through three-body
angles, to four-body dihedral and improper torsions. This is
illustrated in Figure 4, where a color map of the upper
triangular Hessian for the oxidized [4Fe4S]2+ cluster is
plotted. The dynamic range maximum was set to the average
diagonal value of the bonds (4A), angles (4B), or dihedral
angles (4C) to allow visual evaluation of the relative diagonal
dominance for each class of parameter. The diagonal
dominance is clear in all three cases, with some coordinate
coupling becoming apparent for the weakest force constants
(dihedrals and impropers). It should be noted that the ring-
and cage-type structures of the clusters considered constrain
the space of achievable geometries. Thus, errors arising from
neglected coupling among weak four-body force constants
should be “drowned out” in simulation practice by the much
stronger bonding interactions. Nevertheless, for the sake of
completeness and to include as much physics as possible in
this first-generation force field, we have included these four-
body parameters.

Due to the requirement for a complete [2Fe]-[4Fe4S]-
(methylthiolate)4 second derivatives calculation to derive the
angular parameters governing the linkage between [2Fe]H

and [4Fe4S]H, we have chosen to neglect the four-body terms
between these entities and to approximate the Fe-S(Cys)-Fe
bending force constant with an arbitrary 500 kcal/(mol · rad2)
value, with the optimum angle left as that observed in the
crystallographic structure for Clostridium pasteurianum
hydrogenase I. The treatment of the [6Fe4S] H-cluster as
structurally separable [2Fe]H and [4Fe4S]H clusters for the
purposes of molecular mechanical/dynamical calculations
raises the question of their actual physical autonomy. Recent
computational and spectroscopic data have revealed a degree
of electronic coupling29,30 as expected for such a coordinate-
covalently linked metallocluster, and careful examination of
57Fe hyperfine couplings in the Hox state confirmed exchange
coupling between [2Fe]H and [4Fe4S]H in this redox state.31

The observed exchange coupling (spin polarization) in one-
electron theory is distinct from electron “delocalization”
between the clusters in the sense of extended molecular
orbitals, which was proposed based on examination of the
calculated difference electron density between isolated and
structurally connected clusters, canonical (i.e., those diago-
nalizing the approximate one-electron Hamiltonian) frontier
orbital shape, and nonadditivity of open-shell iron character
in the sulfur K-edge X-ray absorption bands.30 However,
direct physical interpretation of one-electron molecular
orbitals, particularly those derived from Kohn-Sham
theory,32 can be physically ambiguous, especially among
near-degenerate orbitals that may be mixed without dramati-
cally changing the wave function. Self-interaction error has
been raised as a particular source of excessive delocalization
in canonical Kohn-Sham orbitals of odd-electron systems.33,34

Spectral analysis of [2Fe]H, [4Fe4S], and [6Fe4S]H model
complexes shows that the assigned sulfide-to-high-spin-Fe
transition intensity in a combined [6Fe4S] model arises from
contributions of [4Fe4S] peak intensity, [2Fe]H low-spin-
Fe(I)-to-thiolate tail intensity, and cooperative effects po-
tentially including delocalization;30 however, it is not clear
whether the electronic changes expected from exchange
coupling alone could account for the observed nonadditivity,
or whether electron delocalization is necessary. The pattern
and contour values of difference density suggested that the
bulk of electronic reorganization between the isolated and
combined cluster models occurred among orbitals on indi-

Figure 4. Color maps of Hessian sections calculated for the oxidized [4Fe4S] cluster model. The maximum of the dynamic
range is set to the average of the diagonal values for (A) bonds, (B) angles, and (C) dihedrals. Only coordinate couplings within
each type of coordinate are shown. Axes are labeled by the internal coordinate indices.
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vidual ions, rather than between clusters, a result which could
arise from atomic orbital near-degeneracy combined with
numerical factors in the SCF procedure as well as small
perturbations of the cluster electronic structures induced by
exchange coupling. The inclusion of the cubane in a [2Fe]H

computational geometry optimization resulted in a weakening
of the Feprox-Cys bond and a shift of the bridging carbonyl
group toward the proximal Fe29 relative to the protonated
cysteine thiol [2Fe]H models commonly used, which might
be explained by differential charge polarization within the
[2Fe]H cluster induced by a proton versus an exchange-
coupled [4Fe4S] center. Overall, the existing evidence
suggests that direct electron delocalization between clusters
is a small effect and that the dominant direct effect of [4Fe4S]
linkage is a modest perturbation of the charge distribution
on the [2Fe] center as compared with a cysteine thiol model.
The observation of discrete [2Fe]I,II-[4Fe4S]+ (“Htrans”) and
[2Fe]I,I-[4Fe4S]2+ (“Hox”) valence states during activation in
the enzyme from DesulfoVibrio desulfuricans35 further
suggests that the two subclusters retain some electronic
autonomy in the enzyme’s more oxidized states. Lack of an
observable reduced [4Fe4S]+ moiety during catalytic turnover
may arise from rapid and directional electron transfer from
[4Fe4S]H to [2Fe]H, as opposed to inextricable electronic
structure in a nondegenerate ground electronic state. Given
the evidence, we assert that for the purposes of deriving
molecular mechanical parameters, isolated cluster calcula-
tions are suitable as an initial approximation. Nevertheless,
the effect of electronic coupling between these subclusters
on structure and properties will be an area for future
refinement and study of the force field.

Test SimulationssOptimized Geometries. The geometry
of the Clostridium pasteurianum hydrogenase I was opti-
mized in fully oxidized and fully reduced states with the
parameters reported. In order to evaluate the modeled energy-
minimized geometries, we compare the angular positions of
the iron, sulfide, and bonded ligand atoms to an ideal cluster

geometry using the circumsphere methodology of Fee and
co-workers.36 Figure 5 shows overlays of atomic positions
associated with all [4Fe4S] clusters in the geometry-
optimized CpI hydrogenase in its fully oxidized and reduced
states, with an idealized cluster comprising three Platonic
tetrahedra circumscribed about a common origin. Comparison
to this Platonic ideal and to the clusters examined in ref 28
shows excellent angular overlap, confirming that the derived
[4Fe4S] parameters preserve the expected angular distribution
of Fe and S ions, while still allowing adjustment to the
protein environment.

Average calculated Fe-sulfide and Fe-protein ligand bond
lengths were 2.23 ( 0.012 and 2.29 ( 0.086 and 2.43 (
0.032 and 2.50 ( 0.11 for the minimum-energy oxidized
and reduced models, respectively, averaged over the [4Fe4S]
clusters in CpI [FeFe] hydrogenase. As compared with
experimental values of 2.31 ( 0.029 for Fe-sulfide and 2.27
( 0.066 for Fe-protein ligand bonds in this protein, the bond
lengths in the energy-minimized oxidized CpI hydrogenase
model offer satisfactory agreement with experimentally
measured values. Circumsphere radii for the Fe, sulfide, and
protein ligand atoms are shown in Table 2 for the [4Fe4S]
clusters found in CpI hydrogenase. Most notably, the Fe
circumsphere radii in the oxidized state are contracted by
∼0.2 Å relative to the experimental structure, and the protein
ligand circumsphere by 0.14-0.31 Å. The oxidized sulfide
circumsphere matches the experimental structure quite
closely, with a small relative ∼0.02 Å contraction. Save for
the [4Fe4S]Cys3His cluster (HYDD), in silico reduction leads
to minimum-energy clusters with a slightly (∼0.1 Å)
contracted Fe sphere and expanded sulfide (0.2 Å) and ligand
(0.3 Å) spheres. The Fe circumsphere of the His-ligated
cluster actually expands upon reduction; the sulfide and
protein ligand circumspheres also expand but less so than
the all-cysteinate-ligated iron-sulfur clusters. Expansion
upon reduction has been noticed previously37 and is evident
in our gas-phase energy-optimized structures (Supporting

Figure 5. Circumsphere plots of oxidized (left) and reduced (right) CpI [FeFe] hydrogenase [4Fe4S] cluster coordinates, together
with maximally symmetric coordinates. Black circle, perfect symmetry; chartreuse square, [4Fe4S]581; green triangle, [4Fe4S]582;
red inverted triangle, [4Fe4S]583; blue circle, Cys3His[4Fe4S]584. Cluster numbering is as in PDB entry 1FEH.

Table 2. Experimental and Geometry-Optimized Circumsphere Radii for CpI [4Fe4S] Clusters

Fe sulfide protein ligands

Exp Compox Compred Exp Compox Compred Exp Compox Compred

HYDAa 1.663 1.488 1.590 2.244 2.232 2.468 3.949 3.812 4.118
HYDB 1.689 1.488 1.602 2.245 2.226 2.453 3.974 3.807 4.133
HYDC 1.688 1.484 1.612 2.242 2.222 2.446 3.965 3.804 4.153
HYDD 1.675 1.400 1.753 2.232 2.266 2.324 3.880 3.571 4.087

a [4Fe4S] hydrogenase residues are here indexed alphabetically, with increasing lexical value reflecting increasing distance from the
catalytic [2Fe]H H-cluster in the C. pasteurianum enzyme structure.
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Information), consistent with a net Fe-Fe antibonding
contribution for the “active” electron, i.e., the electron that
enters the oxidized or leaves the reduced cluster form. The
substantial compression of the Fe circumspheres in the
oxidized models relative to both the gas-phase density
functional calculations from which the force constants were
derived as well as the experimental protein structure points
to a significant role of the protein structure, potential
limitations to the classical harmonic potential approximation
as applied to redox-active metalloclusters, and possibly subtle
effects not yet captured in the current force field. The
differences in circumsphere distances involved are satisfy-
ingly small, however, considering the underlying comparison
being made between the experimental or gas-phase density
functional models on the one hand and the classical
mechanical bonding model with protein present on the other.

In order to evaluate the performance of the derived
parameters in a broader context, we calculated the geometric
properties of [4Fe4S] clusters contained in the PDB database.
All structures containing the residue name “SF4” were
filtered to eliminate structures containing (1) clusters with
multidentate or missing external ligands, (2) clusters with
questionable structures, (3) clusters with dual refined posi-
tions, (4) clusters falling on a crystallographic symmetry
element, such that not all atomic coordinates are explicitly
defined, and (5) clusters with bond lengths to external ligands
longer than 2.7 Å. The resulting 235 crystallographic protein
structures contained 635 [4Fe4S] clusters. We expect these
structures to be representative of the oxidized member of
the relevant redox couple, due to oxidation during crystal-
lization and limited photoreduction during crystallographic
data collection, although this latter assumption is uncertain38

and depends on specific data acquisition conditions. Average
bond lengths, distances between circumcenters, and circum-
center radii were calculated, and the angular circumcenter
coordinates were plotted as histograms, as shown in the
Supporting Information (Table S2 and Figures S1 and S2).
Average circumcenter radii were very close to the experi-
mental [FeFe] hydrogenase values shown in Table 2 as well
as to the sulfide and ligand circumsphere radii calculated
for the oxidized hydrogenase model. The circumsphere radius
calculated for the oxidized hydrogenase [4Fe4S] clusters is
∼0.2 Å less than either the DFT-optimized value or the mean
experimentally observed value. Angular coordinates of the
crystallographic cluster structures cluster around very similar

circumsphere theta and phi values to the minimum-energy
hydrogenase [4Fe4S] cluster structures shown in Figure 5.

Test SimulationssDynamics Stability. Figure 6 shows
50% thermal ellipsoid representations for the fully oxidized
and reduced models of CpI hydrogenase over 1 ns of
molecular dynamics simulation. The Fe and S atoms exhibit
narrower distributions than the lighter atoms, as expected.
More motion is evident among the second-row atoms of the
[2Fe]H cluster, comparable in magnitude to C/N/O motion
in the cysteinate ligands. rms deviations of atomic positions
in the protein only, metalloclusters only, and protein +
metalloclusters over 1000 frames (1 ns simulation time) were
0.825 ( 0.007 Å, 0.482 ( 0.007 Å, and 0.824 ( 0.007 Å
for the oxidized enzyme and 0.835 ( 0.008 Å, 0.363 ( 0.004
Å, and 0.833 ( 0.008 Å for the reduced enzyme, respec-
tively. The reported parameters thus yield dynamically stable
structures over at least 1.0 ns of simulated time, with
comparable but more restricted motion than the bulk
polypeptide.

Test SimulationssFrequencies. By virtue of possessing
triply bonded cyanide and carbonyl ligands bound to the
H-cluster, [FeFe] hydrogenases show distinctive infrared
spectroscopic absorptions well separated from the spectro-
scopic region associated with amino acid vibrations. Fourier
transform infrared spectra of the [FeFe] hydrogenase in its
active oxidized state from DesulfoVibrio Vulgaris showed
bands in its air-exposed form at 1848, 1983, 2008, 2087,
and 2106 cm-1, assigned to CObridge, 2 × COterminal, and 2 ×
CNterminal, in order of increasing energy.39 Bands seen for
the D. desulfuricans enzyme at 1802, 1940, 1965, 2079, and
2093 cm-1 were assigned to C-X stretches in the ligands
C5O5, C7O7, C3O3, C6N6, and C4N4, using our atom
naming convention (see Figure 3).40 Chen, et al. found a
similar vibrational manifold for the active oxidized Clostrid-
ium pasteurianum [FeFe] hydrogenase, with analogous
frequencies at 1802, 1948, 1971, 2072, and 2086 cm-1.41

Notably, the frequencies shift dramatically depending on the
redox state of the enzyme and the presence of exogenous
CO.39

To test the parameter performance in the context of full
protein dynamics, we calculated by quasiharmonic analysis
the normal modes and frequencies associated with the
hydrogenase metalloclusters from the molecular dynamics
trajectories. Although the analysis was done only on the
metalloclusters and immediately bonded ligand atoms, the

Figure 6. ORTEP-style 50% ellipsoid plots generated from a 1.0 ns molecular dynamics simulation on the CpI hydrogenase
model with all clusters reduced. Left, [2Fe]-[4Fe4S]H with cysteinate ligands; middle, the [4Fe4S]Cys3His auxiliary electron transfer
cluster; right, the [2Fe2S]Cys4 auxiliary cluster. Selected group labels and bonds have been drawn into the H-cluster diagram
where appropriate to assist in orienting the eye.
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dynamics trajectory was extracted from that of the entire
enzyme. Hence, the nature of the vibrational modes will not
necessarily match the quantum mechanical modes of the
isolated cluster, to the extent that polypeptide motions couple
with the H-cluster or otherwise lead to mixing of localized
C-X stretches in the normal modes. Table 3 summarizes
results from both density functional theory calculations on
the isolated cluster model and those from quasiharmonic
analysis of the dynamics trajectories. Frequencies from the
quantum mechanical calculations on the isolated H-cluster
show isolated C-N stretches but mixing among the possible
C-O stretches with more mixing evident in the reduced
H-cluster model. None of the classical modes shows pre-
dominantly C-X stretching motions alonesDTMA bridge
motions in both H-cluster redox forms and Fe-hydride
stretches in the reduced system coupled noticeably with the
localized C-X stretches. In addition, C-X stretches coupled
among themselves (see the Supporting Information for
animations of vibrational modes). The observed mixing in
the classical dynamics may reflect the effects of the protein
environment on the metallocluster vibrations, particularly
electrostatic interactions (e.g., CNprox H-bonding to the
Ser232 backbone amide N-H and the CNterm Lys358 charge-
dipole interaction). The quasiharmonic modes containing
significant C-X stretching show frequency ranges for the
oxidized and reduced models that bracket the DFT-calculated
values for the isolated cluster. Quantitative agreement is not
expected at this stage of parameter development, and careful
refinement of nonbonded parameters, an account of the
protein environment’s effect on hydrogen bonding and
electronic anisotropy of the cluster42 via more expensive QM/
MM calculations, and possibly a more explicit treatment of
static and dynamic electron correlation should be necessary
to achieve such agreement. Nevertheless, the data presented
support the utility of the calculated parameters for molecular

dynamics simulations of known [FeFe] hydrogenase enzymes
and related proteins with similar metallocluster species.

Conclusions

We have presented a set of molecular mechanical parameters
relevant to [2Fe2S]2+,+, [4Fe4S]2+,+Cys4, [4Fe4S]2+,+Cys3His,
and [2Fe]H

II,I;I,I metalloclusters found in known [FeFe]
hydrogenase enzymes. Modeled minimum-energy hydroge-
nase structures are consistent with those found experimen-
tally, and the cluster dynamics are stable, while still
permitting as much flexibility as is allowed by the quantum
mechanical force constants. Calculated vibrational frequen-
cies associated with the catalytic [2Fe]H CO and CN ligands
agree semiquantitatively with those measured experimentally
and calculated with density functional theory. It is our hope
that the consistent derivation procedure for all four cluster
types in both oxidized and reduced states will permit both
high-quality simulations of hydrogenase molecular dynamics,
particularly of the protein environment immediately around
the clusters, as well as allow systematic improvement of these
parameters by the modeling community should shortcomings
be found. It is expected that the pragmatic interest in
alternative fuels combined with fundamental scientific ques-
tions of electron transfer and proton dynamics and reduction
in hydrogenases will benefit from the availability of these
parameters.
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Supporting Information Available: CHARMM-
format topology files for cluster reconstruction and system

Table 3. Summary of Vibrational Analysis for Isolated Quantum Mechanical H-Cluster Model and Whole-Protein Classical
Mechanical Metalloclustersa

oxidized reduced

QH
frequency

quasiharmonic
description

QM
frequency QM stretchb

QH
frequency

quasiharmonic
description

QM
frequency QM stretchb

2271 COprox + CNprox (AS) +
CObr(S)

2088 0.9940CNprox 2522 CNterm 2111 0.9935CNterm

2232 COterm + CNterm(AS) +
CObr(AS)

2076 0.9870CNterm 2463 CObr + Fe-H (S) 2088 0.9990CNprox

2136 COprox + CNprox(S) +
CObr(AS) + COterm(AS)

1944 0.0659COprox,
0.0520CObr,
0.8742COterm

2412 CObr + Fe-H (AS) 1965 0.0386COprox,
0.1938CObr,
0.7559COterm

1973 CNprox-CObr(S)-COterm(S) 1911 0.8825COprox,
0.0176CObr,
0.0910COterm

2351 CObr + Fe-H (AS) 1927 0.1870COprox,
0.2763CObr,
0.1389COterm

1726 CNterm stretch and bend 1825 0.0383COprox,
0.9265CObr,
0.0321COterm

2115 COterm 1904 0.3954COprox,
0.1744CObr,
0.0040COterm

2074 COprox

2054 COprox + CNprox (AS)
1956 CNprox

a Frequencies are given in cm-1. Two or more terms imply coupled vibration, specified relative to the first listed local stretch as symmetric
(S) or antisymmetric (AS). Vibrations are stretches unless otherwise noted. b Coefficients for QM stretches are summed squares of
Cartesian eigenvector components of C and O/N atoms involved in the mode. If the mode vector is comprised only of diatomic ligand atom
motions, these will sum to 1.0000; deviation from 1.0000 reflects motion distributed among other atoms in the H-cluster model.
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setup, CHARMM-format parameter files for simulations, an
example of a VMD/PSFGen build script, a table of circum-
sphere radii for DFT-optimized model clusters, summary data
for PDB [4Fe4S] cluster survey, and trajectory (32-bit binary
DCD) and structure (text PSF) files for visualizing H-cluster
diatomic vibrational modes. This material is available free
of charge via the Internet at http://pubs.acs.org.
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Abstract: A 120 ns replica-exchange molecular dynamics simulation in explicit solvent is
performed to probe the conformational transitions in 5′-GGGCGCAAGCCU-3′ RNA GCAA
tetraloop. The ample structural transition information of the loop is detected on the basis of
extensive clustering analysis. The resultant loop structural transition map nicely agrees with
the recent ultrafast fluorescence measurement, which confirms the dynamical properties of this
tetraloop. Moreover, a new transition pattern that was not disclosed previously is predicted.
Meanwhile, the folding free energy landscapes were characterized: the global folding dynamics
is coupled mainly with the stem rather than the loop part.

Introduction

Hairpins are elementary structural units responsible for RNA
folding.1,2 Hairpin loop contains a base-paired stem structure
and a loop sequence with unpaired nucleotides. Its most
obvious property is to function as a “bender” to reverse the
direction of backbone. Due to steric hindrance, there exists
a minimum of three nucleotides to make a loop structure.
However, loops with four nucleotides, known as tetraloops,
are found to be much populated.1,3 Among the four-base
tetraloop motif, the family of GNRA (where N is any
nucleotide and R is a purine) tetraloops is well structured
with unusual stability.4-6

The most powerful tools to explore the structure features
of RNA tetraloops are crystallography and nuclear magnetic
resonance measurements.5,7 These structural biology tools
usually provide a well-defined structure or a structural
ensemble with limited fluctuations. With the newly developed
techniques, the dynamical features of RNA molecules are
attracting attention.8-10 For example, 13C NMR relaxation
measurements discovered substantial dynamic fluctuations
in the loop regions of several tetraloops.11-13 Dynamical

properties or structural heterogeneity of the RNA loop can
also be resolved by fluorescence spectroscopy.14,15 For
instance, a GAAA tetraloop that was substituted with
2-aminopurine residues and followed by fluorescence-
detected temperature-jump relaxation analysis demonstrated
the existence of more than a single conformation state with
different base stacking patterns in the loop.14 By incorporat-
ing both 2-aminopurine and 7-deazaguanine residues into
similar GNRA tetraloops, another group studied the hetero-
geneity of loop conformation by femtosecond time-resolved
fluorescence.16 What they found not only confirmed the
previous observation,14 but with more position-specific
fluorescence decay data, a more detailed dynamic multicon-
formation model for the tetraloop was proposed.

Molecular dynamics simulations are another powerful tool
to explore the conformational dynamics of RNA tetra-
loops;17-27 for example, the influence of base substitutions
on the stability of GCAA tetraloop has been studied by the
free energy perturbation method.28,29 Most of the theoretical
studies were targeted at the folding/unfolding dynamics of
short RNA loops. The common features resolved by the
modeling studies affirmed the hierarchical properties of
folding free energy landscapes and general heterogeneity of
loop conformation. However, detailed analysis of the con-
formational dynamics near the native-structure local mini-
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mum and direct comparison with available fluorescence
experimental data are scarce.

In this paper, the structural transition mechanism of RNA
tetraloop near the native-structure minimum at atomic detail
was interrogated by a replica exchange molecular dynamics
(REMD) simulation in explicit solvent for a GCAA RNA
tetraloop. In order to directly compare with experimental
data, the alternative stacking patterns of loop residues were
monitored. The REMD simulation can overcome the sam-
pling limitations of standard MD methods.30-32 During
REMD simulation, several replicas of a system are simulated
at different temperatures in parallel, allowing for exchanges
between neighboring replicas at frequent intervals.30-33 So
the REMD simulation can significantly enhance the confor-
mational sampling. This technique has been successfully used
for simulations of hairpin loop structure.22,25,26 The key
component in replica exchange simulations is the exchange
of configurations between different replicas/temperatures by
rescaling the velocities.34 Such an algorithm helps to
overcome large energy barriers and allows large conforma-
tional space to be sampled. Meanwhile, it maintains the
continuous transformation of structures.30,35 Together with
extensive clustering analysis, the ample structural transition
information of the tetraloop was detected. The resultant
structural evolution map was able to directly compare with
available experimental data, which confirms the predictive
power of the current theoretical model.

Methods

The GROMACS program suite36 and the full atomic Amber
parm98 force field37 were used. With Amber parm98 force
field, the dynamics of a UUUU tetraloop RNA was studied
by one of us19 and a good agreement between MD result
and NMR relaxation measurement was obtained. To test the
reliability of parm98 further, a new Amber force field,
parmbsc0,38 was also employed to perform a constant
temperature simulation. All bonds involving hydrogen atoms
were constrained in length according to LINCS protocol.39

This allowed the use of an integration step of 0.002 ps in
simulations. Nonbonded pair lists were updated every 5
integration steps.40 The RNA and the water were separately
coupled to an external heat bath with a relaxation time of
0.1 ps. Replica exchange was attempted every 1000 integra-
tion steps (2 ps). The trajectories were output every 1 ps.
Electrostatic interactions were treated with particle mesh
Ewald method with a cutoff of 9 Å, and a cutoff of 14 Å
was used in the calculation of van der Waals interactions.

We studied the GCAA tetraloop structure with the
sequence of 12-mer single-strand RNA: 5′-GGGCGCAAGC-
CU-3′. A related NMR hairpin structure (model 1 of PDB
accession code 1ZIH)4 was used as initial structure in this
REMD simulation. REMD simulation was carried out with
an explicit TIP3P water model,41 under periodic boundary
conditions. The structure was solvated in a cubic box of 42
Å containing 2285 water molecules, 11 Na+ ions to neutralize
the system, and 7255 atoms in total. The REMD simulation
was conducted under constant volume with 48 replicas. An
exponentially increasing temperature series along the replicas
from 300 to 575.5 K was used, which gives approximately

uniform acceptance ratios for exchanges between neighboring
replicas.30-32 Exchange probabilities between neighboring
replicas were observed of ∼25%. The REMD simulation was
continued for 120 ns for each replica. In total, an accumulated
simulation time of 5.76 µs was obtained.

The trajectories output from REMD simulation are usually
sorted according to temperature. They are discontinuous
regarding the structural transformation due to the repeated
replica exchange events. These trajectories form canonical
ensembles under different temperatures so they are named
as ensemble trajectories. According to the exchange informa-
tion, ensemble trajectories can be resorted in such a way
that each trajectory contains continuous structure transitions
of the simulated system beginning from each replica. Such
trajectories are known as replica trajectories. Evidently, in a
replica trajectory, due to the rescaling of velocities during
the exchange process, the temperature has no defined
meaning.

Root-mean-square deviation of the whole hairpin with
respect to the NMR structure4 (wRMSDnmr) was calculated
based on all atoms. Cluster analysis was performed for the
corresponding ensembles using the algorithm proposed by
Daura et al.42 The conformations were clustered by their
structural similarity, measured by the pairwise rmsd. The
related rmsd cutoff was chosen as 2.0 Å. Curves method43

was used to find the sugar pucker pattern for different
conformations in the GCAA tetraloop.

To further study the structural heterogeneity of RNA in
direct comparison with NMR measurement, distances of
interresidue hydrogen atoms that were employed as nuclear
Overhauser effect (NOE) constraints in the work of Jucker
et al.4 were calculated. Forty-seven interresidue distances
were selected, of which 22 are within the stem residues and
25 are within the loop and between stem and loop residues.
The complete atom pairs and distances are listed in the
Supporting Information. For each snapshot, the fraction of
NOE distances satisfaction, Q, was calculated:

where Ns is the number of interhydrogen distances whose
average values are satisfied by the NOE constraints and Ntot

is the number of total NOE distances. Qstem and Qloop were
calculated separately for stem and loop residues. The average
interhydrogen distance is calculated by

where rij is the distance and K is the number of snapshots
used in the calculation.

Free energy (G, in units of kilojoules per mole) was
evaluated by the following equation:

where kB is the Boltzmann constant, T is temperature, Ni

refers to the number of members in state i, and Nref refers to
the number of members in a reference state.

Results and Discussion
Configurational Space Sampled. In order to demonstrate

the sampled configuration space in the REMD simulation,

Qi ) Ns/Ntot

rij
avg ) ( 1

K ∑
k)1

rij
-6)-1/6

G ) -kBT ln (Ni/Nref)
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Figure 1a shows the wRMSDnmr of ensemble trajectories
at lowest temperatures (300 K). At the beginning of the
simulation the wRMSDnmrs are around 2 Å. After 20 ns,
most of the structures have wRMSDnmr of 4 Å. Meanwhile,
a group of structures with wRMSDnmr of 6 Å is accumulat-
ing. From 40 ns on, structures with wRMSDnmr more than
7 Å enter the low-temperature ensembles with small
population.

Figure 1b,c shows the wRMSDnmr and temperature
evolution of two replica trajectories with replica 1 (solid
black line) and replica 21 (dashed red line). Replica 21
experiences unfolding quickly after the simulation begins.
Its wRMSDnmr changes from 2 to 12 Å during the first 20
ns simulation. Around t ) 40 ns it refolds with wRMSDnmr
decreased below 5 Å. Then it unfolds again. Its temperature
changes from low values (300 K) to high values (around
550 K) when it unfolds and decreases to low values (350
K) when it refolds. Such unfolding/refolding events happen
in other replica trajectories as well.

There are a few replica trajectories whose wRMSDnmr
maintains below 5 Å during the whole simulation such as
replica 1 (solid line in Figure 1b). Unlike the wRMSDnmr
value, its temperature undergoes frequent changes (solid line
in Figure 1c) from 300 to 450 K. The invariance of
wRMSDnmr against temperature indicates the stability of
the configuration in the temperature range.

Figure 2 is the pseudo-free-energy surface as a function
of wRMSDnmr and temperature to illustrate the sampled
conformation during simulation. There are two local minima
at low temperature range (T < 400 K). One of the local
minima is located at wRMSDnmr < 5 Å centered at
wRMSDnmr ) 3.5 Å, corresponding to the ensemble of
native folded structures and the wRMSDnmr of the other
minimum is around 5.7 Å, which is a kind of intermediate
state. In the high-temperature region (T > 450 K) there is a
broad valley on the surface, which represents a heterogeneous
ensemble of unfolded structures (wRMSDnmr > 7 Å). The
inset in Figure 2 plots the average wRMSDnmr as a function

as temperature. The average wRMSDnmr in the temperature
range of 300∼350 K is around 5 Å, and the value of
wRMSDnmr quickly increases as the temperature rises.

Figure 3a shows the distribution of wRMSDnmr at two
temperatures, T ) 300 K (black circles) and T ) 350 K (red
squares). From these wRMSDnmr distributions it is clearly
seen that the structural ensembles at these temperatures can
be classified into two states, one with wRMSDnmr smaller
than 5 Å, which is called native/near-native state, and the
other with wRMSDnmr larger than 5 Å, which is denatured
state. To further check the convergence of the simulation,
the population of near-native state (PN) as a function of
simulation time is monitored and shown in Figure 3b. The
near-native state is defined by wRMSDnmr e 5 Å. The PN
is calculated in an interval of 10 ns at two temperature, T )

Figure 1. (a) wRMSDnmr evolution of two ensemble trajec-
tories (300 K, black line; 344.6 K, red dotted line). (b)
wRMSDnmr evolution of three replica trajectories (replica 1
in black and replica 21 in red). (c) Temperature evolution of
the same replica trajectories (replicas 1 and 21). Figure 2. Free energy of sampled conformations as a

function of wRMSDnmr and temperature. (Inset) Average
wRMSDnmr as a function of temperature.

Figure 3. (a) Distribution of wRMSDnmr at T ) 300 K (black
line and circles) and T ) 350 K (red line and squares). (b)
Evolution of the population of near-native state as a function
of simulation time; the population is calculated in an interval
of 10 ns.
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300 K (black circles) and T ) 350 K (red squares). Because
the initial configurations are native, PN is close to 1 at the
beginning of simulation. PN decreases as the simulation goes
on until t ) 60 ns when PN drops to 0.3 at T ) 300 K,
which indicates a general unfolding behavior during the first
60 ns. After that, the PN value is maintained between 0.3
and 0.4 during the simulation at T ) 300K. Thus a rough
equilibrium between unfolding and refolding processes is
being established during the last 60 ns simulation.

Folding/Unfolding of GCAA Tetraloop. Simulation of
the folding and unfolding of biomolecules has been one of
the major computational challenges of molecular biology.23

REMD simulations have been successfully applied in folding
and unfolding study for small nucleic acids.22,26 Conforma-
tional dynamic transitions related to unfolding and refolding
in the GCAA tetraloop were also sampled in the current
REMD simulation.

Four parameters were employed here to monitor the
structural transitions: wRMSDnmr, stem rmsd (sRMSDnmr,
rmsd calculated only for stem residues G1, G2, G3, C4, G9,
C10, C11, and U12), loop rmsd (lRMSDnmr, rmsd calculated
only for loop residues C4, G5, C6, A7, A8, and G9), and
radius of gyration of the whole RNA, Rg. Figure 4 shows
the free energy surfaces as a function of (a) wRMSDnmr
and sRMSDnmr, (b) wRMSDnmr and Rg, and (c) wRMS-
Dnmr and lRMSDnmr at 418 K. The reason to choose 418
K is that around this temperature the folded and unfolded
conformations have nearly equal populations. Figure 4a
displays high correlation between sRMSDnmr and wRMS-
Dnmr, which indicates that the folding/unfolding of the
tetraloop RNA is mainly determined by the formation/

disturbance of the stem part. This observation is consistent
with a recent MD study on short RNA loop sequences.24

On the contrary, the loop dynamics seems uncoupled from
the whole RNA (Figure 4c): when wRMSDnmr decreases
from 10 to 5 Å, the lRMSDnmr changes only from 6 to 5
Å; in the native basin where wRMSDnmr < 5 Å, there is
still a large amount of loop dynamics happening with
lRMSDnmr changes between 5 and 1 Å and such loop
dynamics in the native basin is the main focus of the next
section. The free energy surface of wRMSDnmr and Rg

(Figure 4b) clearly indicates that a structural collapse happens
at the very early stage of folding and some intermediate states
with wRMSDnmr around 7 Å are more compact than native
structures.

Based on the information provided by the three free energy
surfaces, five representative structures (denoted as S1-S5)
corresponding to the minima on the surfaces were selected
and are shown in Figure 5. Their structural characterization
is summarized in Table 1. In Figure 5 the eight bases of the
stem are shown in blue, the G5 and A8 bases of the loop
are shown in yellow, and the polar contacts between base
pairs are indicated with pink dotted lines. S1 represents the
folded conformation with Rg ) 9.6 Å, wRMSDnmr ) 4.1
Å, sRMSDnmr ) 2.0 Å, and lRMSDnmr ) 4.3 Å. It contains
three hydrogen-bonded stem base pairs (C4-G9, G3-C10, and
G2-C11) and the bases are stacking properly in the stem.
S2 and S3 have two stem paired bases with wRMSDnmr
larger than 6 Å, which represent the intermediate states. Both
S4 and S5 do not have paired stem residues and the base
stacking pattern in the stem region is lost, which represent
the unfolded conformations with small Rg and large wRMS-
Dnmr values.

From the free energy surfaces and the representative
structures, some conclusions about the folding/unfolding of
RNA GCAA tetraloop can be drawn. First, an obvious

Figure 4. Free energy surfaces at 418 K as functions of (a)
sRMSDnmr and wRMSDnmr, (b) Rg and wRMSDnmr, and
(c) lRMSDnmr and wRMSDnmr.

Figure 5. Three-dimensional conformations of the five
representative structures (the eight bases of the stem are
shown in blue, the G5 and A8 bases of the loop are shown in
yellow, and the polar contacts between base pairs are shown
in pink).
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multiple-state (including folded, intermediate, and unfolded
states) folding landscape of the RNA GCAA tetraloop is
disclosed, which is in good agreement with the previous
RNA simulations.17,21 Second, the folded-to-unfolded con-
formational transitions happen beginning with breaking of
the terminal stem base pairs and decreasing of Rg. The
decrease of Rg is mainly related to the loss of stacking pattern
of bases on both strands of the stem. This is well consistent
with the previous simulations,17 which demonstrated that the
lost of terminal base pair is the first step of unfolding
mechanism in the GNRA tetraloop and proposed that a
folding pathway includes the collapse of the unfolded state.
Third, some intermediate conformations are observed with
the central stem base pairs (G3-C10, G2-C11) intact and with
wRMSDnmr of 6-7 Å.

Loop Dynamics near the Native Basin. As mentioned
in the Introduction, fluorescence spectroscopic measurements
indicated that ample conformational transitions of the loop
residues exist within the native state.14,15 In order to study
the loop dynamics in more detail, an extensive clustering
was performed based on the ensembles; in total 2 880 000
structural snapshots from the last 60 ns simulation. First
72 000 structural snapshots were chosen by taking one
structure out of every 40. A clustering analysis was per-
formed on the 72 000 structures with pairwise loop RMSDs
(lRMSDp) cutoff of 1.5 Å. The first largest 100 clusters were
chosen. The center of each cluster identified by clustering
analysis tool was taken as the representative structure. Then
the lRMSDp of all 2 880 000 structures with respect to the
100 representative structures was calculated. Each structure
was assigned a cluster label if the lRMSDp with respect to
the cluster center is smaller than 1.3 Å. Structures whose
lRMSDps with respect to the 100 cluster centers are larger
than 1.3 Å are called outliers, labeled as 0.

To check the near-native nature of the representative
structures that are related to the cluster centers, Figure 6a
shows the wRMSDnmr of the cluster center of the largest
34 clusters. Clusters 1, 4, 7, and 26 represents the native
folded structure with wRMSDnmr ∼3 Å, and the other
clusters correspond to the near-native ensemble of structures
with wRMSDnmr e 5 Å, with the exception of clusters 14
and 22 whose wRMSDnmrs are larger than 7 Å. It is not

surprising to find that most clusters with many members
belong to near-native ensembles because the structural
heterogeneity of the unfolded ensembles is greater than that
of near-native ones.

Figure 6b shows the free energy of different structural
clusters relative to class 1 at a simulation temperature of
300 K. The free energy differences range from 0 to 8 kJ/
mol. These relatively small free energy differences demon-
strate that the structures of GCAA tetraloop are quite flexible
and multiple structural ensembles coexist with moderate free
energy difference. Our finding is quite consistent with the
previous experimental data which indicated the flexibility
of the tetraloop.4,14,16

NOE Distances Comparison. NOE constraints provide
direct structural information obtained from NMR measure-
ment and can be used to gauge the simulated results directly.
In Figure 6c, the degree of NOE constraint satisfaction, Q,
for each cluster is shown. On average the Q value is less
than 0.5, which means in each individual structural cluster
less than half of the NOE constraints are satisfied simulta-
neously. For clusters 1 and 4, which have the lowest
wRMSDnmr values, Q values turn out to be larger than 0.5.
Generally the Q values are larger for stem than for loop.
The relatively low value of Q for each structural cluster
indicates that, due to the structural heterogeneity of the RNA
tetraloop, it is not the case that an individual structural
snapshot may satisfy all of the NOE constraints, which
should be an ensemble property intrinsic to the NMR
measurement.44

To test the ensemble properties of NOE constraints, the
accumulated Q values (Qaccu) were applied. In calculation
of Qaccu, the interhydrogen distance was not averaged within
each structural cluster. More and more clusters were included
to evaluate the Q value instead. Thus Qaccu values as a
function of n largest clusters included were obtained and are
shown in Figure 6d. Qaccu values for both stem and loop
residues increase quickly as more clusters are included. When

Table 1. Structural Characteristics of Representative
Structures (Denoted as S1-S5) Sampled in the RNA
GCAA Tetraloop at 418 K

structure (rmsd for total,
stem, loop, and Rg; Å)

stem base
pairs

base stacking
patterns in stem

S1 (4.1, 2.0, 4.3, 9.6) C4-G9 C4/G3/G2/U12
G3-C10 G5/G9/C10/C11
G2-C11

S2 (6.1, 5.0, 4.7, 8.8) C4-G9 C4/G3/G2/G1
G3-C10 G9/C10

C11/U12
S3 (7.1, 5.9, 5.2, 9.4) G3-C10 G9/G3/G2

G2-C11
S4 (8.2, 6.9, 5.6, 8.7) G1/G5/C4

A8/C10
G2/G9/U12/C11

S5 (9.4, 6.7, 5.8, 8.9) G1/G5/C4
G2/G9

Figure 6. (a) Global wRMSDnmr of the largest 34 clusters
with respect to NMR structure. The clustering is based on loop
C(GCAA)G structure. (b) Relative free energy of the 34
clusters. (c) Degree of NOE constraint satisfaction, Q, for each
cluster. (d) Accumulated Q values (Qaccu) as a function of n
largest clusters
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the first five clusters are included in the calculation, the value
of Qaccu for loop is 75% and that for stem is 85%. When the
first 13 clusters are taken as an ensemble, both Qaccu values
approach 0.90.

Combing Q and Qaccu values, our simulation results
indicate the heterogeneity of the individual configuration
sampled, and on the other hand the NMR NOE constrains
are able to be satisfied as an ensemble.

Base Stacking Pattern Identification. In order to have a
direct comparison of loop dynamics found in the simulation
with those indicated by fluorescence measurements,14,16 the
structures sampled by the REMD simulation were grouped
according to base stacking pattern. Two bases in the loop
were set to be stacked only when the maximum distance
between six heavy atoms of a six-membered ring on the two
bases is smaller than a cutoff value, which is determined on
the basis of the distance distribution. Due to the distinct
stacking patterns, nine groups with different loop structure
were identified (labeled as A-I); their loop base stacking
patterns are explained in Table 2. Six out of these nine
structure groups (A-F) were found to be analogues of the
experimental model.16 Three-dimensional representative
structures of the nine conformations are shown in Figure 7.
The four bases in the loop part, G1C2A3A4, are shown in
yellow.

Distinct Loop Stacking Patterns Found in the
Simulation. From Figure 7 and Table 2, it is found that group
A represents the 3′-stacked structure, in which the last three
bases are stacked on the 3′ side. This kind of structure has
been revealed to be the main conformation both for the
isolated tetraloop and for the tetraloop-receptor comp-
lexes.4-6,16,45 In group B, A3 stacks on A4 on the 3′ side
and C2 is looped out. Such a conformation has been
illustrated by NMR experiment.4 Group C has the base
stacking pattern of G1, C2, and A3 stacking on the 5′ side.
In group D, bases A3 and G1 are stacking on the 5′ side.
Group E is a typical 5′-stacking conformation, with the first
three bases stacking on the 5′ side. The conformations found
in the simulation support the earlier proposal that a 5′-
stacking form coexists with a 3′-stacking form in the GNRA
tetraloop.14,16 Group F has the base stacking pattern of C2
on G1 in the 5′ stack. In group G, the stacking pattern is
C2, G1 stacking on the 5′ side and A3, A4 on the 3′ side.

Group H has the base stacking pattern of C2 on A3, and
these two bases are in a looped-out configuration. In group
I, A3 stacks on both A4 and G1.

Stacking Patterns in NMR Structures. Table 3 shows
stacking patterns resolved in NMR-determined structures of
GCAA tetraloop as well as of other tetraloops (including
GNRA, UNCG and RNYA, where Y ) pyrimidine).46 In
the canonical conformation of GNRA tetraloop, PDB entry
1hmh,47 the last three bases are stacked on the 3′ side,
corresponding to group A. For other GNRA loop conforma-
tions, PDB entries 1cn8,48 1etf, 49 and 1f1t50 show that the
second base N is looped out and the last two bases are
stacked on the 3′ side, similar to group B. In the standard
conformation of UNCG tetraloop, PDB entry 1dk1,51 the first
and third bases are posed in the 5′ stack and the second base
N is looped out, similar to group D. In other structures, PDB
entries 1bgz,7 1d6k,52 and 1tlr,53 the second and third bases
are looped out, corresponding to group H. In one conforma-
tion of RNYA tetraloop, PDB entry 5msf,54 the first and third
bases come close on the 5′ side and the second base is looped
out, similar to group D. In another structure of RNYA
tetraloops, PDB entry 1tfn,55 the second and third bases are
looped out, corresponding to group H. In other structures of
RNYA tetraloops, from PDB entries 1d0t and 1d0u,56 the
first two bases are in the 5′ stacking and the third is looped
out, similar to group F.

The loop stacking patterns in groups A, B, D, F, and H
can find their analogues in the NMR-determined structures.
Such matching is an encouraging sign, which indicates that
sampling results from the REMD simulation are testable by
the experimental models.

Structure Transition Map. Combined with the “kinetic”
information available from continuous replica trajectories,
a structural transition map for the GCAA tetraloop between
distinct groups was constructed, which is shown in Figure

Table 2. Base Stacking Patterns for Nine Groups of
Conformations in RNA G1C2A3A4 Tetraloopa

conformation
type

base stacking patterns
in G1C2A3A4 loopb

A G1×C2/A3/A4
B G1×C2×A3/A4 (C2 out of loop)
C G1×C2/A3×A4, G1/A3
D G1×C2×A3×A4, G1/A3
E G1/C2/A3×A4
F G1/C2×A3×A4
G G1/C2×A3/A4
H G1×C2/A3×A4
I G1×C2×A3/A4, G1/A3

a Based on the distance distribution, the cutoff values are 5.1,
5.6, 6.7, 5.6, and 6.1 Å for the maximum distances between bases
1 and 2, 1 and 3, 2 and 3, 2 and 4, and 3 and 4, respectively. b ×
refers to unstacking; / refers to stacking.

Figure 7. Representative structures of nine structural groups
of G(GCAA)C loop, with the four bases of the GCAA tetraloop
shown in yellow.
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8. Such a transition map can be directly compared with recent
fluorescence measurements in which a detailed dynamic
multiconformation model is suggested.16 Encouragingly, the
transition map shown in Figure 8 supports the multiconfor-
mation model, and moreover, detailed transition pathways
are consistent with each other.

The A-B-F-E transition pathway is in good agreement
with the experimental model,16 which proposed an A-B-
D-F-E transition pathway and predicted that the equilib-
rium between groups A and B exists in GNRA tetraloops
and could be an important pathway for transition from group
A to other conformations.

The transition between B and D groups is also consistent
with the proposal of the experiment.16 Such a transition
indicates that the third base R3 can slide over the G1-A4
sheared base pair, switching from stacking on A4 to stacking
on G1 and vice versa.

Interestingly, a new transition pathway linking groups A
and E through group H is found, which has not been resolved
by experimental measurement. The structural characteristic
of group H is that the middle two bases (2 and 3) are stacking
with each other, however, in a looped-out configuration.
Although group H has not been found in NMR structure

models of GCAA, for other kinds of tetraloop RNA (UNCG
and RNYA), NMR structural models do show configurations
similar to group H.7,55

The transitions between looped-in and looped-out base
conformations may generally occur cooperatively with
transitions of puckering of furanose rings from 3′-endo to
2′-endo in the RNA GCAA tetraloop.17 Experimental support
came from the Raman spectroscopy study by Leulliot et al.57

In their study a 2′-endo shoulder was seen in the UUCG
tetraloop spectrum, which was assigned to the second base
U2 within a looped-out conformation. The sugar pucker
phase was calculated here to investigate the pucker mode of
the residues in different structural groups. Distributions of
pucker phase angles are shown in Figure 9. Distributions of
the pucker phase of C2 for groups A and B (shown in Figure
9a) demonstrate that the occupancy located at ∼150°
(corresponding to 2′-endo pucker) increases from structure
group A to B. The pucker phase of A3 shows a similar trend
(Figure 9b): when it is in the looped-out configuration
(structure group F), A3 takes the 2′-endo conformation
predominantly. From the structural point of view, the 2′-
endo pucker mode expands the backbone of the nucleotide.58

Our simulation confirms that when the nucleotide takes the
looped-out conformation, its sugar pucker phase has more
probability to be in the 2′-endo state.

The results of our simulation show that the GCAA
tetraloop is not rigid and may undergo multiple conforma-
tional transitions, which provide theoretical support of
observations of previous fluorescence studies.4,14,16 And these
structural fluctuations may lead to a variable set of hydrogen
bonds.4 These heterogeneous hydrogen bonds can signifi-

Table 3. Comparison of Base Stacking Patterns of GCAA Tetraloops Sampled in Our Simulation with NMR Models
(Including GNRA, UNCG, and RNYA)

tetraloop PDB entry 12a 23a 34a 13a conformation

GNRA 1hmh 3′ stack 3′ stack A
GNRA 1cn8, 1etf, 1f1t loop-out of N2 3′ stack B
UNCG 1dk1 loop-out of N2 5′ stack D
UNCG 1bgz, 1d6k, 1tlr loop-out of N2 and C3 H
RNYA 5msf loop-out of N2 loop-out of A4 5′ stack D
RNYA 1tfn loop-out of N2 and C3 H
RNYA 1d0t, 1d0u 5′ stack loop-out of Y3 F

a Numbers 1, 2, 3, and 4 refer to the first, second, third, and last base in the tetraloop, respectively.

Figure 8. Conformational transition map for the GCAA
tetraloop, where A-I are nine groups of conformations that
have distinct base stacking patterns. Arrows between groups
indicates conformational transitions, with the number of
transitions nearby.

Figure 9. Distributions of the pucker phase: (a) C2 in groups
A and B; (b) A3 in groups F and G.
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cantly stabilize these multiple conformations. This may be
one of the possible explanations for the multiple conforma-
tional transitions in the RNA GCAA tetraloop. A recent
NMR 13C relaxation study on the same GCAA tetraloop also
revealed from the fast dynamics that this tetraloop has a
rather rigid stem and a significantly more flexible loop.13

New Amber parmbsc0 Force Field. All the simulations
so far were run with the force field Amber parm98. Recently
a new modification of Amber force field was proposed that
corrected the fault of artificial R/γ crankshaft motion of the
nucleic acid backbone.38 To test to what extent our simulation
results depend on the force field, a test simulation was
performed. An initial structure with loop pattern of H type
(only bases C2 and A3 are stacked in the loop) was chosen.
A 60 ns simulation with the new parmbsc0 force field was
performed at 300 K. The reason that the H-type configuration
was tested is that this configuration is the prediction of the
current study that was not mentioned in earlier experimental
interpretations. The rmsd values for the whole hairpin with
respect to the initial H-type configuration (wRMSDh) and
with respect to the NMR structural model (wRMSDnmr) are
monitored as shown in Figure 10. During the last 40 ns of
the simulation, wRMSDh fluctuates between 2.5 and 4 Å
(black solid line) and wRMSDnmr fluctuates between 3.5
and 5 Å (red dotted line). Three dominant loop stacking
patterns, B, H, and A type, were found with populations
of 42%, 12%, and 6%, respectively. Frequent transitions
between these three loop stacking patterns were observed,
which is consistent with the transition map shown in
Figure 8.

The detailed differences between the parm98 and parmbsc0
simulations are disclosed in the distributions of the backbone
dihedral angles, R and γ, on which the force field parameters
have been refined in parmbsc0. Both simulations produce
similar R and γ distributions for stem residues; for example,
see the distributions of R and γ for residue 3 in Figure 11.
For residues on the loop, the parm98 simulation gives a
broader distribution, probably due to the REMD simulation
protocol, which can generate enhanced sampling: for ex-
ample, the R and γ dihedral angles of residue 7, which is
the third residue in the loop, are mainly located around

-100° and 60°, respectively, in the parmbsc0 simulation;
in the parm98 REMD simulation, the distributions of both
R and γ angles are multiple-peaked with one of the maxima
positions coinciding with or close to the maximum position
found in the parmbsc0 simulation. Thus we think that the
main results of our simulation do not depend on the force
field in a sensitive way.

Summary

A REMD simulation in explicit solvent was performed to
probe the multiple conformations coexisting in RNA GCAA
tetraloop. An obvious multiple-state (including folded,
intermediate, and unfolded states) folding landscape of the
RNA GCAA tetraloop is disclosed, which is in good
agreement with previous RNA simulations.17,21 On the basis
of extensive cluster analysis of ample simulation trajectories,
a dynamic structure transition map for the GCAA tetraloop
is constructed, which is well consistent with the model from
fluorescence measurements. The structure transition map of
the GCAA tetraloop presented here should lead to a deeper
understanding of the dynamic transition mechanism of the
GNRA tetraloop family.
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Abstract: We present new molecular mechanical dihedral parameters for the Ramachandran
angles φ and ψ of a protein backbone based on high-level ab initio molecular orbital calculations
for hydrogen-blocked or methyl-blocked glycine and alanine dipeptides. Fully relaxed 15° (φ,
ψ) contour maps were calculated at the MP2/6-31G(d) level of theory. Finding out the lowest
energy path for φ (or ψ) to change from -180° to 180° in the contour map, we performed a
DF-LCCSD(T0)/Aug-cc-pVTZ//DF-LMP2/Aug-cc-pVTZ level calculation to get the torsional energy
profiles of φ (or ψ). Molecular mechanical torsion profiles with AMBER force field variants
significantly differed from the ab initio profiles, so we derived new molecular mechanical dihedral
parameters of a protein backbone to fit the ab initio profiles.

1. Introduction

Structural, dynamical, and equilibrium thermodynamic prop-
erties of biological macromolecules such as proteins and
nucleic acids are commonly studied by molecular mechanics
and molecular dynamics simulations. But their usefulness
depends critically on the adequacy of the empirical force
field parameters such as atomic charges, van der Waals
parameters, and bond parameters. In the 1990s, Kollman’s
group developed a second generation of the Assisted Model
Building with Energy Refinement (AMBER) force field for
the simulation of proteins, nucleic acids, and organic
molecules in condensed phases.1 In addition to improvements
in the parameters, they tried to explicitly describe the
algorithm by which those parameters were derived, so that
consistent extensions could be made to molecules other than
proteins.

The peptides N-acetyl-N′-methylglycinamide and N-acetyl-
N′-methylalaninamide have been widely studied. As they
show conformational variations similar to proteins, they are
considered model peptides for studying the character of
Ramachandran angles φ and ψ (Figure 1). They are referred
to as glycine dipeptide (GD) and alanine dipeptide (AD),
respectively. Molecules such as R-(formylamino)ethanamide
and (S)-R-(formylamino)propanamide have also been studied
since they are formed from GD and AD by replacing the

terminal methyl groups with hydrogen atoms. They are
referred to as glycine dipeptide analogue (GDA) and alanine
dipeptide analogue (ADA), respectively.

Various quantum mechanical studies on these molecules
were performed using Hartree-Fock (HF), density functional
theory (DFT), Møller-Plesset (MP2, MP4), and coupled-
cluster singles and doubles (CCSD, CCSD(T)) including the
local electron correlation methods, because their conforma-
tion structure and energy in global or local minimum depend
on the level of theory.2-21 In 1982 Schäfer et al. calculated

* To whom correspondence should be addressed. E-mail:
fjtani@labs.fujitsu.com.

Figure 1. The structures of R-(formylamino)ethanamide
(GDA), N-acetyl-N′-methylglycinamide (GD), (S)-R-(formy-
lamino)propanamide (ADA), and N-acetyl-N′-methylalanina-
mide (AD). The dihedral angles, φ and ψ, are defined as
C(O)-N-CR-C(O) and N-CR-C(O)-N, respectively.
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low-lying conformers of GD at the HF/4-21 level and
concluded that the global minimum was C7 and the second
lowest minimum was C5.3 Using the analogues of GDA and
ADA, Head-Gordon et al. obtained the fully relaxed 15° (φ,
ψ) maps at the HF/3-21G level and then calculated the
energies of some stationary points at higher levels of theory.4

They found that (a) several local minima of GDA and ADA
at HF/3-21G disappeared at higher levels, (b) the global
minimum of GDA was the C7 conformer at HF/3-21G and
MP2/6-31+G(d,p)//HF/6-31+G(d) levels whereas it was the
C5 conformer at HF/6-31+G(d), (c) the third lowest local
minimum of ADA was the C7ax conformer at HF/3-21G and
MP2/6-31+G(d,p)//HF/6-31+G(d) levels whereas it was the
�2 conformer at HF/6-31+G(d). Gould et al. found that the
global minimum of GD was C7 at MP2/TZVP//HF/6-
31G(d,p) whereas it was C5 at HF/6-31G(d,p) and that the
third lowest local minimum of AD was C7ax at MP2/TZVP//
HF/6-31G(d,p) whereas it was �2 at HF/6-31G(d,p).6

After these works, higher-level calculations were applied
for AD and all gave the same order of the low-lying
conformers as C7eq < C5 < C7ax < �2.

7,9,12,15,20 Although
the relative order of stability was the same at higher level
calculations, their structures are significantly different. For
example, the equilibrium (φ, ψ) angles of the �2 conformer

was (-135.9°, 23.4°) at B3LYP/6-31G(d),7 but it was
(-82.3°, -9.5°) at MP2(Full)/Aug-cc-pVDZ.12 The hydro-
gen bond length of N-H · · ·O of the �2 conformer was 3.51
Å at BLYP/TZVP+ whereas it was 2.95 Å at MP2(Full)/
Aug-cc-pVDZ.12 The first reason for the difficulty to get
precise results is the shallow minima and very flat regions
of potential energy surfaces with respect to φ and ψ. The
second is intramolecular hydrogen bonds, and the third is
intramolecular dispersive interactions. In addition to these
reasons, the artificial energy by intramolecular basis set
superposition error (BSSE) makes it more difficult to choose
an appropriate level of theory.11,20,22-25

In this work, we clarify the accuracy of various levels of
quantum mechanical theory by comparing the precise
conformation structures and energies of the global and local
minima. Because of the accuracy and computational ef-
ficiency to calculate rotational energy profiles of φ and ψ,
we use the density-fitting local coupled-cluster singles and
doubles26,27 with perturbative noniterative local triples28 at
the density-fitting local MP226,29,30 geometries with the Aug-
cc-pVTZ basis set:31 DF-LCCSD(T0)/Aug-cc-pVTZ//DF-
LMP2/Aug-cc-pVTZ. We compare the ab initio rotational
energy profiles with molecular mechanical profiles calculated
with AMBER force field variants. Since there are significant

Figure 2. The (φ, ψ) maps of GDA, GD, ADA, and AD at the MP2/6-31G(d) level of theory. The maroon contours are drawn
every 0.5 kcal/mol from the zero energy to 2.5 kcal/mol. The red contours are drawn every 0.5 kcal/mol from 3 to 5 kcal/mol.
The orange contours are drawn every 1 kcal/mol above 6 kcal/mol. The figures were drawn using xfarbe version 2.6c.34
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deviations, we optimize the molecular mechanical dihedral
parameters of φ and ψ to fit the ab initio profiles. Calculations
with a local correlation, density-fitting, and CCSD were
performed using the MOLPRO package.32 The other mo-
lecular orbital calculations were performed using Gaussian
98.33 Vibrational frequency analyses at energy minima were
performed using both MOLPRO and Gaussian 98. We
adopted a frozen core approximation in all molecular orbital
calculations.

2. MP2/6-31G(d) Contour Map of (O, ψ)

We first generated the fully relaxed 15° (φ,ψ) energy maps
of the GDA, GD, ADA, and AD molecules at the MP2/6-
31G(d) level of theory in order to clarify the whole energy
landscape and obtain the relaxed atomic structure at each
(φ, ψ) grid point. Figure 2 shows the (φ, ψ) maps for GDA,
GD, ADA, and AD, which were drawn using xfarbe version
2.6c.34 For ADA and AD we optimized the molecular
structure at the 576 (24 × 24) grid points. For GDA we used
the symmetry (φ, ψ) )(-φ, -ψ) and thus 312 GDA
structures were optimized. For GD we performed the
structure optimization at (φ, ψ) and (-φ, -ψ) and then
symmetrized the (φ, ψ) map using the lower energy of the
two. These calculations were performed using Gaussian 98
with the default convergence criteria. For each energy
minimum conformer we performed vibrational analysis to
check the absence of imaginary frequencies at MP2/6-
311++G(d,p) for GDA, at MP2/6-31+G(d) for ADA and
GD, and at MP2/6-31G(d) for AD.

The contour maps for GD and AD reported by Mackerell
et al. are almost the same as ours, except in the vicinity of
the R′ conformer of AD.15 We performed vibrational analysis
of the R′ conformer at (-166.1°, -37.2°) to confirm the
absence of imaginary frequencies, which is evidence of a
local minimum.

Global and local minima are clarified by the (φ, ψ) contour
maps obtained at the MP2/6-31G(d) level, but their precise
energies and structures depend on the level of theory. We
first apply various levels of theory to the smallest molecule
of GDA to examine the accuracy of the method, including
MP2, MP4, CCSD with or without the local correlation
method, and the density fitting approximation (DF). We use
not only Pople basis sets like 6-311++G(d,p) but also
augmented correlation consistent Dunning basis sets like
Aug-cc-pVnZ (n ) D, T, Q). DF reduces the calculation
cost of two-electron-four-index integrals by several times.

3. Comparison of Levels of Theory

When optimizing the geometries of conformers, i.e., local
minima, using MOLPRO and Gaussian 98, we adopted a
tight convergence criteria in that the maximum force is 1.5
× 10-5, the rms force is 1 × 10-5, the maximum displace-
ment is 6 × 10-5, and the rms displacement is 4 × 10-5

atomic units. This corresponds to the “Opt)Tight” keyword
of Gaussian 98.

For MOLPRO, we tightened the SCF convergence crite-
rion on density matrix to 10-8 by specifying “accu)16”. In
the local calculation, the two most diffuse functions of each

angular momentum functions were ignored in the localization
to yield better-localized orbitals; unless otherwise noted,
completion criterion of 0.99 was used for the orbital domain
selection by specifying “PMDEL)2” and “THRBP)0.99”,
respectively. When computing the extrapolation to the
complete basis set (CBS) limit, we employed the EX ) ECBS

+ AX-3 formula35 using the Aug-cc-pVTZ and Aug-cc-
pVQZ basis sets.

Figure 3 shows low-lying conformers of GDA and AD
molecules which were drawn using the xmo V4.0 MO
visualizer.36

GDA. We examined the precise structures of the C7 and
C5 conformers of GDA at different levels of theory. The
C7 and C5 conformers have different N-H · · ·O hydrogen
bonds (Figure 3). Their bond length and torsional angles of
φ and ψ are listed in Table 1. We abbreviate the basis sets
of Aug-cc-pVDZ, Aug-cc-pVTZ, and Aug-cc-pVQZ as
AVDZ, AVTZ, and AVQZ, respectively. The φ and ψ of

Figure 3. Graphical representations of low-lying conformers
for GDA and AD optimized at the DF-LMP2/Aug-cc-pVTZ level
of theory. The figures were drawn using xmo V4.0.36

Table 1. Torsional Angles φ and ψ and N-H · · ·O
Hydrogen Bond Length r of C7 and C5 Conformers of GDA
Calculated at Different Levels of Theorya

C7 C5

theory φ ψ r φ ψ r

HF/6-31G(d) -84.9 68.1 2.22 180.0 180.0 2.21
HF/6-31+G(d)b -85.3 67.3 2.24 180.0 180.0 2.22
MP2/6-31G(d) -82.5 74.2 2.08 175.7 179.5 2.17
MP2/6-31+G(d) -82.5 74.7 2.10 169.3 173.7 2.20
MP2/6-31++G(d,p) -82.8 72.4 2.09 162.4 177.7 2.20
MP2/6-311++G(d,p) -82.1 76.7 2.10 165.8 171.6 2.21
MP2/AVDZ -82.4 68.0 2.06 180.0 180.0 2.20
MP2/AVTZ -82.6 67.4 2.04 180.0 180.0 2.18
LMP2/AVTZ -82.8 68.5 2.08 180.0 180.0 2.19
DF-LMP2/AVTZ -82.8 68.5 2.08 180.0 180.0 2.19

a Angles are in degrees, and hydrogen bond length is in
angstroms. b The (φ, ψ) is (-85.2, 67.4) for C7 conformer and
(180.0, 180.0) for C5 conformer in ref 4 which does not report the
hydrogen bond lengths.
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the C5 conformer are all 180° at the MP2, LMP2, and DF-
LMP2 levels with Dunning basis set, but they deviate from
180° at MP2 with Pople basis sets. The deviation of φ is
about 18° at MP2/6-31++G(d,p), about 14° at MP2/6-
311++G(d,p), and about 4° at MP2/6-31G(d). Larger Pople
basis sets gave larger deviation in Table 1. Similar deviations
are observed in the ψ values of the C7 conformer while the
deviations are smaller.

The intermolecular BSSE effects on geometry and interac-
tion energy can be accounted for by using the counterpoise
procedure. Schütz et al. reported that the interaction energy
and O-O distance of water dimer at the MP2/AVTZ level
were -5.18 kcal/mol and 2.907 Å, that the counterpoise
corrected values were -4.72 kcal/mol and 2.932 Å, and those
at DF-LMP2/AVTZ were -4.67 kcal/mol and 2.935 Å,
respectively.29 Although there is no straightforward way to
correct for intramolecular BSSE, it is well-known that the
local correlation method reduces the intramolecular BSSE.25

Since the N-H · · ·O hydrogen bond of the C7 conformer
is stronger than that of the C5 conformer, the hydrogen bond
length of the C7 conformer ranges from 2.04 to 2.24 Å
depending on the basis set, while that of the C5 conformer
ranges from 2.17 Å to 2.22 Å. The HF calculation gave a
little longer hydrogen bond lengths for both C5 and C7
conformers, as it does not take into account both dispersion
and electron correlation. The hydrogen bond length at MP2/
AVTZ is the shortest of all and is 0.04 Å shorter than that
at DF-LMP2/AVTZ. This is consistent with the BSSE
correction which slightly extended the O-O distance of
water dimer.

Table 2 lists the relative energies of the C7 and C5
conformers of GDA at various levels of theory. All the
relative energies at the MP2 and MP4 levels with Pople basis
sets are larger than those with Dunning basis sets. Pople basis

sets cannot give precise structures and relative energies of
the C7 and C5 conformers and they are not suitable for
investigating precise energy profiles of the protein model
system. Within Dunning basis sets, the relative energy varies
more than 0.5 kcal/mol depending on the level of theory.
Canonical MP2 and CCSD(T) give slightly larger relative
energies than those at the local correlation methods of LMP2
and LCCSD(T0), because the canonical methods give BSSE
excessive lower energies to the hydrogen bond of the C7
conformer. There is no difference in structure between DF-
LMP2/AVTZ and LMP2/AVTZ in Table 1, and there is no
difference in relative energy in Table 2 by the density fitting
approximation (DF). We did not observe any deviation owing
to DF in our calculations. DF is very useful for reducing the
calculation cost.

We examined the basis set truncation error (BSTE) by
enlarging the basis set. Table 3 lists the relative energies of
the C5 conformer to the C7 conformer calculated at the DF-
LMP2/AVTZ and MP2/AVTZ geometries. The relative
energies only depend on the level of theory used in the
energy calculation, and the differences between them when
comparing the DF-LMP2 and MP2 geometries are negligible.
When the basis set is enlarged from AVTZ to CBS, the
relative energy at the canonical DF-MP2 decreases while
one at the local correlation DF-LMP2 increases, because the
former contains both BSTE and BSSE while the latter
contains only BSTE. We evaluate the BSSE at DF-MP2/
AVTZ as 0.19 ) (0.73 - 0.59) - (0.51 - 0.56) in kcal/
mol. It decreases when the basis set is enlarged. On the
reasonable assumption that DF-LCCSD(T0)/AVTZ//DF-
LMP2/AVTZ is essentially free from BSSE, we calculate
the BSTE in the relative energy between the C5 and C7
conformers as being 0.04 kcal/mol.

AD. AD is the largest molecule in this study. Table 4 lists
the torsional angles, φ and ψ, and the hydrogen bond lengths
of N-H · · ·O for the C7eq, C5, C7ax, and �2 conformers of
AD at different levels of theory including several reported
values.7,9,12,15 The graphical representations for these con-
formers at DF-LMP2/AVTZ are shown in Figure 3. The
structures of the C7eq, C5, and C7ax conformers are not
sensitive to the level of theory, but the �2 conformer is

Table 2. Relative Energies (kcal/mol) of C7 and C5
Conformers of GDA Calculated at Different Levels of
Theory

theory C7 C5

HF/6-31G(d) 0.45 0.00
HF/6-31+G(d)a 0.58 0.00
MP2/6-31G(d) 0.00 1.23
MP2/6-31+G(d) 0.00 1.37
MP2/6-31++G(d,p) 0.00 1.35
MP2/6-311++G(d,p) 0.00 1.08
MP4/6-311G(d,p)//MP2/6-31G(d) 0.00 1.52
MP4/6-311+G(d,p)//MP2/6-31G(d) 0.00 1.53
MP4/6-311++G(d,p)//MP2/6-31G(d) 0.00 1.56
MP4/6-311+G(d,p)//MP2/6-31+G(d) 0.00 1.29
MP4/6-311++G(d,p)//MP2/6-31++G(d,p) 0.00 1.24
MP2/AVDZ 0.00 1.03
MP2/AVTZ//MP2/AVDZ 0.00 0.75
MP2/AVTZ 0.00 0.74
MP2/AVTZ//LMP2/AVTZ 0.00 0.73
DF-MP2/AVTZ//DF-LMP2/AVTZ 0.00 0.73
LMP2/AVTZ 0.00 0.51
DF-LMP2/AVTZ 0.00 0.51
LMP4/AVTZ//LMP2/AVTZ 0.00 0.44
DF-LMP4/AVTZ//DF-LMP2/AVTZ 0.00 0.44
CCSD(T)/AVTZ//MP2/AVTZ 0.00 0.78
CCSD(T)/AVTZ//LMP2/AVTZ 0.00 0.77
LCCSD(T0)/AVTZ//LMP2/AVTZ 0.00 0.44
DF-LCCSD(T0)/AVTZ//DF-LMP2/AVTZ 0.00 0.44

a The value is the same as in ref 4.

Table 3. The Relative Energies (kcal/mol) of C5
Conformer to C7 Conformer of GDA Calculated at the
DF-LMP2/AVTZ and MP2/AVTZ Geometries

geometry

energy DF-LMP2/AVTZ MP2/AVTZ

MP2/AVTZ 0.73 0.74
DF-MP2/AVTZ 0.73 -
DF-MP2/AVQZ 0.64 -
DF-MP2/CBS 0.59 -
DF-LMP2/AVTZ 0.51 0.50
DF-LMP2/AVQZa 0.54 -
DF-LMP2/CBS 0.56 -
DF-LMP4/AVTZ 0.44 0.42
CCSD(T)/AVTZ 0.77 0.78
DF-LCCSD(T0)/AVTZ 0.44 0.41
DF-LCCSD(T0)/AVQZa 0.46 -
DF-LCCSD(T0)/CBS 0.48 -

a THRBP ) 0.993 for C7 conformer, and THRBP ) 0.992 for
C5 conformer.
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sensitive because it is located in the very flat region of the
potential energy surface.12

Table 5 lists the relative energies for the C7eq, C5, C7ax,
and �2 conformers of AD at different levels of theory
including several reported values.7,9,12,15,20 There are the
same features as those of GDA. The results at the HF levels
are qualitatively inconsistent with those at higher levels of
theory. All the energies of the C5 conformer at the MP2
levels with Pople basis sets are larger than those with

Dunning basis sets. Because of BSSE, the canonical DF-
MP2 calculations give larger energies for the C5 conformer
than the local correlation DF-LMP2 calculations. Enlarging
the basis sets from AVTZ to CBS, the DF-MP2 energy of
the C5 conformer decreases while its DF-LMP2 energy
increases.

For DF-LCCSD(T0), the energy differences between
AVTZ and CBS are less than 0.3 kcal/mol for all the low-
lying conformers. Taking into account computational cost
and accuracy of the theory, DF-LCCSD(T0)/AVTZ//DF-
LMP2/AVTZ is the best choice for calculating the torsional
energy profiles of φ and ψ.

Low-Lying Conformation. Table 6 lists the structures and
relative energies of the low-lying conformers of GDA, GD,
ADA, and AD at DF-LCCSD(T0)/AVTZ//DF-LMP2/AVTZ.
Kaminský and Jensen calculated the conformation structures
and relative energies of some peptides, including GD and
AD, at their CCSD(T)/CBS-MP2//MP2/AVDZ method which
extrapolates the energy to the complete basis set limit with
the HF/cc-pVXZ, MP2/cc-pVXZ (X ) D, T, and Q), and
the CCSD(T)/cc-pVDZ energies, and then compared them
with molecular mechanical energies using various force
fields.20 As they pointed out, there are some discrepancies
between the ab initio results and molecular mechanics results.
We try to improve the molecular mechanical force field
parameters by comparing the torsional energy profiles of φ

and ψ.

4. Torsional Energy Profiles

4.1. Quantum Mechanical Torsional Profile. First we
looked for the lowest energy path for φ (or ψ) to change
from -180° to 180° in the contour map (Figure 2). Using
the lowest mesh point structure as an initial structure, we
fully optimized the molecular structure by the MP2/6-31G(d)
calculation with fixed φ (or ψ) at the 15° step mesh value
and then performed the MP4/6-311G(d,p) energy calculation
to get a rotational energy profile of φ (or ψ). The torsional

Table 4. The Torsional Angles, φ and ψ, and the Hydrogen Bond Lengths r of N-H · · ·O for C7eq, C5, C7ax, and �2

Conformers of AD at Different Levels of Theorya

C7eq C5 C7ax �2

theory φ ψ r φ ψ r φ ψ r φ ψ r

HF/6-31G(d) -85.4 79.3 2.23 -157.3 158.8 2.22 75.9 -55.7 2.04 -132.6 22.4 3.66
HF/6-31+G(d) -86.4 79.4 2.26 -153.8 151.9 2.24 75.9 -56.4 2.05 -102.7 4.1 3.28
HF/VDZ -84.7 81.0 2.23 -155.6 162.7 2.20 75.7 -66.9 2.04 -138.1 25.0 3.72
HF/AVDZ -86.1 80.9 2.26 -155.6 156.5 2.25 75.8 -53.8 2.04 -99.4 1.8 3.21
B3LYP/6-31G(d) -82.9 72.9 2.04 -158.1 164.1 2.15 73.6 -57.7 1.92 -126.7 20.9 3.56
B3LYP/6-31G(d) -81.9 72.3 - -157.3 165.3 - 73.8 -60.0 - -135.9 23.4 -
B3LYP/6-31+G(d) -83.1 74.8 2.08 -155.2 159.1 2.21 73.1 -55.5 1.94 -113.4 12.6 3.40
MP2/6-31G(d) -83.1 77.8 2.06 -158.4 161.3 2.17 74.4 -64.1 1.93 -137.9 22.9 3.71
MP2/6-31+G(d) -82.2 79.7 2.09 -153.8 151.9 2.26 74.5 -55.9 1.93 -89.0 -5.3 3.04
MP2/6-31++G(d,p) -82.4 80.4 2.09 -152.9 151.5 2.27 74.7 -55.9 1.92 -91.8 -3.6 3.08
MP2/6-311++G(d,p)e -81.9 81.6 2.09 -158.4 151.6 2.28 74.3 -57.4 1.91 -90.7 -7.8 3.12
MP2(Full)/AVDZ -82.6 75.8 2.02 -161.1 155.5 2.23 73.7 -53.7 1.88 -82.3 -9.5 2.95
DF-LMP2/AVTZ -83.1 75.0 2.05 -159.1 161.7 2.19 73.7 -53.2 1.90 -88.1 -4.6 3.02

a Angles are in degrees, and hydrogen bond lengths are in angstroms. b Total energies in hartree: C7eq ) -495.855 139 7, C5 )
-495.852 890 7, C7ax ) -495.850 994 3, �2 ) -495.850 199 2. c Hydrogen bond lengths are not reported in ref 7. d Calculated angles in
refs 9 and 15, and this work agrees within a 0.3° range. Hydrogen bond lengths are not reported in the references. e Calculated angles in
ref 15, and this work agrees within a 0.1° range. Hydrogen bond lengths are not reported in the references. f Reference 12.

Table 5. Relative Energies (kcal/mol) of C7eq, C5, C7ax,
and �2 Conformers of AD Calculated at Different Levels of
Theory

theory C7eq C5 C7ax �2

HF/6-31G(d) 0.0 0.41 2.82 2.58
HF/6-31+G(d) 0.0 0.30 2.87 2.42
HF/VDZ 0.0 0.54 3.07 2.35
HF/AVDZ 0.0 0.21 2.93 2.55
B3LYP/6-31G(d) 0.0 1.41 2.60 3.10
B3LYP/6-31G(d)a 0.0 1.43 2.61 3.18
B3LYP/6-31+G(d) 0.0 1.09 2.49 2.74
MP2/6-31G(d)b 0.0 1.73 2.54 3.30
MP2/6-31+G(d) 0.0 1.79 2.42 2.98
MP2/6-31++G(d,p) 0.0 1.68 2.18 2.91
MP2/6-311++G(d,p)c 0.0 1.66 2.33 2.83
MP2(Full)/AVDZd 0.0 1.91 2.28 3.11
MP2(Full)/CBS//MP2(Full)/AVDZd 0.0 1.39 2.66 3.35
LMP2/VQZ(-g)//MP2/6-311++G(d,p)e 0.0 0.91 2.06 2.51
MP4/6-311G(d,p)//MP2/6-31G(d) 0.0 1.88 2.68 2.87
MP4-BSSE/VTZ(-f)//MP2/6-31G(d)f 0.0 0.89 2.55 2.56
CCSD(T)/CBS-MP2//MP2/AVDZg 0.0 1.43 2.41 3.23
DF-MP2/AVTZ//DF-LMP2/AVTZ 0.0 1.46 2.29 3.04
DF-MP2/AVQZ//DF-LMP2/AVTZ 0.0 1.36 2.36 3.08
DF-MP2/CBS//DF-LMP2/AVTZ 0.0 1.32 2.39 3.12
DF-LMP2/AVTZ 0.0 1.22 2.41 2.86
DF-LMP2/AVQZ//DF-LMP2/AVTZh 0.0 1.24 2.44 2.99
DF-LMP2/CBS//DF-LMP2/AVTZ 0.0 1.28 2.44 3.09
DF-LMP4/AVTZ//DF-LMP2/AVTZ 0.0 1.16 2.43 2.65
DF-LCCSD(T0)/AVTZ//DF-LMP2/AVTZ 0.0 1.14 2.38 2.71
DF-LCCSD(T0)/AVQZ//DF-LMP2/AVTZh 0.0 1.19 2.41 2.87
DF-LCCSD(T0)/CBS//DF-LMP2/AVTZ 0.0 1.24 2.42 3.00

a Reference 7. b Calculated relative energies in ref 15, and this
work agrees within a 0.02 kcal/mol range. c Calculated relative
energies in this work are identical with those in ref 15. d Reference
12. e Reference 15. f Reference 9. g Reference 20. h THRBP )
0.992.
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energy profile at the MP4/6-311G(d,p)//MP2/6-31G(d) level
was used in the development of general AMBER force field
(GAFF).37

Starting from the optimized MP2/6-31G(d) structure at the
15° step, we fully optimized the molecular structure by DF-
LMP2/AVTZ with the fixed φ (or ψ) value using the default
convergence criteria of structure optimization by MOLPRO
and then calculated more accurate energy at the DF-
LCCSD(T0)/AVTZ level to get a rotational energy profile
of φ (or ψ) at DF-LCCSD(T0)/AVTZ//DF-LMP2/AVTZ. In
the previous section we note the differences between MP2/
6-31G(d) and DF-LMP2/AVTZ in the molecular structures
and energies of the low-lying conformers, but they are

smaller differences from the viewpoint of the whole (φ, ψ)
contour maps. In addition, we performed the vibrational
analysis for the low-lying conformers at the DF-LMP2/
AVTZ level of theory to confirm the absence of imaginary
frequencies. Therefore, it can be safely assumed that the
energy minimum character is preserved in the torsional
energy profiles at DF-LCCSD(T0)/AVTZ//DF-LMP2/AVTZ.

Figure 4 shows the torsional energy profiles for GDA, GD,
ADA, and AD. For GDA and GD, the profiles of both φ

and ψ from 105° to 180° disagree between DF-LCCSD(T0)
and MP4. Especially there are significant differences in the
vicinity of 180°, which is close to the C5 conformer. The
profiles at DF-LCCSD(T0) indicate that a local minimum is

Table 6. Structures and Relative Energies of Low-Lying Conformers of GDA, GD, ADA, and AD Calculated at the
DF-LCCSD(T0)/Aug-cc-pVTZ//DF-LMP2/Aug-cc-pVTZ Levela

C7/C7eq C5 C7ax �2

φ ψ r E φ ψ r E φ ψ r E φ ψ r E

GDA -82.8 68.5 2.08 0.0 180.0 180.0 2.19 0.44
GD -82.8 70.6 2.05 0.0 180.0 180.0 2.18 0.91b

ADA -83.2 73.5 2.08 0.0 -159.8 165.1 2.19 0.85 73.5 -52.5 1.95 2.16 -90.0 -2.2 3.06 2.65
AD -83.1 75.0 2.05 0.0 -159.1 161.7 2.19 1.14 73.7 -53.2 1.90 2.38 -88.1 -4.6 3.02 2.71

a Angles are in degrees and hydrogen bond lengths (N-H · · ·O) are in angstroms. Relative energy with respect to C7 or C7eq in kcal/mol.
C7 or C7eq energies of GDA, GD, ADA, and AD are -377.358 480 3, -455.842 733 4, -416.604 581 2, and -495.088 760 7 hartree,
respectively. b Relative energy at CCSD(T)/CBS-MP2//MP2/Aug-cc-pVDZ is 0.98 kcal/mol.20

Figure 4. The torsional energy profiles of φ and ψ of GDA, GD, ADA, and AD. The solid lines are the φ profiles and the dashed
lines are the ψ profiles. The filled squares and filled circles are at the DF-LCCSD(T0)/Aug-cc-pVTZ//DF-LMP2/Aug-cc-pVTZ
level and the open squares and open circles are at the MP4/6-311G(d,p)//MP2/6-31G(d) level.
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at 180° unlike those at MP4. The MP4 torsional energy at
180° is almost twice that at DF-LCCSD(T0) for GD, and it
is three times larger for GDA. For ADA and AD, not only
the energy value but also the position of a local minimum
or maximum differ between DF-LCCSD(T0) and MP4, like
in the vicinity of ψ ) -60° and -135°.

Figure 5 shows that the torsional energy profile of ψ of
AD at the DF-LCCSD(T0)/AVTZ and DF-LMP2/AVTZ
levels of theory with the same geometry at DF-LMP2/AVTZ,
together with the profile at MP4/6-311G(d,p)//MP2/6-31G(d).
There is a significant difference between DF-LCCSD(T0)
and DF-LMP2 around -120°. This difference is more than
0.5 kcal/mol. Similar differences between DF-LCCSD(T0)
and DF-LMP2 were also observed in other torsional profiles.
Although the DF-LMP2 profile better agrees with the DF-
LCCSD(T0) profile than the MP4/6-311G(d,p) profile, the
higher-order correlation beyond MP2 is significant for some
conformers with higher energies.

4.2. Molecular Mechanical Torsional Profile. The total
energy in the AMBER force field model is given by1

Here, req and θeq are equilibrium structural parameters; Kr,
Kθ, Vn are force constants; n is multiplicity, and γn is the
phase angle for the torsional angle parameters. εij and σij

are van der Waals parameters, and qi is the partial charge.
We compare the torsional energy profiles of φ and ψ

between the DF-LCCSD(T0)/AVTZ//DF-LMP2/AVTZ level

of theory and molecular mechanics with AMBER force field
variants. In order to derive the molecular mechanical torsional
profiles, we used version 3.3.3 of the GROMACS molecular
dynamics suite38 and the AMBER force field variants ported
to GROMACS by Sorin and Pande.39 As the initial structure
for the molecular mechanical calculation, we used the 15°
step structure optimized by DF-LMP2/AVTZ and performed
an energy minimization by GROMACS with the fixed φ (or
ψ) value to get a torsional energy profile.

Figure 6 shows the molecular mechanical profiles with
the ab initio profiles. In the GD profiles, the potential barrier
from the C7 conformer to the C5 conformer is too large in
all molecular mechanical force fields. The lowest energy
structure in AMBER99 (f99) is the C5 conformer, not the
C7 conformer, and the molecular mechanical ψ values of
the C7 conformer largely deviate from the ab initio value
(Table 6). For AD, the peak around -120° in the ψ profile
is too large in all the molecular mechanical force fields and
AMBER99SB (f99sb)40 has a too large barrier around 120°
in the φ profile. We suppose these deviations are one of the
reasons why the molecular dynamics simulation with AM-
BER force fields did not have a good agreement with the
experiments.39

A force field formulator for organic molecules (FF-FOM)
was developed to assign force field parameters to arbitrary
organic molecules in a unified manner including proteins and
nucleic acids.41 FF-FOM uses the GAFF bond parameters
which have much improved characters after the experience
of the AMBER99 force field parametrization.42 The GRO-
MACS input files of the unified force field for all amino
acids and nucleic acids including GD and AD are available
as a Supporting Information of ref 41. It uses the AMBER
restrained electrostatic potential charges (RESP) and van der
Waals potential parameters,1 and the GAFF bond, angle, and
dihedral parameters.37

Since GAFF has the same dihedral parameters for protein
backbone torsions as AMBER99, we optimized the backbone
dihedral parameters in order to get a better agreement with
the ab initio profiles using the unified force field for GD
and AD. Without any modification of other force field
parameters, we first optimized the dihedral parameters of
C-N-CR-C (φ) and N-CR-C-N (ψ) comparing the ab
initio and molecular mechanical torsional profiles of GD.
Then, using the obtained dihedral parameters of φ and ψ,
we optimized the side-chain-related dihedral parameters of
C-N-CR-C� (φ′) and N-C-CR-C� (ψ′), comparing the
torsional profiles of AD. In the optimization, we performed
an exhaustive grid search in the parameter space of four
amplitudes (V1, V2, V3, V4) and four phases (γ1, γ2, γ3, γ4)
using the maximum absolute error function defined as

where EQM
i (j) is the ab initio energy of conformer j with

conformer i as a reference, and EMM
i (j) is the molecular

mechanical energy of conformer j with conformer i as a
reference.40 Amplitudes were checked from 0 to 3 kcal/mol,
and phases were set to either 0 or π radians.

Table 7 lists the optimized dihedral parameters, and Figure
7 compares the optimized molecular mechanical profiles with

Figure 5. The torsional energy profiles of ψ of AD. The filled
squares are at DF-LCCSD(T0)/Aug-cc-pVTZ, and the filled
circles are at DF-LMP2/Aug-cc-pVTZ with the same geom-
etries at DF-LMP2/Aug-cc-pVTZ. The open squares are at
MP4/6-311G(d,p)//MP2/6-31G(d).

Etotal ) ∑
bonds
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the ab initio profiles. We optimized only the dihedral
parameters of the four torsions without any modification of
other parameters. Our optimized profiles agree with the ab
initio profiles much better than with the AMBER force field
variants, but there are small deviations caused by other
(general) AMBER parameters. Figure 8 compares the
molecular structure of the C7eq conformer of AD between
the DF-LMP2/AVTZ and molecular mechanical calculations.
The molecular mechanical (MM) structure reasonably agrees
with the ab initio (QM) structure, but the hydrogen bonds
in the terminal methyl have slightly different orientations.
The same deviation was observed in the GD and AD
structures with the AMBER force field variants. This is an
example of a remaining issue that needs to be overcome to
improve the “minimalist model” of eq 1, although the protein

does not have a methyl at either terminal in a standard
condition. Our optimized dihedral parameters for the protein
backbone torsions significantly differ from those of the
AMBER force field variants. We hope the new dihedral
parameters will improve the accuracy of molecular dynamics
simulations for protein folding and absolute binding free
energies.

5. Conclusion

In order to determine the starting geometry to get the fully
relaxed torsional energy profiles of φ and ψ, we first
generated the fully relaxed 15° (φ, ψ) maps of GDA, GD,
ADA, and AD at the MP2/6-31G(d) level of theory. Global
and local minimum conformers were clarified from the (φ,
ψ) contour maps, but their precise energies and structures
depend on the level of theory. Comparing low-lying con-
formers of GDA and AD at different levels of theory, we
concluded that DF-LCCSD(T0)/Aug-cc-pVTZ//DF-LMP2/
Aug-cc-pVTZ is the best choice for calculating the torsional
energy profiles. It excludes the intramolecular BSSE and
gives accurate energies with BSTE less than 0.3 kcal/mol.

Finding out the lowest energy path for φ (or ψ) to change
from -180 to 180 degrees in the contour map, we performed

Figure 6. The torsional energy profiles of φ and ψ calculated with four AMBER force field variants (f94, f99, f03, f99sb) for GD
and AD. The filled squares with a solid line show the torsional energy profile of φ and ψ at the DF-LCCSD(T0)/Aug-cc-pVTZ//
DF-LMP2/Aug-cc-pVTZ level.

Table 7. Optimized Molecular Mechanical Dihedral
Parameters for the Protein Backbone Torsionsa

V1 γ1 V2 γ2 V3 γ3 V4 γ4

φ C-N-CR-C 0.17 0 0.21 0 0.07 π 0.10 0
ψ N-CR-C-N 0.15 0 0.93 π 0.77 π 0.39 π
φ′ C-N-CR-C� 0.25 π 0.19 π 0.13 π 0.14 π
ψ′ N-C-CR-C� 0.48 π 0.39 π 0.30 0 0.33 π

a Phases are in radians, and amplitudes are in kcal/mol.
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a DF-LCCSD(T0)/Aug-cc-pVTZ//DF-LMP2/Aug-cc-pVTZ
level calculation to get the torsional energy profiles of φ and
ψ. Molecular mechanics with the AMBER force field
variants gave significantly different torsional profiles, so we

optimized the molecular mechanical dihedral parameters of
the protein backbone to fit the ab initio torsional profiles.
We hope the optimized dihedral parameters will improve
the accuracy of molecular dynamics simulations.

Figure 7. The molecular mechanical torsional energy profiles of GD and AD calculated with the optimized dihedral parameters.
The filled squares show the torsional energy profile at the DF-LCCSD(T0)/Aug-cc-pVTZ//DF-LMP2/Aug-cc-pVTZ level, and the
open squares show the optimized molecular mechanical profile.

Figure 8. Molecular structures of the C7eq conformer of AD. The QM structure was obtained by the DF-LMP2/Aug-cc-pVTZ
level of theory and the MM structure was obtained by the molecular mechanical calculation with our optimized dihedral parameters.
The figures were drawn using xmo V4.0.36
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Supporting Information Available: Optimized geom-
etries and total energies at the DF-LCCSD(T0)/Aug-cc-
pVTZ//DF-LMP2/Aug-cc-pVTZ level in the torsional energy
profiles of φ and ψ are available free of charge via the
Internet at http://pubs.acs.org.
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A.; van Alsenoy, C. J. Mol. Struct. 2001, 567-568, 361–
374.

(12) Vargas, R.; Garza, J.; Hay, B. P.; Dixon, D. A. J. Phys. Chem.
A 2002, 106, 3213–3218.
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(28) (a) Schütz, M.; Werner, H.-J. Chem. Phys. Lett. 2000, 318,
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Abstract: The folded structures of RNA molecules and large ribonucleoprotein particles are
stabilized by a wide range of base pairs that actively utilize the 2′-OH groups of ribose for base
pairing. Such base pairing does not occur in DNA and is essential for functional RNAs. We report
reference quantum chemical calculations of base pairing energies for a representative selection of
25 RNA base pairs utilizing the ribose moiety for base pairing, including structures with amino acceptor
interactions. All base pairs are evaluated at the MP2 level with extrapolation to the complete basis
set (CBS) of atomic orbitals. CCSD(T) correction terms were obtained for four base pairs. In addition,
the base pairing is evaluated using the DFT-SAPT perturbational procedure along with the aug-cc-
pVDZ basis set, which allows for the decomposition of the interaction energies into separate,
physically meaningful, components. These calculations confirm that, compared to canonical base
pairs, many RNA base pairs exhibit a modestly increased role of dispersion attraction compared to
canonical base pairs. However, the effect is smaller than one would assume based on assessment
of the ratio of HF and correlation components of the interaction energies. Interaction energies are
further calculated using the SCS(MI)-MP2 and DFT-D methods. Finally, we estimate the effect of
aqueous solvent screening on the base pairing stability using the continuum solvent approach.

Introduction

The principles of RNA base pairing differ strikingly from
those of DNA due to the presence of the 2′-hydroxyl group

of ribose. Thus, besides the common canonical base pairs,
functional RNAs utilize a very wide range of non-
Watson-Crick (non-WC) base pairing patterns1-21 (Figure
1). The most important non-WC RNA base pairs directly
involve the ribose 2′-OH groups as either donors or acceptors
of H-bonds. These “sugar-edge” base pairs are absolutely
essential for building up complex three-dimensional (3D)
RNA architectures. They include the leading RNA tertiary
interactions, such as the A-minor 10-12 and packing
interactions,13,14 and many important base pairs in the
internal RNA loops.15-19 Some RNA base pairs lack base-
base H-bonds,8,9 many are intrinsically nonplanar,8,9,22-25

and the conformational space of RNA base pairs can consist
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of several substates including water-inserted structures.14,19

While many RNA base pairs are strong, with clear minima
on the gas phase potential energy surfaces, others are weakly
bound and are evidently held together by the overall RNA
architecture.22-26 Even these weak interactions, however,
have biochemical relevance.

RNA base pairs have been classified by Leontis and
Westhof according to their 3D shapes, considering the span
of the base pair and orientation of the attached sugar
phosphate backbone as the main structural determinants.8,9,18

There are rare instances where this classification scheme fails
to unambiguously describe an RNA base pair.19

The classification describes twelve principal base pair
families as well as additional intermediate (bifurcated)
families. The families are further divided into isosteric
subgroups.8,9 Each isosteric subgroup can be primarily
characterized by the distance between the C1′ atoms and the
mutual orientation of the corresponding vectors between C1′
and the glycosidic N (N1 in pyrimidines and N9 in purines).
Isosteric base pairs can substitute for each other without
affecting the RNA 3D structure. Since the RNA function
depends chiefly on the 3D structure, isosteric substitutions
are presumed to have a minimal effect on function, i.e., can
be considered as functionally neutral substitutions.8,9,15,16

This is known as the RNA isostericity principle. The
isostericity principle is very robust, although it is based
exclusively on structures and does not take into account the
energetics of base pairing. The RNA 2D structures are
considerably less conserved compared with the 3D structures,
reflecting the fact that the 3D structure is the primary target
of evolutionary constraints.16 Nevertheless, the basic isos-
tericity principle can be modulated by other factors. In such
a case only a subset of possible isosteric substitutions is
realized during evolution, or the frequency of occurrence (in
the aligned sequences) differs for otherwise isosteric base
pairs. A textbook example is the P-interaction tertiary quartet,
where a G/U wobble base pair interacts with the C)G
Watson Crick base pair while it cannot be substituted with
the isosteric A/C base pair. The reason is an unfavorable
electrostatic interaction between the A/C and C)G base
pairs.14 (In this paper, the “/” mark indicates non-WC base
pairs, while G)C and A-U marks are used for the standard
base pairs). The phylogenetic preference to utilize the G)C

base pairs as receptors rather than the A-U ones in A-minor
tertiary interactions could also be caused by the strength of
the interactions, although available biochemical experiments
did not indicate any large free energy differences.20 Similarly,
the otherwise isosteric cis-Watson-Crick/Watson-Crick
A/G and G/A base pairs do not covary when the amino group
of guanine is involved in out-of-plane or tertiary interactions
utilizing the unpaired nonplanar guanine amino group.22

Despite their biological importance, computational and
physical chemistry literature on the RNA base pairing is
sparse,14,19,23-37 contrasting the abundance of studies on
simple Watson Crick base pairs. Computations provide a
useful complement to experimental techniques and bioin-
formatics, as they can capture certain physical chemistry
features of the RNA base pairing that cannot be directly
visualized by experiment. The leading structural methods (X-
ray crystallography,1-7 structural bioinformatics,8,9,16-18 and
cryoelectron microscopy38,39) show basically static averaged
RNA structures with some resolution limits. They thus
provide only limited insights into the dynamics of the
molecular interactions. NMR can provide more data on
structural dynamics of RNA, but this method has significant
resolution limits for RNA.40-43 These techniques do not
reveal the magnitude and nature of the intermolecular forces
between the interacting groups and nucleotides. Insights into
energetics of molecular interactions in RNA can be obtained
by thermodynamics studies, which, however, do not allow
anunambiguousanalysisoftheindividualenergycontributions.44,45

Computational methods (molecular dynamics simulations and
quantum chemistry) can complement the information avail-
able in atomic resolution structures by providing energetics
of molecular interactions and structural dynamics.

Recently, we have carried out studies to complement the
structural and bioinformatics classification of RNA base pairs
using advanced quantum chemical calculations. These studies
were specifically aimed at the characterization of RNA base
pair families directly utilizing the sugar edges.23-27 The
structures of these complexes were relaxed using the density
functional theory method, often with constraints to keep the
base pairs in biologically relevant geometries. The interaction
energies were derived at the MP2 level with the aug-cc-
pVDZ basis set of atomic orbitals, which is sufficient for
semiquantitative accuracy.46 The results were compared with
those obtained using the leading molecular modeling force
field, AMBER.47 The force field provides reasonably accurate
results for these types of interactions, which is also reflected
by its, generally very good, behavior in treating these base
pairs in explicit solvent simulations.19,34-37

In the present study, we selected a set of 25 RNA base
pairs on which to perform reference QM calculations and to
obtain better insights into the balance of forces in various
types of RNA base pairs. These 25 base pairs were chosen
from five key families in which the sugar interaction is
important or dominant, to cover as broad a spectrum as
possible of RNA interactions. The gas phase interaction
energies (see below) of these base pair interactions range
from -10 to -31 kcal/mol. Our set also contains alternative
substates in which some of the nucleobase amino groups are
in amino-acceptor positions with respect to the 2′-OH group

Figure 1. RNA nucleotides create base pairs in a systematic
manner using three edges: Watson Crick, Sugar, and Hoogs-
teen (or C-H for pyrimidines).9,21
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of ribose. Due to the medium to low resolution of RNA X-ray
structures, the amino-acceptor interactions would be difficult
to prove by experiment, but their presence in RNAs cannot
be ruled out.22

Most reference data reported in this paper were obtained
using the MP2 method with binding energy results extrapo-
lated to the complete basis set limit using the aug-cc-pVDZ
and aug-cc-pVTZ basis sets of atomic orbitals (MP2/CBS
level, see Methods below). For four base pairs we report
the CBS(T) data, i.e., MP2/CBS calculations corrected for
the higher electron correlation effects using the CCSD(T)
method with a smaller basis set of atomic orbitals (see
Methods below). In contrast to our preceding reference study
on pure “base to base” nucleic acids base pairs,48 in this
study we were not able to carry out the CBS(T) calculations
systematically due to the size of the RNA base pairs with
one or two riboses directly involved in the interactions.
Nevertheless, the MP2/CBS method is a viable benchmark,
as the CCSD(T) corrections for H-bonded base pairs are only
modest.

The studied base pairs were further evaluated using the
perturbational DFT-SAPT technique,49-52 which, with large
basis sets, should yield results similar to those of the
CCSD(T) method. The present SAPT calculations were
carried out with the medium aug-cc-pVDZ basis set (see
Methods below). The SAPT procedure allows decomposition
of the interaction energies into well-defined components,
corresponding to physical phenomena such as dispersion and
induction. Although energy decompositions should not be
overinterpreted, they provide new insights into the complex-
ity of the RNA and DNA53-59 base pair interactions.

Additional interaction energy computations on these base
pairs were carried out with the SCS(MI)-MP260 and
DFT-D61,62 methods. The SCS(MI)-MP2 method is a
recently proposed semiempirical MP2 technique providing
a balanced description of stacked and H-bonded molecular
clusters. The DFT-D is a fast method that includes the
dispersion forces via a damped empirical correction. Finally,
we carried out solvation calculations, which should give us
an estimate of the stability of the base pairs studied in
solution and provide an alternative energy ordering of the
individual structures.

Methods

Geometry Optimizations. Geometry optimizations were
carried out at the DFT (Density Functional Theory) level of
theory using the Gaussian03 program package. The density
functional was built up by Becke’s three-parameter exchange
and Lee-Yang-Parr’s correlation functional (abbreviated
as B3LYP). The 6-31G** basis set was used for all
geometry optimizations. The B3LYP/6-31G**-optimized
structures compare quite well with reference RIMP2/cc-
pVTZ data and are entirely sufficient for the subsequent high-
quality interaction energy calculations.48 For many RNA base
pairs we had to apply specific constraints to impose the target
geometry, as unconstrained optimization would result in a
different base pair type or a substantially perturbed geometry.
Considering this fact, the flexibility of RNA pairing and the

limited accuracy (resolution) of X-ray structures of complex
RNAs, such geometry optimization procedure is entirely
appropriate for our purpose. Where relevant, the geometries
were taken from our preceding studies where more details
about the geometries can be obtained.23-26 All computed
structures can be found in the Supporting Information.

Interaction Energies. Total interaction energy of a dimer
[AB] ∆EAB is defined as

where EAB stands for the electronic energy of the whole
system in the optimized geometry, and EA and EB are the
electronic energies of the isolated subsystems A and B in
the dimer geometry. In a few cases (base pairs with water
insertion) we evaluated trimers; the extension of eq 1 for
trimers is straightforward.63

The interaction energy (∆E) of the standard electron
correlation calculations (MP2 and CCSD(T)) has two
components: the Hartree-Fock (HF) term (∆EHF) and the
electron correlation term (∆Ecor).

The main quantities described by the ∆EHF term are the
electrostatic interaction energy, short-range exchange repul-
sion, and polarization/charge transfer contributions to the total
interaction energy. The ∆Ecorr term is dominated by the
dispersion attraction and also includes the electron correlation
corrections to the other contributions. The correlation cor-
rection to electrostatics is usually repulsive since the electron
correlation reduces the dipole moments of the monomers and
thus also the electrostatic attraction.

All variational interaction energies are corrected for the
basis set superposition error (BSSE) using the standard
counterpoise procedure but do not include the deformation
energies. The deformation energies are disregarded due to
substantial structural alterations of the sugar-base segment
upon base pairing in many RNA base pairs. Such rearrange-
ments do not reflect the direct (electronic) forces between
the interacting monomers. Thus a direct inclusion of mono-
mer deformations into the interaction energies would bias
the results. For a detailed discussion regarding the role of
the deformation energies in base pairing calculations see refs
23-25 and 48 where we explain why a formal inclusion of
deformation energies into the BSSE correction is inappropri-
ate except when dealing with the simplest H-bonded systems.

The interaction energies were evaluated by the following
methods:

Reference Interaction Energies. The MP2 calculations
were performed with aug-cc-pVDZ (aDZ) and aug-cc-pVTZ
(aTZ) basis sets and extrapolated to the complete basis set
(MP2/CBS) using the technique of Helgaker and co-workers
(eq 3).64,65

EX and ECBS are energies for the basis set with the largest
angular momentum X and for the complete basis set,
respectively, and R is a parameter fitted by the authors.64,65

∆EAB)EAB - EA - EB (1)

∆E ) ∆EHF + ∆Ecorr (2)

EX
HF ) EHF

CBS + Ae-RX and EX
corr ) Ecorr

CBS + BX-3

(3)
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In four cases (cWS C/rG, cWS C/rC, tWS A/rA, and tWS
A/rG; see below for the abbreviation) the MP2/CBS energies
were further corrected for the higher order correlation effects
by adding a ∆CCSD(T) correction to the MP2/CBS energy.
The ∆CCSD(T) correction is the difference between the
CCSD(T) and MP2 interaction energies (∆ECCSD(T) - ∆EMP2)
calculated in a small basis set (eq 4).

For more details see elsewhere.48,66

All MP2 calculations were performed in TurboMole 5.10
program67,68 with RI approximation (RI-MP268) and CCS-
D(T) calculations in the Molpro package.69 The frozen-core
approximation was used throughout the study.

Decomposition of Interaction Energies via
DFT-SAPT. The symmetry adapted perturbation theory
method70 allows for decomposition of the total interaction
energies into physically meaningful components. Recently
a computationally less demanding approach, in which the
monomer is described by DFT and intermolecular interac-
tions by SAPT, became available.49-52,71 Here we chose the
DFT-SAPT method implemented in the Molpro program
package.69 The total interaction energy is usually calculated
as a sum of the following terms (eq 5):

The individual terms correspond to the electrostatic (Eel
(1)),

exchange repulsion (Eexch
(1)), induction including charge

transfer (Eind
(2)) and dispersion (Edisp

(2)) contributions and their
mixing terms (Eexch-ind

(2) and Eexch-disp
(2)). δ(HF) is a correction

term for the most important higher order contributions (for
details see e.g. refs 64-66). In the following we will add
the mixing terms Eexch-ind

(2) and Eexch-disp
(2) to their correspond-

ing second order components denoting them as Eind () Eind
(2)

+ Eexch-ind
(2)) and Edisp () Edisp

(2) + Eexch-disp
(2)). All calculations

are performed with density fitting, asymptotically corrected
exchange-correlation density functional PBE0AC recom-
mended by the authors50 and the aug-cc-pVDZ basis set.

DFT Calculations with Empirical Dispersion
Correction. DFT-D combines a standard DFT calculation
with an empirical correction for long-range correlation, also
called dispersion or van der Waals interaction.61,62 At the
typical van der Waals distances the empirical dispersion of
the form -C6/r6 is dampened by a damping function, which
corrects for the nonphysical divergence and correlation
double counting in the overlap region.62 Here we used a
combinationoftheTPSSdensityfunctional,6-311++G(3df,3pd)
basis set and dispersion parametrization based on radii scaling
as described in ref 62. DFT interaction energies were not
corrected for the basis set superposition error, and dispersion
parameters corresponding to BSSE uncorrected calculation
were chosen (by adjusting the dispersion to the BSSE
uncorrected DFT energies, the BSSE error is partially
mitigated). DFT calculations were performed with the
TurboMole 5.1067,68 program, and dispersion was calculated
using our own Fortran code.

SCS(MI)-MP2 Calculations. The spin component scaled
second order Møller-Plesset perturbation method (SCS-
MP2) scales the relative contributions of singlet and triplet
states to the correlation energy.60 In principle any scaling
factors can be used, and the SCS-MP2 method can be
parametrized against a particular training set in order to
obtain accurate results for some given property. The mo-
lecular interactions variant of the SCS-MP2 method, SC-
S(MI)-MP2, was parametrized against the S22 test set of
molecular complexes which includes a balanced mixture of
hydrogen bonded, dispersion bound and mixed structures.72,73

This method, when used along with the cc-pVTZ basis set,
has shown promise in terms of its ability to accurately
describe noncovalent interactions at a relatively low com-
putational cost, including potential energy curves for the
hydrogen bonded and stacked uracil dimer.74

Desolvation Energies. To calculate the desolvation energy
upon complex formation, i. e., the energy difference between
the solvated monomers and solvated complex, we used the
IEFPCM model implemented in program Gaussian 0375 with
UAKS radii, PBE functional, 6-311G** basis set and default
parameters for water. Resulting dehydration energies, which
are computed as Gibbs energies, were then added to the MP2/
CBS interaction energies to obtain an estimate of the base
pair stability in water solution. The limitations of this
approach are discussed below.

Abbreviations. We use standard abbreviation for the base
pairs, where “t” and “c” stand for trans and cis, and “W”,
“H”, and “S” stand for Watson Crick, Hoogsteen, and Sugar
edges, respectively. When ribose is included in the QM
calculations (we included the ribose for those base pairs
where it directly participates in the interaction), it is denoted
by a preceding “r”. Thus, tHS A/rG means trans-Hoogsteen
Sugar Edge base pair where adenine interacts with its
Hoogsteen edge with guanosine sugar edge. Amino acceptor
variants of the base pairs are indicated as “aa”. G)C and
A-U stand for the canonical base pairs.

Results and Discussion

Table 1 summarizes the calculated interaction energies, while
Figure 2 summarizes the structures. The first three columns give
the MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ, and MP2/CBS data
(shown in bold). The numbers in parentheses in the third column
are the CBS(T) values. The next three columns give SCS(MI)-
MP2, SAPT, and DFT-D data. Finally, the last two columns
list estimates of the solvation energies.

The first 22 rows in the Table 1 (rows cWS A/rG to tHS
G/G) summarize data for 18 base pairs including four alternative
structures with amino acceptor interactions (see above for
abbreviations). The next row corresponds to the rC/rU base pair
taken from the fully optimized GC/UG P-interaction; the rC/
rU base pair is the key interaction in this important RNA tertiary
quartet.14,26 The subsequent six rows list pairwise interaction
energies calculated for two systems that were formally opti-
mized as trimers. The first one is the A-minor I triad, where
the minor groove side of canonical rG)rC base pair acts as a
receptor for adenosine through two SE/SE interactions.10-12,26

A-minor I is the most common RNA tertiary interaction. The
second trimer is a water mediated cSS rU/rC base pair. Finally,

∆ECBS(T) ) ∆ECBS
MP2 + (∆ECCSD(T) - ∆EMP2)6-31+G* (4)

ESAPT ) Eel
(1) + Eexch

(1) + Eind
(2) + Eexch-ind

(2) +

Edisp
(2) + Eexch-disp

(2) + δ(HF) (5)

Reference Quantum Chemical Calculations J. Chem. Theory Comput., Vol. 5, No. 4, 2009 1169



the last two rows in Table 1 show data for canonical A-U and
G)C pairs calculated with the same methods.

Nature and Magnitude of the Interaction Energies
in Vacuum. Variations in total interaction energies in
vacuum should be governed mainly by the number of
common hydrogen bonds, their strength, and the overall
complementarity of the electrostatic potentials. The MP2/
CBS data support this view. The complexes with the largest
interaction energies are characterized by multiple hydrogen
bonds and often by strong hydrogen bonds including two
oxygen atoms (OH...O) or an oxygen atom as the donor
(OH...N) see, e.g., structures of G)C (-32.0 kcal/mol), tWS
G/rC (-30.6 kcal/mol), cSS rA/rG (-26.3 kcal/mol), and
tSS rA/rG (-24.2 kcal/mol) base pairs. On the other hand,
the least stable structure, tHS G/G (-10.0 kcal/mol), contains
just one NH...O bond. Thus, the base pairing strength seems
to be roughly correlated with the number and character of
the hydrogen bonds.

SAPT Energy Decomposition and the Role of
Dispersion Energy. In our preceding studies we have
suggested that the contribution of dispersion to the stabilities
of many of the “SE” RNA base pairs is greater than its
contribution to the overall stabilities of canonical base
pairs.23-26 This tentative idea was indirectly derived from
the large values of the correlation components of the

computed MP2/aug-cc-pVDZ interaction energies. The cor-
relation component contains the dispersion energy (inter-
molecular correlation interaction energy) as the dominant
contribution. However, such calculations do not allow an
unambiguous decomposition because the correlation com-
ponent also contains other terms, most notably the correlation
correction of the electrostatic term. In addition, the balance
of the HF and electron correlation components is sensitive
to the intermonomer separation. Thus, in the present study
we analyzed this issue using a rigorous evaluation of the
dispersion energy by the SAPT procedure (Table 2). Note
that the analysis is complicated by the fact that the individual
energy terms are very sensitive to the intermonomer separa-
tions. The complex RNA base pairs obviously may have
locally compressed or extended intermolecular contacts as
the result of the overall structure balancing. This complexity
will be demonstrated below on selected examples. Therefore,
in order to obtain a correct picture, it is vital to analyze the
relation of the dispersion, electrostatic, and induction term
to the other energy terms. We suggest that the best measure
of the relative role of, e.g., dispersion could be the %
contribution of the dispersion energy to the overall attractive
interaction (i.e., the sum of all attractive terms). This will
be marked as Disp/Stab ratio in the following text and

Table 1. Total Interaction Energies and Solvation Energies (kcal/mol) Calculated by Different Methods for RNA Base Pairs
(Figure 2)

base pair MP2/aDZ MP2/aTZ
MP2/CBS
(CBS(T)) SCS(MI)-MP2

DFT-SAPT
aDZ

DFT-D
TPSS/LPc ∆GSolv

MP2/CBS +
∆GSolv

cWS A/rG -16.00 -17.27 -17.78 -16.90 -14.62 -17.99 16.38 -1.40
cWS C/rG -16.99 -18.24 -18.74 (-17.74) -18.10 -15.76 -18.87 17.70 -1.04
cWS C/rC -21.84 -23.16 -23.68 (-22.95) -23.70 -21.23 -23.56 18.78 -4.90
tWS A/rA -9.96 -10.70 -11.01 (-10.62) -10.10 -9.01 -10.95 10.30 -0.71
tWS A/rG -16.51 -17.84 -18.38 (-17.60) -17.40 -14.92 -18.81 15.54 -2.84
tWS G/rC -28.47 -29.97 -30.58 -31.60 -27.92 -30.87 25.14 -5.44
cSS rA/rA -18.54 -20.18 -20.84 -20.00 -17.32 -21.81 18.36 -2.48
cSS rA/rC -19.02 -20.53 -21.15 -20.70 -17.67 -21.46 20.64 -0.51
cSS rC/rA -20.00 -22.15 -23.02 -22.10 -18.17 -23.88 19.91 -3.11
cSS rC/rU -17.23 -18.85 -19.49 -18.80 -15.73 -19.05 19.24 -0.25
cSS rA/rGd -23.63 -25.55 -26.34 -25.10 - -27.32 24.24 -2.10
tSS rA/rG -21.49 -23.41 -24.20 -22.40 -19.25 -24.22 21.71 -2.49
tSS rG/rC -13.52 -14.13 -14.38 -14.50 -13.27 -14.10 14.69 0.31
tSS rG/rC aaa -20.92 -22.69 -23.41 -22.40 -19.27 -23.53 21.88 -1.53
tWS C/rC -9.72 -10.19 -10.39 -9.90 -9.33 -9.81 8.46 -1.93
tWS C/rC aaa -14.46 -15.58 -16.03 -15.70 -13.48 -15.65 16.31 0.28
tWS U/rC -15.90 -17.03 -17.48 -17.70 -15.16 -17.28 14.65 -2.83
tHS A/rA -10.23 -11.00 -11.33 -10.40 -9.26 -11.13 10.60 -0.73
tHS A/rA aaa -9.96 -10.97 -11.39 -10.60 -8.82 -11.17 12.79 1.40
tHS A/rG -15.16 -16.34 -16.82 -15.80 -13.64 -17.22 15.69 -1.13
tHS A/rG aaa -15.65 -16.86 -17.36 -16.60 -14.00 -17.94 16.70 -0.66
tHS G/G -9.27 -9.76 -9.96 -10.00 -9.14 -9.95 9.35 -0.61
rU/rC pair of the P-motif -16.98 -18.30 -18.82 -18.60 -15.79 -18.99 18.36 -0.46
rG/rA of A_minor Id -15.22 -16.52 -17.06 -15.60 - -17.22 18.98 1.92
rG)rC of A_minor I -29.05 -30.64 -31.29 -31.70 -28.38 -31.72 25.08 -6.21
rA/rC of A_minor I -17.02 -18.50 -19.10 -18.70 -15.69 -19.17 16.66 -2.44
cSS rU/rC WMb -15.39 -16.81 -17.38 -17.00 -14.32 -15.91 17.27 -0.11
rU_wat WMb -3.50 -3.83 -3.96 -3.68 -3.42 -4.29 3.84 -0.12
rC_wat WMb -9.04 -10.02 -10.42 -10.19 -8.71 -11.14 9.44 -0.98
U-A -15.30 -16.52 -17.02 -16.64 -14.52 -17.49 14.01 -3.01
C)G -29.47 -31.21 -31.91 -32.42 -28.75 -32.37 24.64 -7.27

wrt wrt wrt
MP2/CBS MP2/aDZ MP2/CBS

mean signed error 0.51 1.04 -0.13
rmsd 0.78 1.16 0.51

a aa: amino-acceptor. b WM: water mediated. c For the basis set description see Methods. d SAPT calculation failed.
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analogically for electrostatics and induction Elst/Stab and
Ind/Stab, respectively.

The Elst/Stab ratios for the canonical G)C and A-U base
pairs are 58.0% and 56.7%. This actually is quite a small

Figure 2. Structures of the calculated base pairs. Outmoded nucleotide order from reference 9 is used for tSS pairs.
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difference, taking into account that the A-U base pair is
assumed to be less polar than the G)C one due to the
considerably smaller polarity of the interacting monomers.76

When considering all studied interactions, the Elst/Stab ratio
ranges from 50% (rU...rC dimer from the corresponding
water mediated structure) to 63% (rC interaction with water
from the same structure). However, the later two structures
are obvious outliers. Waters typically bridge the most polar
sites of the base pairs, and then the direct nucleoside-
nucleoside contacts in such water mediated structures are
less electrostatic.

For the noncanonical RNA base pairs with conventional
H-bonding (disregarding the alternative amino acceptor
geometries), the Elst/Stab ratio is in the range of 52.6 to
59.9%. Comparing with the data for canonical base pairs
this appears to be a significant variability. For most of the
base pairs this ratio is smaller than 56%, indicating a weaker
relative contribution of the electrostatics compared to the
canonical base pairs.

The complexity of the SAPT analysis can be demonstrated
for the amino-acceptor geometries of the base pairs. For
example, the conventional binding of the tSS rG/rC base pair
is associated with the small electrostatic term of -16.3 kcal/
mol, which, at first sight, could indicate weak electrostatics.
However, the Elst/Stab ratio is 59.9% which is the largest
value among all base pairs. Then, the amino-acceptor variant
of this base pair has an electrostatic term of -33.4 kcal/
mol. This, at first sight, indicates an increase of the

electrostatic nature of the base pair. This is obviously
counterintuitive, as replacing one standard H-bond by an
amino-acceptor interaction should reduce the electrostatic
contribution to the total interaction. Indeed, for the amino-
acceptor geometry all terms (in absolute value) increase,
while the Elst/Stab ratio drops to 53.7%. These numbers
nicely illustrate that, due to the sensitivity of the individual
SAPT terms to interatomic distances, the decomposition is
not straightforward and can be easily misinterpreted. As such,
the literature interpretations of these values should be treated
with great care.

The induction component (sum of the Eind and δ(HF)
terms, Ind/Stab) contributes between 16% for the tHS A/rA
base pair and 26% for the rU/C interaction from the water
mediated complex. It parallels the trends in the overall
strengths (statistically, R2 ) 0.59). The induction correlates
very nicely with the electrostatics (R2 ) 0.96), which in part
explains the success of the pair additive empirical force fields,
which use systematically overestimated charges (dipoles) to
substitute for the missing polarization term.

The dispersion contribution to the sum of all attractive
terms, Disp/Stab (100*Edisp/(Edisp + Eind + Eel + δ(HF))),
varies between 16% in the G)C base pair and 29% in the
tHS A/rA base pair (see Table 2). The relative dispersion
contribution is smallest in the strongest complex and largest
in one of the weakest complexes, but this is rather accidental,
because the strength of the complex does not correlate with
its dispersion contribution. In absolute values the dispersion

Table 2. Decomposition of the Gas Phase Interaction Energies in RNA Base Pairs (kcal/mol)

Eel
c Eexch

c Eind
c Edisp

c δ(HF)c ESAPT % Edisp
d ∆EHF

CBS ∆Ecorr
MP2/CBS DFTe DISPf

cWS A/rG -26.4 32.9 -5.8 -11.0 -4.4 -14.6 23.2 -8.1 -9.7 -13.3 -4.7
cWS C/rG -25.8 31.3 -6.0 -11.0 -4.3 -15.8 23.4 -9.3 -9.5 -14.0 -4.9
cWS C/rC -30.6 33.8 -8.0 -10.8 -5.6 -21.2 19.6 -16.4 -7.3 -19.7 -3.9
tWS A/rA -14.7 18.0 -2.5 -7.8 -2.0 -9.0 28.8 -4.4 -6.6 -6.9 -4.0
tWS A/rG -27.2 33.5 -5.6 -11.2 -4.5 -14.9 23.1 -9.0 -9.4 -13.7 -5.1
tWS G/rC -39.6 40.6 -10.4 -11.9 -6.7 -27.9 17.3 -24.5 -6.0 -27.0 -3.9
cSS rA/rA -32.8 44.7 -8.8 -14.1 -6.4 -17.3 22.7 -9.2 -11.6 -15.5 -6.3
cSS rA/rC -29.5 36.7 -7.1 -13.0 -4.8 -17.7 23.9 -11.1 -10.0 -15.1 -6.4
cSS rC/rA -42.3 59.9 -10.9 -17.3 -7.6 -18.2 22.2 -9.6 -13.4 -16.9 -7.0
cSS rC/rU -28.2 37.9 -7.3 -13.1 -5.0 -15.7 24.4 -9.3 -10.2 -13.6 -5.4
cSS rA/rGg - - - - - - - -11.4 -15.0 -18.7 -8.6
tSS rA/rG -38.4 51.3 -8.4 -17.5 -6.3 -19.2 24.8 -8.0 -16.2 -16.4 -7.8
tSS rG/rC -16.3 13.9 -3.2 -6.0 -1.7 -13.3 22.0 -11.0 -3.3 -11.4 -2.7
tSS rG/rC aaa -33.4 42.8 -8.2 -14.9 -5.7 -19.3 23.9 -11.2 -12.2 -17.2 -6.3
tWS C/rC -11.5 10.4 -2.1 -5.0 -1.1 -9.3 25.5 -6.6 -3.7 -7.4 -2.4
tWS C/rC aaa -20.8 25.6 -4.9 -9.9 -3.5 -13.5 25.2 -8.5 -7.6 -11.3 -4.3
tWS U/rC -24.2 28.8 -6.4 -8.6 -4.7 -15.2 19.7 -12.2 -5.2 -14.7 -2.6
tHS A/rA -15.0 18.1 -2.4 -8.0 -1.9 -9.3 29.3 -4.6 -6.7 -7.1 -4.0
tHS A/rA aaa -17.2 23.5 -3.3 -9.3 -2.5 -8.8 28.7 -3.4 -8.0 -6.9 -4.3
tHS A/rG -23.2 28.0 -4.5 -10.4 -3.5 -13.6 24.9 -8.0 -8.8 -12.2 -5.0
tHS A/rG aaa -24.5 30.7 -5.1 -11.3 -3.8 -14.0 25.3 -7.5 -9.9 -12.4 -5.6
tHS G/G -11.7 10.9 -2.3 -4.7 -1.5 -9.1 23.3 -7.1 -2.9 -7.9 -2.0
rU/rC pair of the P-motif -25.2 31.8 -6.8 -11.1 -4.4 -15.8 23.4 -10.8 -8.0 -13.9 -5.1
rG/rA of A_minor Ig - - - - - - - -4.9 -12.1 -10.7 -6.5
rG)rC of A_minor I -41.5 43.3 -10.5 -12.0 -7.7 -28.4 16.7 -25.4 -5.9 -27.9 -3.8
rA/rC of A_minor I -29.2 36.3 -6.9 -11.4 -4.5 -15.7 21.9 -10.7 -8.4 -14.7 -4.4
cSS rU/rC WMb -24.6 34.0 -7.3 -11.2 -5.2 -14.3 23.2 -8.5 -8.9 -12.9 -3.1
rU_wat WMb -6.2 7.0 -1.2 -2.3 -0.7 -3.4 22.4 -2.7 -1.3 -3.5 -0.8
rC_wat WMb -20.8 24.5 -4.0 -5.8 -2.6 -8.7 17.4 -6.4 -4.0 -9.7 -1.5
U-A -28.1 35.0 -6.5 -9.5 -5.5 -14.5 19.1 -10.6 -6.4 -14.4 -3.1
C)G -44.2 47.5 -11.3 -12.2 -8.5 -28.8 16.1 -25.8 -6.1 -28.8 -3.5

a aa: amino-acceptor. b WM: water mediated. c Eel: electrostatic component; Eexch: exchange repulsion; Eind: induction (sum of Eind and
Eexch-ind); Edisp: dispersion (sum of Edisp and Eexch-disp); δ(HF): delta HF correction for higher order induction terms (see eq 5). d Percent of the
dispersion attraction with respect to the total attraction (100*Edisp/(Edisp + Eind + Eel + δ(HF))). e DFT term from the DFT-D TPSS/LP
calculations. f Dispersion term from the DFT-D TPSS/LP calculations. g SAPT calculation failed.
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is largest in the extended complexes in which the aliphatic
sugar hydrogen appears close to the interacting molecule,
i.e., mostly in the SS rX/rY base pairs.

Closer inspection of the data, nevertheless, reveals a
change in the balance between dispersion and electrostatic
energies in many RNA base pairs, when these base pairs
are compared with the reference canonical A-U and G)C
base pairs. While the G)C base pair is known to be a strong
electrostatic pair formed by two bases with large dipole
moments, the A-U base pair has weaker electrostatics. Thus,
we can consider properties of the A-U and G)C base pairs
as demarcating the conventional range of the balance of
forces in nucleic acids base pairs. To get the full picture,
we consider not only the overall trends and correlations but
also the individual cases and outliers, since the diversity of
molecular interactions provides the variability of RNA
molecular structures. RNA base pairs play numerous roles
in nature, and trying to characterize them only by “average”
base pairing properties and overall correlations could be like
mixing apples and oranges.

The SAPT dispersion components of the A-U and G)C
base pairs are -9.5 and -12.2 kcal/mol, respectively. The
dispersion components in RNA base pairs (considering the
first 23 rows of Table 1) vary between -4.7 and -17.5 kcal/
mol, with the largest dispersion component in the cSS rC/
rA (-17.3 kcal/mol) and tSS rA/rG (-17.5 kcal/mol) base
pairs. This is also confirmed by the Disp/Stab ratio, which
is 19 and 16% for the A-U and G)C base pairs, but in the
range of 20-29% for the vast majority of RNA base pairs.
The dispersion vs electrostatics ratio is 0.34:1 and 0.28:1 in
the A-U and G)C base pairs and increases to 0.46:1 in the
tSS rA/rG base pair and 0.43:1 in the rU/rC dimer from the
P-interaction. The tSS rA/rG base pair is the key interaction
stabilizing the A-minor I tertiary interaction. The differences
are also visualized by the ratio between the dispersion energy
and the total SAPT interaction energy, which is 0.42:1, 0.66:
1, 0.70:1, and 0.91:1 in G)C, A-U, rC/rU P-interaction, and
tSS rA/rG base pairs, respectively. This value is 0.75:1 in
cWS A/rG base pair, etc. Therefore, although the data
confirm that the RNA base pairs generally exhibit behavior
typical of H-bonded systems, some of them clearly profit
from an increased role of dispersion energy compared to
canonical base pairs. Although the differences appear modest
in the gas phase, they might be important in a natural RNA
environment, where the primary H-bonds of the base pairs
always compete with binding of water molecules. The
increased dispersion is likely important mainly for the tertiary
interactions which are exposed to solvent much more than
Watson-Crick base pairs that are sheltered and stacked
inside double helices.

Let us now comment on other options to separate the
dispersion energy from the other contributions. A crude
estimate is based on the evaluation of the MP2 (correlation)
contribution to the intermolecular energy, i.e., the difference
between the MP2 and HF interaction energies. Although this
difference is often dominated by dispersion, it contains also
the MP2 corrections to the electrostatics and induction, which
cannot be separated. The data in Table 2 reveal that the MP2
intermolecular contribution is about 2.6 kcal/mol lower than

that of the SAPT dispersion term, but it correlates with the
DFT-SAPT dispersion values fairly well, with R2 ) 0.83.
Because these lower dispersion values can be partly ex-
plained by the, typically repulsive, MP2 correction to
electrostatics, it seems that the main contribution to the MP2
correction indeed comes from dispersion. Note that these
conclusions are valid for hydrogen bonded complexes and
should not be generalized to other types of bonding interac-
tions without further justification. The studied base pairs
show a large degree of variability in the ratio between HF
and correlation contributions to the interaction energies. This
ratio is 4.2:1 and 1.7:1 for the G)C and A-U base pairs,
contrasting the values of 0.7:1 and 0.49:1 obtained for cSS
rC/rA and tSS rA/rG RNA base pairs, i.e., for those RNA
base pairs with the largest dispersion energy. However, closer
inspection of the available data reveals that the actual
differences in binding are not as dramatic. The difference
between the A-U and G)C base pairs is not surprising, as
the strong electrostatics of the G)C base pair is well-known.
However, a substantial part of the difference in the ratios of
HF and correlation components for these two base pairs is
due to the correlation correction of the electrostatic term,
caused by intramolecular electron correlation reduction of
the dipoles of guanine and cytosine. It reduces mainly the
correlation interaction energy of the G)C base pair and is
not related to the dispersion energy which is due to
intermolecular electron correlation contributions. This effect
for the A-U base pair is considerably smaller as their smaller
dipoles are much less affected by the electron correlation.
Furthermore, close inspection of the SAPT data for the two
RNA base pairs reveals that their large dispersion (the largest
among systems studied here) and electron correlation ener-
gies are associated with the largest exchange repulsion terms
of 59.9 and 51.3 kcal/mol. This evidently contributes to the
large change in the HF vs correlation interaction energy ratio,
especially for the cSS rC/rA base pair. Thus, the increased
correlation interaction energy component rather reflects the
larger compactness of the base pairs, which (in absolute
values) increases magnitude of all the energy components.
In other words, although we see that in some H-bonded RNA
base pairs the role of dispersion energy is somewhat
increased, this effect is smaller than one would guess from
the ratio of HF and correlation components of the interaction
energies.

Another way to approximate the dispersion contribution
is based on empirical formulas, such as those used, along
with an appropriate damping function, in the DFT-D
method.62 Table 2 shows that the empirical dispersion is far
smaller in magnitude than the DFT-SAPT reference (on
average by more than 6 kcal/mol). This is in agreement with
our earlier study of DNA bases,55 in which the undamped
empirical dispersion was in fairly good agreement with the
DFT-SAPT reference, but damping significantly reduced the
magnitude of dispersion, especially in the hydrogen bonded
complexes (by about 80%). In other orientations of bases,
for instance in stacks, dispersion is damped much less (often
by only about 20%). In this respect, the damped empirical
dispersion should be understood as a complement to a given
DFT functional rather than as an estimate of the dispersion
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contribution, and therefore care is needed when assessing
the importance of dispersion from the DFT-D data. Still,
within a group of similar complexes (hydrogen bonded
complexes here), relative dispersion contribution is informa-
tive, and the empirical dispersion correlates fairly well with
the DFT-SAPT values here. As pointed out in ref 62,
damping is in DFT-D used mainly to correct for double
counting of the interaction energy at short distances, and it
has little physical meaning. Damping is necessary, because
current density functionals seemingly cover some portion of
the correlation attraction at short distances. However, this
attraction is largely spurious as it comes in part from the
physically incorrect behavior of the exchange functional (for
more details see ref 62). In this respect, decomposing the
(supermolecular) DFT interaction energy is dubious. The
perturbative (as opposed to supermolecular) DFT-SAPT
values are much more meaningful, and they are necessary
to obtain a rigorous estimate of the dispersion contribution
to intermolecular interactions.

We have also tested whether the strength of the dispersion
interaction can be related to the contact area between the
bases, estimated as a half of the difference between the
surface of the base pair and the surfaces of the isolated bases.
The surfaces of the monomers and dimers were taken from
the Gaussian 03 solvation calculations with standard UAKS
radii of the atoms and default cavity construction algorithm.
The contact area indeed correlates with the dispersion
component of the interaction obtained by the SAPT method
with R2 ) 0.81 (intercept forced to 0) and also with the
damped dispersion from DFT-D (R2 ) 0.78). The average
surface dispersion energy is -0.52 kcal mol-1 Å-2 for SAPT
and -0.22 kcal mol-1 Å-2 for DFT-D. Although this
correlation is statistically significant, dispersion prediction
based on the contact area would be rather inaccurate. Also,
our set of complexes is fairly homogeneous, and if another
type of interaction was included, the correlation would likely
be worse.

Correction for the Higher Order Electron
Correlation Effects. In the four complexes for which we
were able to calculate the ∆CCSD(T) correction (cWS C/rG,
cWS C/rC, tWS A/rA, and tWS A/rG), the value of this term
was smaller than 1 kcal/mol (see Table 1). For purely
hydrogen bonded complexes this correction is usually very
close to zero, and the value of roughly 1 kcal/mol may be
related to the somewhat larger dispersion contribution in the
present systems (as indicated by DFT-SAPT analysis). Due
to the fact that the systems studied here interact in similar
manners, the CCSD(T) corrections of approximately the same
magnitude can also be expected for the remaining complexes
in the present set. When we take into account the expected
underestimation of the MP2/CBS limit by the aDZ/aTZ
extrapolation, which should partially cancel out the missing
CCSD(T) correction term, the value of approximately (1
kcal/mol can be viewed as a reasonable estimate of the
maximum error in present MP2/CBS interaction energies.

Comparison of Different QM Methods. Table 1 also
compares the performance of different methods used to
calculate interaction energies in vacuum. Comparisons are
made with respect to the MP2/CBS energies. For the sake

of consistency MP2/CBS energies were used as the reference
even for structures where the ∆CCSD(T) correction terms
are available.

The partly semiepirical SCS(MI)-MP2 by Distasio and
Head-Gordon72 paired with the cc-pVTZ basis set (column
5 in Table 1) compares fairly well with the MP2/CBS results
with an average signed error of 0.51 kcal/mol and a root-
mean-square deviation (rmsd) of 0.78 kcal/mol. An average
underestimation of 0.51 kcal/mol is a good result, because
the reference MP2 values likely on average overestimate the
real value, as indicated by the available ∆CCSD(T) correc-
tions. The SCS(MI)-MP2 - MP2/CBS differences cover a
range from ∼-1 kcal/mol to +2.2 kcal/mol.

The DFT-D calculations with the TPSS functional and
6-311++G(3df,3pd) (LP) basis set demonstrate the high
quality of the DFT-D relative energies (rmsd only 0.51 kcal/
mol) and also yield small average errors (-0.13 kcal/mol).
If we take into account the above-mentioned MP2 overes-
timation of the binding energies, it seems that the DFT-D
method probably also slightly overestimates the interaction
strengths, which is attributable to the well-known overesti-
mation of hydrogen bonding stabilities in DFT-D.62 Because
of its speed/accuracy ratio the DFT-D method seems to be
an excellent compromise. In addition, all these discussed
differences are so subtle that they are expected to be
insignificant in most applications. The DFT-D - MP2/CBS
differences cover a range from ∼-1.0 kcal/mol to +1.5 kcal/
mol.

The DFT-SAPT/aDZ calculations were compared with the
MP2/aDZ results rather than with the MP2/CBS for the sake
of basis set consistency. DFT-SAPT interaction energies are
on average about 1 kcal/mol smaller (in absolute value),
which is partly because MP2 overestimates dispersion and
in part because of different basis set convergence behavior
of the DFT-SAPT and MP2 methods. rmsd is rather large
here, but standard deviation, which is a better measure of
accuracy in the case of large systematic error, is quite small
(0.53 kcal/mol). Because DFT-SAPT is often considered a
more accurate method than MP2 this increases our confidence
in the MP2/CBS data as a reference. The largest difference
between DFT-SAPT and MP2/aDZ (2.24 kcal/mol) is found
for the tSS rA/rG base pair.

Many-Body Terms. In the clusters containing three or
more molecules the total interaction energy is not simply a
sum of all the pair interaction energies. The difference
between the pairwise sum and the total interaction energy -
the nonadditivity - consists of the sum of the many-body
terms. Two of our model complexes consist of three
molecules (the A-minor I and the water mediated complex)
where the 3-body terms arise. We calculated the 3-body term
at the MP2/aug-cc-pVDZ level, and it amounts to -0.37 kcal/
mol for the water mediated rU...rC pair and 0.84 kcal/mol
for the A-minor I trimer. These terms are rather small, and
it is unlikely that omitting them would affect any conclusion
derived in this article. Inclusion of many body terms would
be needed for quantitative analyses of larger clusters. This
result is entirely consistent with calculations of base trimers.77

Note that the MP2 method does not include eventual
dispersion nonadditivity.
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Inclusion of Solvent Effects. Within an aqueous environ-
ment, the electrostatic interaction loses much of its strength,
which is reflected in the positive solvation Gibbs energies
(column 8 of Table 1). Taken together with the gas phase
interaction energies the resulting stabilizations in water (the
last column of Table 1) are in line with our expectations for
hydrogen bonded complexes. The calculated free energies
of A-U and G)C base pairs are -3 and -7 kcal/mol,
respectively. It is roughly in agreement with a contribution
of -2 to -3 kcal/mol per H-bond suggested by force field
calculations;78 note, however, that these force field calcula-
tions include only the solvation effect on the electrostatic
interactions.

The corresponding experimental estimates of base pair
stability of -1 to -2 kcal/mol79-81 per base pair are smaller
in absolute value than our calculated values. The experiments,
however, also include the destabilizing contribution of the
configuration entropy including the cost of bringing the
monomers together. In addition, the experimental data are
derived for base pairs embedded within nucleic acids. It is
not straightforward to subtract the net base pair stability from
the overall free energy data. Data for H-bonded base pairs
in water are in fact not available since base stacking is
preferred over H-bonding in water; the free energy of
stacking association in water is 0 to -1 kcal/mol, and the
base pairing should thus be even less stable.82-85

Considering all these data, our calculations most likely
exaggerate stabilities of canonical base pairs in water and
also the difference in stability of A-U and G)C base pairs.
We do not know, however, how much of this exaggeration
is due to neglect of the configuration entropy changes. The
paucity and complexity of the experimental data do not allow
us to make any unambiguous conclusion.

Available theoretical data are also mutually inconsistent.
Using MD free energy simulations with the AMBER force
field, Stofer et al.86 predicted values of -4.3 and -5.8 kcal/
mol for A-T and G)C base pairs. A Langevine Dipole (LD)
study by Florian et al.87 predicted values of -0.8 and -1.8,
apparently being much closer to the range expected based
on the experimental data. The LD method was adjusted to
reproduce the available experimental values of stacking free
energies in water.

The G)C base pair is predicted to be the most stable one
among all studied base pairs by our calculations, which is
probably a correct result, taking into consideration the key
role of this base pair in RNA thermodynamics. The calcula-
tions indicate that, among the noncanonical RNA base pairs,
the most stable complexes in water are the tWS G/rC and
cWS C/rC ones. The least stable RNA base pair is the tSS
rG/rC one, when considering conventional binding only and
disregarding the trimers. rG/rA of A-minor I and tHS A/rA
amino-acceptor structures are predicted to be even less stable.
Perhaps surprisingly, the tSS rA/rG base pair, which has the
largest dispersion contribution, possesses only medium
stability upon inclusion of continuum solvent effects. As
noted above, however, we have to keep in mind that the
calculated Gibbs solvation energies are of significantly lower
accuracy than the gas phase interaction energies due to many
approximations in the continuum model calculations. Also,

the dehydration energy can be significantly different when
a chosen motif is immersed in a certain RNA environment
(the present calculations assume that both the pair and the
isolated monomers are fully hydrated). Although water is
probably a good average representation of the highly
hydrated RNA structure, local interactions can significantly
influence the stability of a given motif, both through modified
solvation exposure and through interplay with additional
interactions. Another factor, which is not included in our
calculations, is the change of the configuration entropy of
the solute (we add Gibbs solvation energies to interaction
energies). Configuration entropy is very hard to estimate and
depends critically on the local structure through flexibility.
Our stabilization energies in the water environment should
thus be viewed only as very rough estimates. We presently
do not see any straightforward way how to improve the
reliability of the RNA base pair solvation calculations or to
independently verify them.

The solvent calculations can be perhaps used to get relative
stability ranking of the RNA base pairs. However, even here
some caution is needed. As the base pairs have quite variable
shapes and thus solvent exposures, their stability evaluation
can be biased by variable sensitivity to approximations of
the solvent calculations. It is known from thermodynamics
experiments that non-WC base pairs typically destabilize
A-RNA helices; however, these effects are known to be
context-dependent. In addition, it is known that double-
helices are optimally sterically suited for canonical base pairs.
In fact, the base pairing stabilization effects may be much
more complicated than usually assumed. The stabilization
or destabilization associated with a given base pair may very
much depend on its context, on its complementarity to all
the other interactions around, including specific water and
ion binding. Thus, a given base pair may have very different
influence on stabilization depending on where is the base
pair inserted. Understanding of this “promiscuity” of mo-
lecular interactions would be a major step forward in studies
of RNA structure and folding and, in our opinion, is one of
the main challenges for computational chemistry of nucleic
acids.

Conclusions

We have carried out reference quantum chemical calculations
of base pairing energies for a representative selection of 25
diverse RNA base pairs utilizing the ribose moiety through
the 2′-OH group, including structures with amino acceptor
interactions. Such extended RNA base pairs are of primary
importance for building up the complex three-dimensional
structures of RNA molecules, which, thus far, have been
largely ignored in the quantum chemical and physical
chemistry literature. Since the RNA base pairs bring new
interactions not present in standard base pairing, we suggest
that some of our complexes should be added to the portfolio
of structures considered in parametrization of computational
methods that are designed to study RNA.

The base pairs were evaluated at the MP2 level with
extrapolation to the complete basis set limit (CBS) of atomic
orbitals. CCSD(T) correction terms were obtained for four
base pairs. The interaction energy decomposition has been
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performed using the DFT-SAPT perturbational procedure
with the aug-cc-pVDZ basis set. Many RNA base pairs have
a modestly increased role of dispersion attraction compared
to canonical base pairs. However, the effect is smaller than
one would assume based on assessment of the ratio of HF
and correlation components of the interaction energies. The
increased role of dispersion energy is nevertheless assumed
to be important for stabilization of RNA tertiary interactions.
Complexity of the interpretation of the SAPT energy
decomposition is discussed.

SCS(MI)-MP2 and DFT-D methods have exhibited very
good performance for RNA base pairs involving the ribose
2′-OH interactions as well as amino acceptor interactions.
The differences between these methods and the reference
data are nevertheless visibly larger than those achieved for
canonical base pairs, with uncertainty in the calculated
relative energies of ∼3 kcal/mol. The DFT-D method
produces results that are generally closer to the reference
data. We also roughly estimate the effect of aqueous solvent
screening on the base pairing stability using continuum
solvent approach.

The RNA base pairs are very diverse molecular interac-
tions which offer a range of structures with different shapes,
stabilities, and balance of interaction energy contributions.
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Theory-Symmetry-Adapted Intermolecular Perturbation Theory
with Density Fitting: A New Efficient Method to Study
Intermolecular Interaction Energies. J. Chem. Phys. 2005,
122, 14103.

(50) Hesselmann, A.; Jansen, G. First-Order Intermolecular Interac-
tion Energies from Kohn-Sham Orbitals. Chem. Phys. Lett.
2002, 357, 464–470.

(51) Hesselmann, A.; Jansen, G. Intermolecular Induction and
Exchange-Induction Energies from Coupled-Perturbed Kohn-
Sham Density Functional Theory. Chem. Phys. Lett. 2002,
362, 319–325.

(52) Hesselmann, A.; Jansen, G. Intermolecular Dispersion Energies
from Time-Dependent Density Functional Theory. Chem.
Phys. Lett. 2003, 367, 778–784.

Reference Quantum Chemical Calculations J. Chem. Theory Comput., Vol. 5, No. 4, 2009 1177



(53) Toczylowski, R. R.; Cybulski, S. M. An Analysis of the
Interactions between Nucleic Acid Bases: Hydrogen-Bonded
Base Pairs. J. Phys. Chem. A 2003, 107, 418–426.

(54) Hesselmann, A.; Jansen, G.; Schütz, M. Interaction Energy
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(87) Florián, J.; Šponer, J.; Warshel, A. Thermodynamic Parameters
for Stacking and Hydrogen Bonding of Nucleic Acid Bases
in Aqueous Solution: Ab Initio/Langevin Dipoles Study. J.
Phys. Chem. B 1999, 103, 884–892.

CT800547K

Reference Quantum Chemical Calculations J. Chem. Theory Comput., Vol. 5, No. 4, 2009 1179



On the Nature of Bonding in Lone Pair · · ·π-Electron
Complexes: CCSD(T)/Complete Basis Set Limit

Calculations

Jiong Ran† and Pavel Hobza*,†,‡

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech
Republic and Center for Biomolecules and Complex Molecular Systems, FlemingoVo
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Abstract: The nature of the stabilization in lone pair · · ·π-electron complexes was investigated
using the highly accurate CCSD(T) method based on the complete basis set limit, as well as
theDFT-SAPTperturabativemethod.Specifically,westudiedvariousstructuresofbenzene · · ·water,
benzene · · ·dimethylether, and 1,2,4,5-tetracyanobenzene · · ·water complexes. The lone pair · · ·π-
electron interactions between an unsubstituted aromatic ring and a water molecule are repulsive
in the whole range of vertical distances. Partial stabilization results by rotating the water molecule
by 90° (with the water and aromatic ring being localized in parallel planes) or by decreasing the
negative charge at oxygen and simultaneously increasing the polarizability of the system, which
provides stabilization even for genuine lone pair · · ·π-electron interactions. In these cases, a
substantial part of the stabilization stems from dispersion energy. Substituting an aromatic ring
by electron-withdrawing cyano groups represents the most powerful way to achieve a substantial
stabilization of genuine lone pair · · ·π-electron interactions. This stabilization is comparable to
quite strong H-bonding, originating in electrostatic and, to a slightly lesser degree, dispersion
energies.

Introduction

The world of noncovalent interactions has become much
broader in recent years, and new types of noncovalent
bonding have appeared. In addition to classical (red-shifted)
H-bonding, also improper blue-shifted H-bonding has been
described, and the family of H-bonding interactions has been
further extended by dihydrogen bonds.1 Dihydrogen bonding
(attractive interactions between two hydrogen atoms, one
bearing positive and one bearing negative charge) was first
detected in crystalline structures, and the same is true of other
interactions between halogens and electronegative elements
that also initially seemed very strange. The latter interaction

was later called halogen bonding2 and was explained as an
interaction between the positive σ-hole at the top of
negatively charged halogens and negatively charged elec-
tronegative elements. Again, from the crystalline structures,
two other very unusual interaction types have appeared
recently, namely, lone pair · · ·π and anion · · ·π interactions.
Anion · · ·π interactions were recently investigated by Kim
et al.3 In both cases, negatively charged elements are found
at the top of the aromatic system, and thus, a water · · ·benzene
complex becomes the prototype of the lone pair · · ·π interac-
tion. Lone pair · · ·π interactions have been found in different
protein crystalline structures,4-6 and despite the fact that the
exact position of the hydrogens is not known, it is expected
that lone pair · · ·π and not XsH · · ·π interactions are present.

Confirming the presence of lone pair · · ·π interactions is thus
an important task, which the analysis of crystalline structures,
however, evidently cannot achieve. On the other hand, quantum
chemical calculations could prove favorable because they not
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only provide sufficiently accurate energies and structures but
also can shed light on the nature of the respective interactions.
To investigate the nature of the bonding in lone pair · · ·π
complexes, it is necessary to determine the interaction energy
as accurately as possible. Accurate stabilization energies of
various types of noncovalent complexes, including the present
ones, can be obtained only at the CCSD(T) level using the
complete basis set (CBS) limit.7 The MP2 method, even if
performed at the CBS limit, cannot be used here, as it is known
to overestimate the dispersion energy,7 which might be critical
for the complexes under consideration. The application of other
recently introduced methods such as SCS-MP28 and its variants
including SCS (MI)-MP29 or various DFT-D10,11 approaches
is limited in this case, because their good performances are
based on parametrization toward a suitable data set of accurate
energies (e.g., ref 12), which, however, does not contain the
present stabilization motif. CCSD(T)/CBS values represent
the benchmark data with a high accuracy, expected to be higher
than 5% from the unknown exact values.1 To understand the
nature of the bonding of lone pair · · ·π interactions, we need to
know their energy components as well as their accurate
stabilization energies. These values can be determined on the
basis of perturbative SAPT13 calculations.

To explain the stabilization in lone pair · · ·π complexes,
we decided to investigate water · · ·benzene, dimethylether · · ·
benzene, and water · · ·1,2,4,5-tetracyanobenzene complexes.

Methods

The structures of water, dimethylether, benzene, and 1,2,4,5-
tetracyanobenzene were optimized without any constraints
at the MP2 level using the cc-pVTZ basis set. This level
provides accurate geometries of isolated systems.14

To understand the nature of lone pair · · ·π interactions,
we investigated different arrangements of benzene · · ·water,
benzene · · ·dimethylether, and 1,2,4,5-tetracyanobenzene · · ·water
complexes (cf. Figure 1). In structures 1, 4, and 5, the
π-aromatic rings of benzene and 1,2,4,5-tetracyanobenzene
interact exclusively with the lone electron pairs of water or
dimethylether, whereas in structures 3 and 7, the dominant
stabilization feature is the O-H · · ·π H-bond. In the cases of
structures 2 and 6, the π-aromatic rings interact with both the
lone electron pairs and protons of water. The vertical distance
(from O to the center of the aromatic ring) in all of the
complexes investigated was optimized by the step-by-step
method using the CCSD(T)/CBS energies. Gradient optimiza-
tion at this level is impractical, and if based on another
computational method, it can yield completely misleading
structures.

The CCSD(T)/CBS binding energies were determined as
a sum of the MP2/CBS energies and a CCSD(T) correction
term.15 This method takes advantage of the fact that the
CCSD(T) and MP2 methods exhibit approximately the same
basis set dependence.16 The extrapolations based on the aug-
cc-pVDZ and aug-cc-pVTZ basis sets were performed using
the method of Halkier et al.17 Because of the different
dependences on the basis set, the Hartree-Fock energies and
MP2 correlation energies were extrapolated separately. The
CCSD(T) correction term [∆CCSD(T)], defined as

was then added to the MP2/CBS interaction energy. The
correction term is generally obtained with a relatively small
or medium-sized basis set, and in this case, we used the aug-
cc-pVDZ basis set. One of the reasons for the success of
this technique is the fact that the ∆CCSD(T) correction term
converges much more quickly, as a function of the basis set
size, than the CCSD(T) or MP2 interaction energies
themselves.

All interaction energies were corrected for the basis set
superposition error using the counterpoise method of Boys
and Bernardi,18 and the frozen-core approximation was
systematically used throughout this work.

The CCSD(T)/CBS energies represent benchmark data but
do not provide any information about the energy components
that can be used to analyze the nature of the stabilization.
Therefore, we also used the DFT-SAPT calculations19,20

performed with the aug-cc-pVDZ basis set. This method
allows for the separation of interaction energies into physi-
cally well-defined components, such as those arising from
the electrostatic, induction, dispersion, and exchange terms.
The DFT-SAPT interaction energy (Eint) is given by the
equation

Figure 1. Various structures of the benzene · · ·water (1-3),
benzene · · ·dimethylether (4), and 1,2,4,5-tetracyanoben-
zene · · ·water (5-7) complexes.

∆CCSD(T) ) (∆ECCSD(T) - ∆EMP2)|basis (1)
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where the individual terms describe the electrostatic, exchange-
repulsion, induction, exchange-induction, dispersion, and
exchange-dispersion terms. The last term is a Hartree-Fock
correction for higher-order contributions to the interaction
energy. Throughout the study, the exchange-induction and
exchange-dispersion terms will be included in the parent
induction and dispersion terms. The DFT-SAPT interaction
energies calculated with the aug-cc-pVDZ basis sets are
known to be slightly underestimated with respect to mainly
the dispersion energy.19 The SAPT/aug-cc-pVTZ energy was
estimated by enlarging the dispersion energy by 15% while
keeping the other terms at the aug-cc-pVDZ values. Finally,
Halkier et al.’s extrapolation scheme17 was used to extrapo-
late the DFT-SAPT CBS energy from calculated aug-cc-
pVDY and estimated aug-cc-pVTY values. All calculations
were performed with the Gaussian 0321 and MOLPRO22

programs.

Results and Discussion

Table 1 lists the interaction energies of structures 2-6 (cf.
Figure 1) at their minimum distances using various methods.
Structures 1 and 7 are not included because no energy
minima were detected in their potential energy curves. Table
2 lists the CCSD(T)/CBS interaction energies for all struc-
tures for selected distances from 2.2 to 15 Å. Table 3 reports
the DFT-SAPT energies for structures 2-6 (structures 1 and
7 are omitted for the same reason as in Table 1). Tables S1
and S2 in the Supporting Information include all interaction
energies determined by various methods for all structures
considered and the Cartesian coordinates of complexes 1-7
at the MP2/cc-pVTZ level, respectively.

Overall, the CCSD(T)/CBS energies are consistent with
the DFT-SAPT/CBS results. The energy differences are less
than 5%. The only exception is structure 4, where the energy
difference is higher (17%) and can be explained by the much
higher positive CCSD(T) correction term.

Benzene · · ·Water Complexes. First, the genuine lone
pair · · ·π interactions (structure 1) in the title complex were
investigated. Figure 2 and Tables 2 and S1 (Supporting
Information) show the dependence of the CCSD(T)/CBS and
various MP2 interaction energies on the vertical distance.
Evidently, neither of the curves exhibits an energy minimum
(at negative energies), and only repulsion results. As the
distance increases, the interaction energy becomes less
repulsive, and with the exception of long distances, the
CCSD(T) correction term is also repulsive. These results tell
us clearly that there is no stabilization between the lone
electron pairs and the aromatic ring. We do not know how
to explain the existence of a small repulsion peak around
4.0-4.5 Å. It might be due to the extrapolation procedure
or to the interaction of higher multipoles.

The only way to gain some stabilization in this complex
is to change the orientation of the lone pair donor, specifically
for which structures 2 and 3 were studied. In addition to the
lone pair · · ·π interaction, structure 2 is also expected to be

stabilized by O-H · · ·π H-bonding, which is of electrostatic
origin. The respective energy curve (cf. Figure 2) exhibits a
non-negligible minimum of 0.64 kcal/mol at a vertical
separation of 3.4 Å. The MP2/CBS interaction energy is
stabilizing, and the CCSD(T) correction term is small and
repulsive. Note the significant basis set dependence of the
MP2 interaction energy. Analyzing the energy components
(cf. Table 3), we found that stabilization in this structure
originates predominantly in dispersion energy, with the
induction term being less important. Here, the slightly
repulsive electrostatic term should be noted. All of these data
confirm the fact that the stabilization of this lone pair · · ·π
interaction originates from dispersion and only to a lesser
degree from induction and charge transfer, which is included
in the induction energy term. Repulsive electrostatic energy
showed no evidence of H-bonding.

Further rotation of the water molecule leads to a H-bonded
structure (structure 3) that is characterized by a large
stabilization of more than 3 kcal/mol. The energy minimum
is localized at 3.3 Å, and also here, the MP2 interaction
energy is stabilizing, and the CCSD(T) correction term is
repulsive. This structure contains two O-H · · ·π H-bonds,
and there is no evidence of a lone pair · · ·π interaction. These
findings are confirmed by the DFT-SAPT calculations. Table
3 shows a large attractive electrostatic term, a rather small
induction term, and a surprisingly large dispersion energy.

Eint ) E(1)
el + E(1)

ex + E(2)
ind + E(2)

ex-ind + E(2)
disp +

E(2)
ex-disp + δ(HF) (2)

Table 1. Calculated Intermolecular Distances (R in Å) and
Interaction Energies (kcal/mol) for the Energy Minima of
the Different Lone Pair · · ·π Complexesa

complex R
MP2/a
VDZ

MP2/a
VTZ MP2/CBS

∆CCSD
(T)

CCSD
(T)/CBS

2 3.4 -0.375 -0.601 -0.696 0.060 -0.636
3 3.3 -2.837 -3.218 -3.378 0.129 -3.249
4 3.2 -0.873 -1.086 -1.176 0.354 -0.822
5 3.0 -4.853 -5.015 -5.083 0.171 -4.912
6 3.3 -2.453 -2.585 -2.641 0.009 -2.632

a Compare Figure 1; structures 1 and 7 have no energy minima.

Table 2. Calculated Interaction Energies (kcal/mol) at
Various Distances (R in Å) for Various Structures of the
Lone Pair · · ·π Complexes at the CCSD(T)/CBS Level

complexes

R 1a 2 3 4 5 6 7

2.20 16.400 21.386 36.706 15.472 7.693 18.064 43.173
2.50 5.729 6.756 9.833 3.633 -1.755 3.846 15.691
2.80 1.829 0.791 -0.053 0.073 -4.574 -1.244 5.029
2.90 1.237 0.542 -1.486 -0.400 -4.883 -1.960 3.334
3.00 0.845 0.010 -2.392 -0.667 -4.912 -2.271 2.174
3.10 0.591 -0.320 -2.911 -0.791 -4.866 -2.514 1.402
3.20 0.436 -0.512 -3.171 -0.822 -4.696 -2.618 0.914
3.30 0.346 -0.606 -3.249 -0.794 -4.558 -2.632 0.509
3.40 0.300 -0.636 -3.208 -0.729 -4.307 -2.577 0.370
3.50 0.283 -0.626 -3.087 -0.645 -4.121 -2.483 0.317
3.60 0.284 -0.587 -2.924 -0.551 -3.888 -2.364 0.242
3.70 0.296 -0.525 -2.732 -0.456 -3.662 -2.228 0.278
3.80 0.312 -0.477 -2.586 -0.367 -3.440 -2.089 0.294
4.00 0.343 -0.355 -2.142 -0.207 -3.031 -1.814 0.303
4.50 0.371 -0.136 -1.390 0.043 -2.215 -1.243 0.395
5.00 0.337 0.010 -0.909 0.131 -1.609 -0.862 0.500
6.00 0.236 0.029 -0.430 0.140 -0.969 -0.509 0.333
8.00 0.103 0.020 -0.138 0.092 -0.417 -0.179 0.096

10.00 0.048 0.008 -0.058 0.036 -0.226 -0.111 -0.081
15.00 0.011 0.001 -0.012 0.008 -0.057 -0.154 -0.147

a Compare Figure 1.
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The latter term is almost as attractive as the electrostatic
energy, and if we consider the estimated aug-cc-pVTZ value,
it is even larger. It must be mentioned that this structure is
different from the standard H-bonded structure, where just
one hydrogen interacts with the aromatic ring. Consequently,
the distance between the centers of mass of the two
subsystems is smaller in the present structure, which makes
the dispersion energy larger. Nevertheless, in all H-bonded
complexes of the aromatic system with water, the dispersion
energy should be of comparable importance to the electro-
static energy.

Benzene · · ·Dimethylether Complex. We have seen that
the approach of water and benzene (structure 1) is connected
with repulsion only. By substituting hydrogens in water with
methyl groups (passing from water to dimethylether), the
situation is changed. Analyzing the charge at oxygen, we
found that it is less negative in dimethylether than in water,
which indicates that the electrostatic repulsion term might
be smaller in the dimethylether · · ·benzene complex than in
the water · · ·benzene complex. Further, the polarizability of
dimethylether is higher than that of water, which implies a
larger dispersion energy stabilization in the dimethylether · · ·
benzene complex. Tables 1, 2, and S1 (Supporting Informa-
tion) and Figure 2 suggest the existence of a rather deep

minimum (0.82 kcal/mol) localized at 3.2 Å. In this case,
the MP2 interaction energy is attractive, and the CCSD(T)
correction term repulsive. In contrast to the previous cases,
the latter term is considerably larger. The DFT-SAPT
analysis (Table 3) undoubtedly clarifies the origin of
stabilization. As in the previous cases, it is the dispersion
energy that is almost completely responsible for the stabiliza-
tion of the complex. The induction energy, which includes
charge transfer, is more than 1 order of magnitude smaller
than the dispersion energy. The negligible role of charge
transfer is also reflected in the rather small value of the δ(HF)
term (see Table 3). In agreement with the above-mentioned
facts, the electrostatic energy is repulsive.

We can summarize that, when polarizability of the lone
pair acceptor is increased and its negative partial charge on
the interacting site is decreased, the lone pair · · ·π interactions
become attractive. Evidently, upon larger substitution, the
attraction can be substantially larger. The attraction origi-
nates, however, unambiguously from the London dispersion
energy.

1,2,4,5-Tetracyanobenzene · · ·Water Complexes. Upon
substitution of the hydrogens at positions 1, 2, 4, and 5 of
benzene with electron-withdrawing cyano groups, the π-elec-
tron clouds above the ring become less negative. The elec-

Table 3. Calculateda DFT-SAPT Interaction Energies (kcal/mol) for the Lone Pair · · ·π Complexes at Each Minimum
Distance

structureb E(1)
el E(1)

ex E(1) E(2)
ind E(2)

disp
c E(2) c δ(HF) E (kcal/mol)c,d

2 0.033 1.758 1.791 -0.229 -1.753 (-2.015) -1.981 (-2.244) -0.046 -0.237 (-0.499, -0.609)
3 -3.080 3.980 0.900 -0.507 -2.868 (-3.298) -3.375 (-3.805) -0.304 -2.779 (-3.209, -3.390)
4 0.637 2.727 3.364 -0.275 -3.277 (-3.768) -3.552 (-4.043) -0.113 -0.301 (-0.792, -0.999)
5 -4.417 3.541 -0.876 -0.566 -2.883 (-3.315) -3.449 (-3.881) -0.195 -4.520 (-4.952, -5.134)
6 -1.656 2.152 0.496 -0.365 -2.218 (-2.551) -2.583 (-2.916) -0.064 -2.151 (-2.484, -2.624)

a DFT-SAPT (PBE0AC/aug-cc-pVDZ basis set). b Compare Figure 1; structures 1 and 7 have no energy minima. c Values in parentheses
were estimated using the aug-cc-pVTZ basis set. d Second values in parentheses were extrapolated from energies calculated using the
aug-cc-pVDZ basis set and energies estimated using the aug-cc-pVTZ basis set.

Figure 2. Calculated potential energy plot for the various lone pair · · ·π complexes (see Figure 1 for compound numbers) at the
CCSD(T)/CBS level. The X and Y axes show distance (Å) and the interaction energy (kcal/mol), respectively.

Bonding in Lone Pair · · ·π-Electron Complexes J. Chem. Theory Comput., Vol. 5, No. 4, 2009 1183



trostatic potentials of benzene and 1,2,4,5-tetracyanobenzene
are entirely different (not shown). Whereas the former
contains a significant negative region above the ring, the latter
does not have any negative region but has only a positive
one. Consequently, interactions with proton donors (H-
bonding) should be suppressed, whereas interactions with
proton acceptors (electron donors) should be magnified. In
both cases, we considered the stacking approach, which was
fully confirmed in Tables 1, 2, and S1 (Supporting Informa-
tion) and Figure 2. Structure 5 exhibits a very deep energy
minimum of about 5 kcal/mol at a rather short distance of
3.0 Å. Notice the relatively large (positive) value of the
CCSD(T) correction term. Rotating the water molecule by
180°, i.e., when water approaches benzene by its hydrogens
(structure 7), the situation is reversed, and practically no
minimum in the potential energy curve is detected. We do
not know how to explain the small attraction beyond 10 Å.
This might be due to the extrapolation method used or to
interactions of higher multipoles. The approach of water and
1,2,4,5-tetracyanobenzene localized in parallel planes (struc-
ture 6) is characterized by a relatively deep energy minimum
of 2.63 kcal/mol at a rather large vertical separation of 3.3
Å. The DFT-SAPT analysis shows a very large attractive
electrostatic energy for structure 5. This energy is consider-
ably less attractive for structure 6. Induction energy is largest
for structure 5, and the same is true for dispersion energy.
The largest values of dispersion and induction energies for
structure 5 are certainly also related to its very short vertical
distance (3.0 and 3.3 Å in structures 5 and 6, respectively).
The electrostatic and dispersion energies in complex 5 are
similar, which resembles the situation in complex 3 (see
above).

Substituting benzene with electron-withdrawing groups
evidently represents the most powerful way to stabilize the
lone pair · · ·π-electron complexes. The respective stabiliza-
tion can be substantial, even comparable to a rather strong
H-bonding.

Conclusions

(i) The lone pair · · ·π-electron interactions between an
unsubstituted aromatic ring and a water molecule are
repulsive for the whole range of vertical distances. Partial
stabilization results when the water molecule is rotated by
90° (with the water and the aromatic ring located in parallel
planes). In this structural arrangement, there is no H-bonding,
and the dominant stabilization comes from dispersion energy.

(ii) Decreasing the negative charge at oxygen and increas-
ing the polarizability of the system provides stabilization even
for genuine lone pair · · ·π electron interactions. Also in this
case, the substantial part of the stabilization stems from
dispersion energy.

(iii) Substituting an aromatic ring by electron-withdrawing
groups represents the most powerful way to achieve a
substantial stabilization of genuine lone pair · · ·π-electron
interactions. This stabilization, which is comparable to a
rather strong H-bonding, originates in electrostatic and, to a
slightly lesser degree, dispersion energy.
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(11) Jurečka, P.; Černý, J.; Hobza, P.; Salahub, D. J. Comput.
Chem. 2007, 28, 555.
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Abstract: A computational study of the complexes formed by tetrafluoroethylene, C2F4, with
anions has been carried out by means of density functional theory (DFT) and second-order
Möller-Plesset (MP2) computational methods, up to MP2/aug-cc-pVTZ level. In addition, the
possibility of cooperativity in the interaction of anions and hydrogen-bond donors (FH, ClH, and
H2O) when interacting with different faces of the C2F4 molecule has been explored. Electron
density of the complexes has been analyzed by means of atoms in molecules (AIM) methodology,
while natural bond orbital (NBO) methodology has been used to characterize the orbital
interaction. In addition, natural energy decomposition analysis (NEDA) has been applied to
analyze the source of the interaction. The energetic results indicate that C2F4 is a weaker anion
receptor than C6F6, but in combination with the anions, it became a stronger hydrogen acceptor
than C2H4. Cooperativity effects are observed in YH ·C2F4 ·X- clusters. In C2F4 ·X- complexes
the dominant attractive terms are the electrostatic and polarization ones, while in YH ·C2F4 ·X-

complexes the charge transfer increases significantly, becoming the most important term for
most of the FH and ClH complexes studied here.

Introduction

Noncovalent interactions play a crucial role in many areas
of modern chemistry. They are important in deciding the
conformation of many molecules.1 They are also relevant
in chemical reactions, molecular recognition, and regulation
of biochemical processes.2 These chemical processes are
accomplished with specificity and efficiency by means of
intricate combinations of weak intermolecular interactions
of various sorts. Noncovalent interactions such as hydrogen
bonding, anion-π, cation-π, and π-π interactions, and
other weak forces govern the organization of multicomponent

supramolecular assemblies.3 A deep understanding of these
interactions is of outstanding importance for the rationaliza-
tion of effects observed in several fields, such as biochemistry
and materials science. A quantitative description of these
interactions can be performed by taking advantage of
quantum chemical calculations on small model systems.4 In
complex biological systems and in the solid state a multitude
of these noncovalent interactions may operate simulta-
neously, giving rise to interesting cooperativity effects. For
instance, it is well-known that hydrogen bonding shows
highly cooperative behavior. The cumulative strength of
networks of hydrogen bonds is larger than the sum of the
individual bond strengths when they work simultaneously.5

Similar observations have been made for the interplay
between stacking and hydrogen-bonding interactions. This

* Corresponding authors. (I.A.) E-mail: ibon@iqm.csic.es; fax:
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combination is of great importance for the structural control
in oligonucleotides.6 In addition, it has been recently
demonstrated that there is interplay between ion-π and either
π-π or hydrogen-bonding interactions, which can lead to
strong cooperativity effects.7

In recent years, a number of reports have described an
increasing variety of groups that can be involved in
hydrogen-bond (HB) interactions.8 Among them, π-systems
are able to act as hydrogen-bonding acceptors. In addition
to pioneering works dealing with the complexation properties
of benzene and hydrogen fluoride, water, and ammonia,9

several more recent studies have shed light on this topic from
both theoretical and experimental views.10 Simultaneously,
a large set of articles has shown the possibility of favorable
interactions between electron-rich groups and π-deficient
systems.11 Among them, anion-π interactions12 have at-
tracted considerable attention in the last 5 years.13 There is
a great deal of experimental14 and theoretical15 work that
shows that anion-π interactions play a prominent role in
several areas of chemistry, such as molecular recognition16

and transmembrane anion transport.17 Anion coordination
is an important and challenging aspect of contemporary
supramolecular chemistry. Recent investigations provided
experimental evidence for the usefulness of anion-π interac-
tion in a structurally directing role.18

Besides hydrogen bonds, the interactions between anions
and π-systems are among the strongest noncovalent interac-
tions in absolute terms. Obviously this depends on just how
electron-deficient the π-system is. In the present paper we
examine how these two interactions influence each other,
using several criteria, that is, energetic and geometric
features, an atoms-in-molecules (AIM) analysis, and a natural
bond orbital (NBO) study. We describe the possible forma-
tion of anion-π complexes with a simple π-deficient system,
C2F4. In addition, the interesting possibility of formation of
ternary complexes produced by the combination of several
anions, C2F4, and protic hydrogen-bonding donors has been
explored.

Methods

The geometry of the systems has been initially optimized at
the MP2/6-311++G(d,p)19,20 computational level. Frequency
calculations at this computational level have been performed
to confirm that the structures obtained correspond to energetic
minima. Further optimization has been performed with the
M05-2x/6-311++G(d,p)21 and MP2/aug-cc-pVTZ,22 com-
putational methods. All these calculations have been carried
out within the Gaussian-03 package.23

The interaction energy has been calculated as the differ-
ence between the total energy of the complexes minus the
sum of the energies of the isolated monomers. The basis sets
used in this work are of sufficient quality that basis set
superposition errors (BSSEs) should be rather small.24

Moreover, it has been shown that uncorrected MP2/aug-cc-
pVTZ binding energies lie between corrected and uncorrected
MP2/aug-cc-pVQZ energies.25 BSSE corrections may not
always improve binding energies of weakly bonded com-
plexes, since in the counterpoise method26 a monomer may

utilize the valence and core functions of its partner, which
are not available to the monomer in the complex.

Electron density topology and atomic properties have been
evaluated within the AIM methodology27 with AIMPAC,28

Morphy98,29 and AIMAll programs30 using the M05-2x/6-
311++G(d,p) wave function. Calculation of the atomic
properties has been carried out by integration within the
atomic basins by use of the default parameters except in those
cases where the integrated Laplacian was larger than 1 ×
10-3, where more tight conditions have been used. Previous
reports have shown small errors in energy and charge for
systems where all values of the integrated Laplacian were
smaller than the mentioned value.31

Orbital interactions have been analyzed within the NBO32

framework and the NBO 5.0G program33 at the M05-2x/6-
311++G(d,p) computational level. This method allows
analyses of the interaction between filled and empty orbitals
and associates them with charge-transfer processes. In
addition, natural energy decomposition analysis (NEDA)34,35

has been carried out to obtain insights into the source of the
interactions. These calculations have been performed within
the Gamess program.36

Results and Discussion

C2F4 ·Anion Complexes. Geometrical characteristics of
the obtained minimum-energy complexes are shown in
Figure 1 and Table 1. For other anions, such as F- and OH-,
a spontaneous attack of these systems on the C2F4 molecules
is obtained with formation of covalent bond and will not be
considered here. In general, the interacting atom of the
anionic system is closer to one of the carbon atoms of C2F4

than the other. However, in the complexes with Br-, NNN-,
HCO2

-, and NO2
-, the interaction with the two carbon atoms

of C2F4 is the same, presenting C2V symmetry in the first
three cases and Cs symmetry in the last one. The distances
obtained are very similar for the two computational methods
used here; the longest distance is for the C2F4 ·Br- complex
(3.34 Å at MP2/aug-cc-pVTZ computational level) and the
shortest is that for C2F4 ·O2

- (2.50 Å), followed by those
of the C2F4 ·NCO, C2F4 ·HCO2

-, and C2F4 ·NO2
- complexes

(2.71, 2.77, and 2.73 Å, respectively).
Interaction energies have been gathered in Table 2. The

values range from -62.6 kJ mol-1 for the C2F4 ·O2
- complex

to -32.4 kJ mol-1 for the C2F4 ·CN- one obtained at the
MP2/aug-cc-pVTZ computational level. The interaction

Figure 1. Optimized geometry of C2F4 ·Cl- and C2F4 ·NO2
-

complexes at the MP2/6-311++G(d,p) computational level.
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energies are smaller than those reported for complexes of
the same anions with hexafluorobenzene12b [for instance,
interaction energies of C6F6 ·Cl- and C6F6 ·CN- complexes
at MP2/6-311++G(d,p) computational level are -51.0 and
-52.2 kJ mol-1, respectively] and are similar to those
complexes with triazine.12a Thus, it can be considered that
the C2F4 molecule is a weak anion acceptor. The interaction
energies computed at the M05-2x/6-311++G** level of
theory are in good agreement with those computed at the
MP2/aug-cc-pVTZ level. The largest differences are observed
in the strongest complex (8.32 kJ mol-1), C2F4 ·O2

-, followed
by C2F4 ·Br- (4.53 kJ mol-1) and C2F4 ·NNN- (4.52 kJ
mol-1).

Topological analysis of the electron density shows three
different patterns (Figure 2): (i) For those cases where one
of the atoms of the anion is closer to C1 than C2, a unique
bond critical point (bcp) is found between the anion and C1,
with the exception of the C2F4 ·OCN- complex. (ii) For
C2F4 ·Br-, a bifurcated bond path is found connecting the
bromine atom to the center of the CC bond, similar to the
one found in the hydrogen-bonded C2H4 ·HF complex.37 (iii)
For C2F4 ·HCO2

-, C2F4 ·NO2
-, C2F4 ·OCN-, and C2F4 ·O2

-,
two bond critical points between the C1 and C2 atoms and
the anions are found. The bcp’s present small values of the
electron density, F, between 0.029 and 0.010 au and small
and positive values of the Laplacian, ∇ 2F, between 0.083
and 0.029 au, which corresponds to a closed-shell interaction

similar to those found in other weak interactions such as
hydrogen bonds.38

A summary of the calculated properties obtained by
integration within the atomic basins has been gathered in
Table 3. A charge transfer from the anion to the C2F4 is
observed, up to 0.138 e for the C2F4 ·O2

- complex. A
representation of the electron shift (Figure 3) shows that the
charge gained by the C2F4 molecule is concentrated in
the face opposite the position of the anion, increasing the
nucleophilic character of the C2F4 molecule in this region.

The calculated energy of the anions within the complex
with AIM methodology indicates an energy destabilization
for all the anions except Cl-, Br-, NO2

-, and O2
-. In closely

related systems, a linear relationship has been observed
between these two parameters but in the present case, the
diverse nature of the anions prevents observation of a similar
relationship.39

NBO analysis shows an interaction of the lone pair of the
anion with the antibonding C-C orbital (Table 4) with the
corresponding charge transfer between them. The stabiliza-
tion provided for this interaction ranges from 2.1 kJ mol-1

for the C2F4 ·Br- complex to 19.4 kJ mol-1 in the case of
the two interactions obtained for the C2F4 ·HCO2

- cluster.
Natural energy decomposition analysis (NEDA) is a

method for partitioning molecular interaction energies in-
cluding charge transfer (CT), electrostatic (ES), polarization
(POL), exchange (XC), and core repulsion contributions
(DEF). The charge transfer term is based on the interaction
of filled orbitals, donor, with empty ones, acceptor, of the
species involved. For the complexes studied here, the
electrostatic and polarization terms are the most important
ones in all cases. For the complexes where a nitrogen atom
is directly interacting with the C2F4 molecule (C2F4 ·NC-,
C2F4 ·NNN-, and C2F4 ·NCO-), the polarization term is the
dominant one, while in those cases where a carbon or a
halogen is interacting with C2F4, the electrostatic term is the
largest one. In the complexes where oxygen is involved in
the interaction, the electrostatic term is the dominant one in
the three cases where a double interaction is observed
(C2F4 ·HCO2

-, C2F4 ·NO2
-, and C2F4 ·O2

-) while the polar-
ization term is more important in the C2F4 ·OCN-case. In
addition, the charge transfer and exchange terms have large
values. In fact, several complexes can each contribute up to
20% of the total stabilization energy.

Table 1. Interatomic Distances between the Closest Atom of the Anion and the Two Carbon Atoms of C2F4
a

MP2/6-311++G(d,p) M05-2x/6-311++G(d,p) MP2/aug-cc-pvtz

complex X-C1 X-C2 X-C1 X-C2 X-C1 X-C2

C2F4 ·Cl- 3.118 3.295 3.130 3.336 3.118 3.294
C2F4 ·Br- 3.415 3.415 3.429 3.429 3.340 3.340
C2F4 ·CN- b 3.011 3.381 2.912 3.395 2.921 3.357
C2F4 ·NC- b 2.851 3.124 2.707 3.203 2.804 3.098
C2F4 ·NNN- 2.847 2.847 2.873 2.873 2.824 2.824
C2F4 ·NO2

- 2.774 2.774 2.733 2.733 2.732 2.732
C2F4 ·HCO2

- 2.779 2.779 2.726 2.726 2.772 2.772
C2F4 ·CCH- 2.988 3.124 2.845 3.175 2.884 3.103
C2F4 ·OCN- b,c 2.875 3.046 2.838 3.043 2.856 3.012
C2F4 ·NCO- b 2.774 3.154 2.684 3.187 2.709 3.152
C2F4 ·O2

- 2.481 2.481 2.524 2.524 2.497 2.497

a All distances are given in angstroms. b The first atom after C2F4 indicates the one pointing toward this molecule. c The oxygen is closer
to C1, while the nitrogen is closer to C2.

Table 2. Interaction Energies of Calculated Complexes

Ei (kJ mol -1)

complex
MP2/

6-311++G(d,p)
M05-2x/

6-311++G(d,p)
MP2/

aug-cc-pvtz

C2F4 ·Cl- -39.01 -35.92 -35.16
C2F4 ·Br- -34.76 -30.65 -34.18
C2F4 ·CN- a -31.34 -32.71 -32.42
C2F4 ·NC- a -36.00 -36.05 -35.69
C2F4 ·NNN- -46.02 -40.82 -45.34
C2F4 ·NO2

- -43.77 -47.44 -42.93
C2F4 ·HCO2

- -48.49 -50.90 -46.76
C2F4 ·CCH- -40.99 -39.04 -39.55
C2F4 ·OCN- a -40.39 -37.17 -38.93
C2F4 ·NCO- a -36.74 -37.86 -37.33
C2F4 ·O2

- -62.37 -70.87 -62.55

a The first atom after C2F4 indicates the one pointing toward this
molecule.
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Anion ·C2F4 ·HY Complexes. The isolated C2F4 system
is not able to form a stable complex with hydrogen-bond
donors, such as FH, ClH, and H2O, while interacting with
the π-cloud of the former. However, the presence of electron
donors in one face of the C2F4 molecule has been shown to
allow its interaction with electron-deficient groups acting as
hydrogen-bond acceptor.40 In this section the cluster formed
by an anion interacting with C2F4 on one face and a
hydrogen-bond donor on the opposite will be discussed.

Interactions between FH and all the complexes studied in
the previous section have been considered, while only four
cases have been chosen for the complexes with ClH and H2O.
In the case of the FH ·C2F4 ·CCH- system, the CCH- and
O2

- anions spontaneously tend to form a covalent bond with
one of the carbon atoms of the C2F4 molecule. FH ·C2F4 ·CN-

and FH ·C2F4 ·NC- became the same, being better described
as the latter one (Figure 4). In the rest of the cases, stable
clusters are obtained. The same symmetries obtained for
the corresponding C2F4 ·X- complexes are observed for FH ·
C2F4 ·X- and ClH ·C2F4 ·X-, except for the FH ·C2F4 ·Br-

case, which now adopts Cs symmetry. The complexes studied
with H2O adopt Cs symmetry in all cases.

The intermolecular distances are gathered in Table 5. The
X · · ·C1 distances obtained in these clusters are in all the
cases shorter than the corresponding ones of the C2F4 ·X-

complexes. For a given cation, in general, the longest distance
is obtained in the complexes with H2O. Of the four anions
considered for all the hydrogen bond donors, two of the
complexes present the shortest distance with ClH and another
two with FH at MP2/aug-cc-pVTZ computational level.
These results indicate that another effect in addition to the
expected amount of positive charge of the interacting
hydrogen at the hydrogen bond donors (FH > ClH >H2O),
can be important for the final geometry of the complex. The
individual larger difference in the X · · ·C1 distance between
the C2F4 ·X- complexes and the corresponding YH ·C2F4 ·X-

ones is obtained in the ClH ·C2F4 ·Cl-case where the differ-
ence at the MP2/aug-cc-pVTZ computational level is 0.24
Å.

With respect to FH and ClH molecules acting as hydrogen-
bond donors, in those cases where they are not symmetrically
oriented with respect to C1 and C2, they tend to be closer
to C2 than to C1, except in the FH ·C2F4 ·OCN- complex.
In any case, the difference between these distances is always
smaller than 0.22 Å. Intermolecular distances obtained for
the FH complexes (between 2.11 and 2.33 Å) are in general
shorter than those obtained for the FH ·C2H4 complex
calculated at the MP2/6-311++G(d,p) computational level
(FH · · ·C1/C2 distance of 2.30 Å).37 In complexes with H2O,
in general, the interacting hydrogen is closer to C1 than C2
with the exception of the H2O ·C2F4 ·NC- complex, probably

Figure 2. Electron density maps of C2F4 ·Cl-, C2F4 ·Br-, and C2F4 ·HCO2
- complexes. The outer contour line corresponds to

0.001 au and the next ones correspond to values increasing according to the pattern 2 × 10n, 4 × 10n, and 8 × 10n, where n
varies from -3 to 2. (9) Bond critical points (bcp); (2) ring critical points. Lines connecting the atoms correspond to bond paths.
Atoms in the represented plane are shown in black, and those out of the plane are in white.

Table 3. Properties of Intermolecular Bond Critical Points
and Variation of Integrated Charge and Energy of Anionsa

F (au) ∇ 2F (au)
charge

transfer (e)
energy variation

(kJ mol-1)

C2F4 ·Cl- 0.013 0.038 0.057 -109.8
C2F4 ·Br- 0.010 0.029 0.052 -1261.6
C2F4 ·CN- 0.015 0.038 0.060 94.2
C2F4 ·NC- 0.017 0.056 0.043 86.9
C2F4 ·NNN- b 0.014 0.040 0.074 77.0
C2F4 ·NO2

- b 0.016 0.050 0.051 -62.9
C2F4 ·HCO2

- b 0.016 0.050 0.054 51.3
C2F4 ·CCH- 0.016 0.040 0.076 154.8
C2F4 ·OCN- 0.013c 0.042 0.047 95.6
C2F4 ·OCN- 0.012d 0.039
C2F4 ·NCO- 0.018 0.059 0.043 97.7
C2F4 ·O2

- b 0.029 0.083 0.138 -176.3

a Obtained by use of the M05-2x/6-311++G(d,p) wavefunction.
b Two identical bcp’s are found in these complexes. c Values of
O · · ·C interaction. d Values of N · · ·C interaction.

Figure 3. Electron density difference maps of C2F4 ·Br- and
C2F4 ·HCO2

- complexes. Blue and yellow isosurfaces repre-
sent gain and loss of electron density upon complex formation,
relative to the isolated subunits. Contours shown are (0.0002
e/au3 calculated at the M05-2x/6-311++G(d,p) level.
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due to secondary interactions of the additional hydrogen of
this molecule with the fluorine atoms of C2F4.

Calculated interaction energies of the cluster (Table 6)
range between -54.5 kJ mol-1 for the weakest complex,
H2O ·C2F4 ·Br-, and -80.3 kJ/mol for the strongest one,
FH ·C2F4 ·HCO2

-, at the MP2/aug-cc-pVTZ computational
level. For a given cation, the strongest complex is the one
formed with FH, followed by ClH, being andthose obtained
with H2O are the weakest ones. This order follows the
expected charge of hydrogen atoms involved in the interac-
tion (FH > ClH > H2O). In general, a similar stabilization
order to that obtained for the C2F4 ·X- complexes is obtained
here, showing square correlation coefficients with the data
reported in Table 2 of 0.95, 0.995, and 0.997 for FH, ClH,
and H2O complexes obtained at the MP2/aug-cc-pVTZ
computational level.

In order to evaluate the possible existence of cooperativity
in these complexes, the attractive interaction between FH
and the anions in the disposition of the cluster has been
evaluated. Thus, the cooperativity has been calculated by
use of eq 1:

where Ei(YH ·C2F4 ·X-) and Ei(C2F4 ·X-) correspond to
interaction energies of the corresponding minima structures,

which are gathered in Tables 6 and 2, respectively.
Ei(YH ·X-) is the attractive interaction of these two mol-
ecules as they stand in the YH ·C2F4 ·X- cluster. As indicated
previously, the YH ·C2F4 complex where YH points toward
the π-cloud of C2F4 system is not attractive, and thus it has
not been considered to calculate the cooperativity. The values
found for this parameter are always negative, as indicative
of true cooperativity. The cooperativity values obtained are
much larger at the MP2/aug-cc-pVTZ computational level
(between -15.2 and -5.4 kJ mol-1) than those obtained with
the 6-311++G(d,p) basis set at MP2 or M05-2x levels
(between -9.6 and -3.0 kJ mol-1). These results are due to
a slightly larger interaction energy obtained at the MP2/aug-
cc-pVTZ computational level in the trimers and a smaller
stabilization in the YH ·X- pair that favor, in both, cases
larger cooperativities. With respect to the HB donors, larger
cooperativities are obtained in the ClH complexes than in
the FH ones, with the smallest values in the H2O cases for
a given anion. This tendency can be associated with the
strength of the interaction in the first place and with the
polarization of the HB donor in the second.

Electron density maps show that while the anions tend to
form a bond path with C1, the FH and ClH molecules do so
with C2 and H2O with C1, in agreement with the closer
proximity of these molecules to the corresponding carbon
atoms of C2F4 (Figure 5). Values of the electron density and
Laplacian at the X · · ·C bcp (Table 7) are larger than those
found in the corresponding C2F4 ·X-, as expected due to the
shorter interatomic distance found in these complexes.41,42

Integrated electron density within the atomic basins shows
that in FH and ClH most of the charge lost by the anionic
systems goes to the YH molecule, while the electronic gain
of the C2F4 molecule is here smaller than in the C2F4 ·X
complexes. In contrast, in the H2O complexes the electronic
gain of this molecule is very small due to the long interatomic
distances obtained between this molecule and the C2F4 one.
The electron density difference for two FH ·C2F4 ·X- com-
plexes (Figure 6) clearly shows, again, how the electron gain
tends to be shifted further away from the position of the
anion.

The calculated energy variation per molecule shows
different patterns depending on the hydrogen-bond donor and
anionic systems studied. As in the case of the C2F4 ·X-

complexes, those complexes with Cl-, Br-, and NO2
- present

Table 4. Orbital Interaction Energies and Natural Energy Decomposition Analysisa

NEDA

complex lp (X-) f σ* CC CT ES POL XC DEF (C2F4) DEF (X-)

C2F4 ·Cl- 4.4 -13.4 -52.8 -42.5 -30.7 65.0 39.8
C2F4 ·Br- 2.1 -10.1 -44.2 -35.5 -27.2 57.2 29.9
C2F4 ·CN- 10.2 -32.3 -57.7 -50.2 -31.6 60.5 79.0
C2F4 ·NC- 11.0 -39.6 -52.8 -85.9 -40.9 92.4 91.6
C2F4 ·NNN- 23.0 -53.3 -58.5 -61.6 -46.7 81.9 96.9
C2F4 ·NO2

- 2 × 3.8 -46.7 -73.1 -54.1 -44.0 66.3 108.4
C2F4 ·HCO2

- 2 × 9.7 -45.1 -76.7 -71.0 -49.2 82.8 111.3
C2F4 ·CCH- 10.8 -37.8 -71.3 -55.6 -42.2 87.6 80.4
C2F4 ·OCN- 10.3 -38.4 -48.5 -57.7 -41.0 77.2 72.5
C2F4 ·NCO- 10.8 -35.6 -53.1 -71.8 -36.4 72.7 87.3
C2F4 ·O2

- 2 × 14.3 -109.9 -133.9 -91.0 -66.4 114.1 215.1

a Calculated at the M05-2x/6-311++G(d,p) computational level. All energies are given in kilojoules per mole.

Figure 4. Optimized geometry of FH ·C2F4 ·NC- complex at
the MP2/6-311++G(d,p) computational level.

coop ) Ei(YH·C2F4·X
-) - Ei(C2F4·X

-) - Ei(YH·X-)
(1)
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important destabilization of the C2F4 molecule. For the rest
of the anions, in the complexes with FH, a gain of electronic
charge is associated with an energy stabilization of the C2F4

and FH molecules similar in value. In the complexes with

ClH, this molecule is stabilized while the C2F4 one is
destabilized. Finally, the H2O molecule, which shows a small
gain of electron density, presents an energy destabilization
due to complex formation, while the C2F4 present significant
stabilization energies.

Table 5. Intermolecular Distances from Anions and Hydrogen-Bond Donor Molecules to C2F4
a

MP2/6-311++G(d,p) M05-2x/6-311++G(d,p) MP2/aug-cc-pVTZ

X · · ·C1 X · · ·C2 YH · · ·C1 YH · · ·C2 X · · ·C1 X · · ·C2 YH · · ·C1 YH · · ·C2 X · · ·C1 X · · ·C2 YH · · ·C1 YH · · ·C2

FH ·C2F4 ·Cl- 2.810 3.267 2.329 2.110 2.859 3.275 2.305 2.145 2.894 3.236 2.274 2.138
FH ·C2F4 ·Br- 3.282 3.287 2.259 2.259 3.260 3.267 2.253 2.251 3.215 3.220 2.219 2.217
FH ·C2F4 ·NC- 2.734 2.996 2.275 2.219 2.574 3.034 2.296 2.167 2.668 2.993 2.245 2.168
FH ·C2F4 ·HCO2

- 2.685 2.685 2.219 2.219 2.628 2.628 2.199 2.199 2.663 2.663 2.195 2.195
FH ·C2F4 ·NNN- 2.765 2.765 2.253 2.253 2.764 2.764 2.248 2.248 2.739 2.739 2.215 2.215
FH ·C2F4 ·NO2

- 2.685 2.685 2.226 2.226 2.658 2.658 2.216 2.216 2.649 2.649 2.202 2.202
FH ·C2F4 ·OCN- 2.801 2.939 2.251 2.264 2.751 2.956 2.235 2.247 2.794 2.898 2.212 2.237
FH ·C2F4 ·NCO- 2.253 3.047 2.323 2.172 2.549 3.047 2.302 2.160 2.541 3.046 2.286 2.123
ClH ·C2F4 ·Cl- 2.831 3.293 2.172 2.388 2.955 3.280 2.427 2.301 2.875 3.255 2.288 2.119
ClH ·C2F4 ·Br- 3.305 3.305 2.353 2.353 3.293 3.293 2.409 2.409 3.227 3.227 2.234 2.234
ClH ·C2F4 ·NC- 2.741 3.027 2.369 2.299 2.599 3.065 2.425 2.304 2.650 3.009 2.270 2.183
ClH ·C2F4 ·HCO2

- 2.674 2.674 2.267 2.267 2.632 2.632 2.275 2.275 2.687 2.687 2.267 2.267
HOH ·C2F4 ·Cl- 2.951 3.339 2.754 3.054 2.990 3.348 2.661 2.963 2.956 3.317 2.470 2.562
HOH ·C2F4 ·Br- 3.299 3.389 2.462 2.624 3.238 3.441 2.647 3.022 3.146 3.407 2.455 2.592
HOH ·C2F4 ·NC- 2.816 3.046 3.126 2.718 2.734 3.065 3.072 2.605 2.759 3.016 2.649 2.441
HOH ·C2F4 ·HCO2

- 2.707 2.740 2.653 2.983 2.665 2.684 2.590 2.914 2.678 2.731 2.444 2.674

a Intermolecular distances are given in angstroms.

Table 6. Total Interaction Energy, Attractive Energy between FH and X-, and Cooperativitya

MP2/6-311++G(d,p) M05-2x/6-311++G(d,p) MP2/aug-cc-pvtz

Ei YH ·X- b coop Ei YH ·X- b coop Ei YH ·X- b coop

FH ·C2F4 ·Cl- -66.30 -20.11 -7.18 -63.00 -20.20 -6.89 -66.13 -18.75 -12.22
FH ·C2F4 ·Br- -58.61 -18.19 -5.66 -55.23 -18.56 -6.02 -63.67 -17.89 -11.60
FH ·C2F4 ·NC- -61.06 -18.80 -6.26 -62.68 -19.24 -7.40 -65.44 -18.11 -11.64
FH ·C2F4 ·HCO2

- -77.56 -21.69 -7.38 -82.99 -22.61 -9.47 -80.32 -20.74 -12.83
FH ·C2F4 ·NNN- -71.32 -18.01 -7.29 -66.14 -18.27 -7.04 -74.27 -17.30 -11.63
FH ·C2F4 ·NO2

- -70.99 -20.77 -6.46 -77.89 -22.01 -8.43 -74.04 -19.57 -11.54
FH ·C2F4 ·OCN- -64.18 -17.84 -5.36 -61.64 -18.17 -4.44 -66.99 -17.13 -10.31
FH ·C2F4 ·NCO- -61.83 -18.23 -3.20 -64.59 -18.56 -8.86 -66.41 -17.38 -10.10
ClH ·C2F4 ·Cl- -62.91 -15.43 -8.47 -56.79 -15.00 -5.87 -63.21 -13.85 -14.20
ClH ·C2F4 ·Br- -55.89 -13.83 -7.29 -49.46 -13.77 -5.03 -60.93 -13.29 -13.45
ClH ·C2F4 ·NC- -58.21 -14.28 -7.93 -56.45 -14.35 -6.05 -62.56 -13.31 -13.56
ClH ·C2F4 ·HCO2

- -74.80 -16.71 -9.61 -76.36 -17.31 -8.15 -77.54 -15.60 -15.19
HOH ·C2F4 ·Cl- -59.86 -17.27 -3.58 -56.47 -17.58 -2.98 -55.11 -14.58 -5.36
HOH ·C2F4 ·Br- -51.71 -13.85 -3.09 -49.93 -15.94 -3.34 -54.52 -13.76 -6.57
HOH ·C2F4 ·NC- -55.18 -15.20 -3.98 -55.50 -15.43 -4.02 -55.49 -13.22 -6.58
HOH ·C2F4 ·HCO2

- -70.64 -17.84 -4.31 -74.69 -18.77 -5.02 -69.42 -15.88 -6.78

a All values are given in kilojoules per mole. b In the geometrical disposition of the FH ·C2F4 ·X- cluster.

Figure 5. Electron density maps of FH ·C2F4 ·Cl- and
FH ·C2F4 ·NNN- clusters. Contour levels, symbols, and atoms
are represented as in Figure 2.

Figure 6. Electron density difference maps of FH ·C2F4 ·Br-

and FH ·C2F4 ·HCO2
- complexes. Blue and yellow isosurfaces

represent gain and loss of electron density upon complex
formation, relative to the isolated subunits. The contours
shown are (0.0002 e/au3 calculated at the M05-2x/6-
311++G(d,p) level.
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Analysis of the orbital interaction in the FH and ClH
complexes shows a strong interaction between the π-elec-
trons of C2F4 and the σ antibonding orbital of the YH
molecule (Table 8). The value of this interaction is able
to account for the difference in stability between C2F4 ·X-

and YH ·C2F4 ·X- complexess. In addition, reinforcement
of the interaction between the anion lone pair and the
antibonding CC orbital is found in the trimeric structures
when compared to the dimeric ones. In the NEDA
analysis, a significant increment of the charge-transfer term
due to the presence of the HB with the π-systems is
observed. These results are in agreement with previous
reports that have indicated the preponderance of charge
transfer in HB complexes.

In contrast, in the H2O complexes, a small interaction
is observed between π-electrons of C2F4 and the OH
antibonding orbital. These results are in agreement with
the long distances of the hydrogen bonds formed in these
cases. Due to this effect, the NEDA analysis indicates that

in these complexes the electrostatic and polarization terms
are the most important stabilization forces.

Conclusion

A theoretical study of the complexes formed by tetrafluo-
roethylene (C2F4) with anions has been carried out by means
of ab initio, MP2, and DFT, M05-2x, methods. In several
complexes obtained, the position of the anions avoids the
center of the CdC bond. However, several complexes are
symmetric around the CC middle point, providing a similar
environment to both carbon atoms of C2F4. The interaction
energy of the complexes indicates that C2F4 is a weaker
acceptor of anions than C6F6. Natural energy decomposition
analysis shows that electrostatic and polarization terms are
the most important attractive forces in these complexes.

In addition, possible cooperativity in the interaction of
anions and hydrogen-bond donors (FH, ClH, and H2O) in
opposite faces of C2F4 has been explored. The minima
complexes obtained show a shortening of the intermolecular
distance between the anions and C2F4. In addition, the FH

Table 7. Properties of Intermolecular Bond Critical Points and Variation of Integrated Charge and Energy of C2F4 and
Hydrogen-Bond Donor Molecules upon Complexation

X · · ·C YH · · ·C charge ∆ energy

complex F (au) ∇ 2F (au) F (au) ∇ 2F (au) C2F4 (e) YH (e) C2F4 (kJ mol-1) YH (kJ mol-1)

FH ·C2F4 ·Cl- 0.0205 0.0524 0.0226 0.0538 -0.045 -0.054 104.9 -29.4
FH ·C2F4 ·Br- 0.0138 0.0393 0.0199 0.0510 -0.027 -0.049 1201.0 205.3
FH ·C2F4 ·NC- 0.0224 0.0696 0.0218 0.0534 -0.012 -0.051 -63.6 -67.8
FH ·C2F4 ·NNN- a 0.0173 0.0482 0.0193 0.0527 -0.061 -0.039 -63.4 -64.4
FH ·C2F4 ·NO2

- a 0.0183 0.0574 0.0220 0.0535 -0.017 -0.054 43.6 -43.5
FH ·C2F4 ·HCO2

- a 0.0191 0.0601 0.0228 0.0552 -0.018 -0.055 -52.0 -66.5
FH ·C2F4 ·OCN- 0.0150b, 0.0139c 0.0492, 0.0450 0.0199 0.0531 -0.019 -0.042 -76.7 -69.8
FH ·C2F4 ·NCO- 0.0229 0.0744 0.0220 0.0536 -0.010 -0.051 -78.5 -72.0
ClH ·C2F4 ·Cl- 0.0173 0.0471 0.0182 0.0417 -0.040 -0.042 124.37 -81.70
ClH ·C2F4 ·Br- 0.0131 0.0372 0.0159 0.0378 -0.034 -0.037 1095.12 -3085.97
ClH ·C2F4 ·NC- 0.0213 0.0666 0.0181 0.0419 -0.018 -0.040 33.83 -184.41
ClH ·C2F4 ·HCO2

- 0.0191 0.0597 0.0216 0.0479 -0.020 -0.051 43.75 -198.14
HOH ·C2F4 ·Cl- 0.0261 0.0442 0.0080 0.0233 -0.068 -0.006 36.12 66.94
HOH ·C2F4 ·Br- 0.0129 0.0347 0.0079 0.0236 -0.061 -0.005 1179.60 250.42
HOH ·C2F4 ·NC- 0.0166 0.0542 0.0085 0.0253 -0.044 -0.004 -165.57 32.67
HOH ·C2F4 ·HCO2

- 0.0179 0.0562 0.0092 0.0261 -0.056 -0.008 -135.29 35.18

a Two identical X · · ·C bcp’s are found in these complexes. b Values of O · · ·C1 interaction. c Values of N · · ·C1 interaction.

Table 8. Intermolecular Orbital Interaction Energies and Natural Energy Decomposition Analysisa

NEDA

complex X lp f σ*CC πCC f σ*HF CT ES POL XC DEF (C2F4) DEF (X-) DEF (HF)

FH ·C2F4 ·Cl- 24.6 33.3 -94.0 -94.6 -48.9 -55.4 118.6 81.5 28.0
FH ·C2F4 ·Br- 4.1 27.9 -67.6 -73.0 -39.0 -46.3 98.7 49.7 24.9
FH ·C2F4 ·NC- 17.5 32.5 -108.4 -83.6 -98.1 -63.0 142.0 121.0 28.9
FH ·C2F4 ·HCO2

- 2 × 14.3 34.6 -117.3 -110.9 -85.4 -73.9 126.1 153.4 30.5
FH ·C2F4 ·NNN- 36.0 24.5 -112.3 -85.4 -84.2 -70.8 126.9 133.8 26.9
FH ·C2F4 ·NO2

- 2 × 8.0 32.8 -114.3 -108.8 -58.4 -65.0 100.9 145.6 29.5
FH ·C2F4 ·OCN- 14.1 26.8 -92.6 -70.3 -72.2 -61.5 115.7 96.2 26.5
FH ·C2F4 ·NCO- 19.8 32.4 -106.7 -83.6 -90.3 -58.7 119.9 126.9 29.1
ClH ·C2F4 ·Cl- 0.7 31.4 -71.80 -81.13 -51.71 -53.56 114.52 58.70 25.19
ClH ·C2F4 ·Br- 3.6 25.8 -54.77 -67.40 -45.15 -47.36 101.71 21.55 44.89
ClH ·C2F4 ·NC- 15.7 31.1 -95.40 -78.12 -99.33 -63.64 142.34 113.14 27.03
ClH ·C2F4 ·HCO2

- 2 × 14.0 41.7 -116.11 -109.70 -88.99 -78.70 137.36 151.84 33.51
HOH ·C2F4 ·Cl- 12.6 2.0 -41.13 -76.57 -56.44 -46.82 90.42 57.40 19.71
HOH ·C2F4 ·Br- 4.6 1.8 -33.10 -65.73 -49.79 -42.59 82.89 42.76 19.46
HOH ·C2F4 ·NC- 6.7 2.4 -50.79 -66.90 -84.64 -51.71 105.23 77.24 20.54
HOH ·C2F4 ·HCO2

- 13.0/11.4 2.9 -71.92 -100.29 -90.75 -66.40 108.32 130.88 21.55

a Calculated at the M05-2x/6-311++G(d,p) computational level. All energies are given in kilojoules per mole.
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molecule is located, in general, at shorter distances than in
the FH ·C2H4 complex, indicating that the C2F4 ·X- is a more
effective hydrogen-bond acceptor than C2H4. Cooperativity
values between -15.2 and -5.4 kJ mol-1 have been obtained
for all the systems studied here. Finally, the presence of
hydrogen bonding increases significantly the charge-transfer
attractive term in the NEDA analysis for the FH and ClH
complexes, becoming the most important term in most cases.
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ester, P.; Deyà, P. M. Theor. Chem. Acc. 2008, 120, 385. (j)

Mignon, P.; Loverix, S.; De Proft, F.; Geerlings, P. J. Phys.
Chem. A 2004, 108, 6043.

(8) (a) Alkorta, I.; Rozas, I.; Elguero, J. Chem. Soc. ReV. 1998,
27, 163. (b) Desiraju, G. R.; Steiner, T. The weak hydrogen
bond; Oxford University Press: Oxford, 1999.

(9) (a) Baiocchi, F. A.; Williams, J. H.; Klemperer, W. J. Phys.
Chem. 1983, 87, 2079. (b) Rodham, D. A.; Suzuki, S.;
Suenram, R. D.; Lovas, F. J.; Dasgupta, S.; Goddard, W. A.;
Blake, G. A. Nature 1993, 362, 735. (c) Suzuki, S.; Green,
P. G.; Bumgarner, R. E.; Dasgupta, S.; Goddard, W. A.; Blake,
G. A. Science 1992, 257, 942.

(10) (a) Rozas, I.; Alkorta, I.; Elguero, J. J Phys Chem A 1998,
102, 2398. (b) Rozas, I.; Alkorta, I.; Elguero, J. J Phys Chem
A 1997, 101, 9457. (c) Alkorta, I.; Elguero, J. Chem. Phys.
Lett. 2003, 381, 505. (d) Prieto, P.; de la Hoz, A.; Alkorta,
I.; Rozas, I.; Elguero, J. Chem. Phys. Lett. 2001, 350, 325.
(e) Rozas, I. Phys. Chem. Chem. Phys. 2007, 9, 2782. (f)
Kawahara, S.; Tsuzuki, S.; Uchimaru, T. Chem.-Eur. J. 2005,
11, 4458. (g) Grabowski, S. J.; Sokalski, W. A.; Leszczynski,
J. J. Phys. Chem. A 2004, 108, 1806. (h) Scheiner, S.;
Grabowski, S. J. J. Mol. Struct. 2002, 615, 209. (i) Wojtulews-
ki, S.; Grabowski, S. J. J. Mol. Struct. 2002, 605, 235. (j)
Takahashi, H.; Tsuboyama, S.; Umezawa, Y.; Honda, K.;
Nishio, M. Tetrahedron 2000, 56, 6185.

(11) (a) Alkorta, I.; Rozas, I.; Elguero, J. J. Fluorine Chem. 2000,
101, 233. (b) Alkorta, I.; Rozas, I.; Jimeno, M. L.; Elguero,
J. Struct. Chem. 2001, 12, 459. (c) Alkorta, I.; Elguero, J. J.
Phys. Chem. A 2003, 107, 9428. (d) Alkorta, I.; Rozas, I.;
Elguero, J. J. Org. Chem. 1997, 62, 4687. (e) Alkorta, I.;
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